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Abstract

The well-known problem of too many instruments in dynamic panel data

GMM is dealt with in detail in Roodman (2009, Oxford Bull. Econ. Statist.).

The present paper goes one step further by providing a solution to this

problem: factorisation of the standard instrument set is shown to be a valid

transformation for ensuring consistency of GMM. Monte Carlo simulations

show that this new estimation technique outperforms other possible trans-

formations by having a lower bias and RMSE as well as greater robustness

of overidentifying restrictions. The researcher’s choice of a particular trans-

formation can be replaced by a data-driven statistical decision.
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1 The problem of too many instruments

Dynamic panel data (DPD) models have become increasingly popular in the last

two decades. Nowadays the availability of micro level data, such as of firms or

banks, enables researchers to identify economic relationships at a disaggregate

level. Hence, the serious problem of aggregation bias (Lippi and Forni, 1990) can

be avoided. However, the solution is not without a drawback: DPD bias. As

Nickel (1981) has shown, the Least Squares Dummy Variables (LSDV) estimator

has a non-vanishing bias for small T and large N . Anderson and Hsiao (1982)

were the first to propose an unbiased DPD estimator with the notable trade-off

between lag depth and sample size. It was not until Holtz-Eatkin et al. (1988)

that an unbiased DPD estimator was constructed based on Generalised Method of

Moments (GMM) (Hansen, 1982). The breakthrough came with Difference GMM

by Arellano and Bond (1991), and System GMM by Arellano and Bover (1995) and

Blundell and Bond (1998). In the meantime, Kiviet (1995) proposed a corrected

LSDV estimator for balanced panels. However, one issue with regard to DPD

GMM still remains unresolved; the number of instruments grows quadratically in

T and GMM becomes inconsistent as the number of instruments diverges thus

begging the question “what is the optimal set of instruments?”

Roodman (2009) addresses the problem of too many instruments. Increasing

the sample size causes the number of instruments to proliferate as DPD GMM

generates one instrument for each time period and lag available. Currently, there

are two techniques in use to reduce the instrument count. One of them is limit-

ing the lag depth, the other one is “collapsing” the instrument set. The former

implies a selection of certain lags to be included in the instrument set, making

the instrument count linear in T . The latter embodies a different belief about the

orthogonality condition: it no longer needs to be valid for any one time period but

still for each lag, again making the instrument count linear in T . A combination

of both techniques makes the instrument count invariant to T . These transfor-

mations are deterministic ones of the instrument matrix, i.e. the transformation

matrix consists of zeroes and ones. Besides the fact that no widely accepted rule

of thumb for the instrument count exists, by choosing one of the aforementioned

approaches, the researcher decides which transformation is to be used for the data.
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The point in question is, “can we let the data decide how the transformation ma-

trix should look?” The answer to this question is found by means of factor analysis

of the instrument set and is shown to be “yes, we can.” The resulting DPD GMM

estimator is characterised by both a lower bias and a lower root mean squared

error (RMSE) than the standard techniques.

The remainder of the paper is organised as follows. Section 2 introduces the

new estimation technique based on factorised instruments. Monte Carlo results

for this estimator are presented in Section 3. The final section concludes.

2 A solution to this problem

Consider an autoregressive panel model of order one for the endogenous variable

yi,t, where αi is a fixed effect and εi,t is the error term.

yi,t = αi + βyi,t−1 + εi,t (1)

The standard instrument set Z for the estimation of the autoregressive parame-

ter β of Equation (1) with DPD GMM in first differences (∆yi,t = β∆yi,t−1+∆εi,t),

which will be treated here exclusively without loss of generality but for simplic-

ity of exposition, consists of lagged values of the endogenous variable, which are

uncorrelated with the first differences of the error term.

E(Z′∆ε) = 0 (2)

First, the conditions for consistency of the aforementioned techniques, along

with a whole class of transformations, to reduce the instrument count are verified

in the following theorem. Unlike other authors, who derive the limited or collapsed

instrument set from first principles by considering interpretable orthogonality con-

ditions, this paper applies transformation matrices to the standard instrument set

which yield the desired results (cf. Appendix B). Proofs for this and the following

theorem are to be found in Appendix A.

Theorem 1. Let Equation (2) be valid. Then E(Z∗′∆ε) = 0 with Z∗ = ZF for

any deterministic transformation matrix F.
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It follows from Theorem 1 that limiting the lag depth, collapsing the instrument

set or both are valid transformations for consistent estimation of the parameter of

interest. Moreover, any transformation, no matter if it lacks a sensible interpreta-

tion, satisfies the conditions of the theorem as long as it is deterministic.

Second, the aim of this paper is to introduce a new technique rather than to

evaluate standards already in use. Hence, the focus here lies on stochastic transfor-

mations instead of deterministic ones. In order to solve the problem of instrument

proliferation, this paper suggests the application of factor analysis – more precisely

for the case in hand – principal components analysis (PCA) to the instrument set.

