Informations about the modules

zurück

Module (6 Credits)

Stochastic Simulation

Name in diploma supplement
Stochastic Simulation
Responsible
Admission criteria
See exam regulations.
Workload
180 hours of student workload, in detail:
  • Attendance: 60 hours
  • Preparation, follow up: 60 hours
  • Exam preparation: 60 hours
Duration
The module takes 1 semester(s).
Qualification Targets

Die Studierenden

  • besitzen einen umfassenden Überblick über Monte Carlo Methoden
  • kennen die zugrundeliegenden Algorithmen zur Simulation von geeigneten Zufallszahlen und Zufallsprozessen
  • können Monte Carlo Methoden für ökonomische Analysen anwenden
  • sind in der Lage eigenständig und mit Hilfe statistischer Software Simulationsstudien durchzuführen
  • können selbständig ausgewählte Übungsaufgaben bearbeiten
Relevance

Simulationsstudien und Monte Carlo Verfahren sind unerlässlich, sobald analytische Schätzverfahren unmöglich oder zu kompliziert sind.

Module Exam

Zum Modul erfolgt eine modulbezogene Prüfung in der Gestalt einer mündlichen Prüfung (in der Regel: 20-40 Minuten).

Usage in different degree programs
  • BWL EaFWahlpflichtbereich1st-3rd Sem, Elective
  • ECMXWahlpflichtbereichME7 Econometric Methods1st-3rd Sem, Elective
  • VWLWahlpflichtbereich I1st-3rd Sem, Elective
Elements
Name in diploma supplement
Stochastic Simulation
Organisational Unit
Lecturers
SPW
2
Language
English
Cycle
irregular
Participants at most
no limit
Preliminary knowledge

Grundlegende Kenntnisse der Wahrscheinlichkeitstheorie und mathematischen Statistik sowie erste statistische Programmiererfahrungen sind wünschenswert.

Abstract

Vermittlung von Theorie und praktischer Durchführung von Simulationsstudien, welche statistische Berechnungen erheblich vereinfachen können.

Contents
  • Einführung in die Monte Carlo Methode
  • Erzeugung von Pseudozufallszahlen
  • Varianzreduktion
  • Rare-Event Simulation
  • Effiziente Simulation von Stochastischen Prozessen
  • Markov Chain Monte Carlo Methoden
  • Anwendungen
Literature

Asmussen, Glynn (2007): Stochastic Analysis. Springer, 1st ed

Teaching concept

Die Veranstaltung ist als Vorlesung konzipiert, die jedoch durch vielfältige, sachorientierte Diskussionen ihren Frontalcharakter weitestgehend verliert. Dazu R-Illustrationen, gemeinsames Programmieren der statistischen Konzepte, Übungsaufgaben.

Participants
Lecture: Stochastic Simulation (WIWI‑C1141)
Name in diploma supplement
Stochastic Simulation
Organisational Unit
Lecturers
SPW
2
Language
English
Cycle
irregular
Participants at most
no limit
Preliminary knowledge

Siehe Vorlesung.

Contents

Siehe Vorlesung.

Literature

Siehe Vorlesung.

Teaching concept

Bearbeitung von theoretischen und praktischen Übungsaufgaben – letztere mit Hilfe statistischer Software.

Participants
Exercise: Stochastic Simulation (WIWI‑C1142)
Module: Stochastic Simulation (WIWI‑M0891)