PCA extracts the largest eigenvalues of the estimated covariance matrix of Z and

assembles the corresponding eigenvectors in the matrix of component loadings F∗,

the transformation matrix. In this case, the transformation matrix is stochastic

and Theorem 1 is no longer applicable. However, Theorem 2 provides a solution.

Theorem 2. Let Z and ε be independent random variables. Then E(Z∗∗′∆ε) = 0

with Z∗∗ = ZF∗ for any well-behaved stochastic transformation matrix F∗.

Here, well-behaved means Borel measurable. Theorem 2 is both more general

and more specific than Theorem 1. The fact that it also holds true for deterministic

F∗ = F makes it more general. It is more specific in the sense that it requires

independence of Z and ε which is a stronger property than uncorrelatedness. This

assumption is not too strong if the error term is thought of as being an exogenous

shock.

3 Performance of factorised instruments

Judson and Owen (1999) provide Monte Carlo evidence that GMM is superior to

other estimation techniques when it comes to DPD. Among others, their findings

are: OLS produces biased estimates even for large T , the bias of LSDV decreases

with T but may still be up to 20% of the true value even when T = 30, and

also that the LSDV bias increases with the true value of the autoregressive pa-

rameter. Additionally, OLS is upward biased while LSDV is downward biased.

Windmeijer (2005) adds to this list that GMM becomes more efficient when the

lag depth is limited, and thus fewer instruments are employed in the estimation.

Page 4 of 13



Table 1 presents biases and RMSEs from a Monte Carlo simulation of a one-

step estimation of Equation (1) with parameter values of β in the range of zero to

one. εi,t is assumed to be standard normal, as is αi. N is fixed at 100, T is 10, 20

and 30, respectively. The pre-sample period length is 30. The standard instrument

set is either taken as it is, limited, collapsed or both, and additionally PCA has

been applied to all four variants. The experiment is repeated 1,000 times.

The results confirm the findings of Judson and Owen (1999) and

Windmeijer (2005). In addition, factorised instruments outperform all other tech-

niques by having both a lower bias and RMSE, however, there are a few exceptions

when T = 10. In general, factorisation of the limited and collapsed instrument

set results in the lowest bias, while factorisation of the collapsed but unlimited

instrument set yields the lowest RMSE. Biases are zero to the second decimal

place or in relative terms less than 1%, RMSEs are zero to the first decimal place.

The advantage of factorised instruments over standard ones is the condensation

of the informational content of the instrument set into a much lower number of

instruments employed in the estimation thus lowering the risk of overfitting en-

dogenous variables but retaining almost all information. The next best approach

is standard GMM with the instrument set being both limited and collapsed. Ac-

ceptable results can also be derived from a collapsed but unlimited instrument set

in standard GMM. Limiting the lag depth on the one hand is a good idea as even

if the autoregressive parameter is high, serial correlation will be low after a few

periods and deeper lags are weak instruments, adding almost no new information

for estimation. Collapsing the instrument set on the other hand also condenses

the information in the instrument set into a lower number of instruments. The

techniques most frequently used in applied DPD research, the untransformed in-

strument set and the limited one in standard GMM, are the worst choices, that

is apart from the factorised variants of them. Both techniques are significantly

downward biased, although the estimate still has the correct sign. Performance of

their factorised variants is unacceptable; not even the correct sign can be expected.

Explanations for the failure of the standard techniques can be found with recourse

to the Sargan (1958) test of overidentifying restrictions (cf. Table 2). The failure

of the factorised variants can be traced back to PCA and the Kaiser-Meyer-Olkin

(Kaiser, 1970) measure of sampling adequacy (MSA) (cf. Table 3).
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Table 1: Bias, standard error (SE) and RMSE for β = .2 and β = .8

T = 10 T = 20 T = 30
Method Statistic β = .2 β = .8 β = .2 β = .8 β = .2 β = .8
Least Squares
OLS Bias +.477 +.180 +.477 +.180 +.477 +.180

SE .001 .000 .001 .000 .001 .000
RMSE .478 .180 .478 .180 .478 .180

LSDV Bias −.136 −.243 −.064 −.111 −.042 −.070
SE .001 .001 .001 .001 .001 .000

RMSE .140 .245 .068 .113 .045 .071
Standard GMM
Untransformed Bias −.080 −.539 −.146 −.624 −.199 −.681

SE .002 .004 .001 .002 .001 .001
RMSE .101 .555 .151 .628 .201 .683

Limited (Ltd.) Bias −.061 −.506 −.114 −.580 −.157 −.633
SE .002 .005 .001 .002 .001 .002

RMSE .089 .528 .121 .585 .160 .635
Collapsed (Col.) Bias −.014 −.373 −.017 −.296 −.017 −.257

SE .002 .007 .001 .004 .001 .003
RMSE .070 .435 .047 .325 .039 .275

Ltd. & Col. Bias −.001 −.172 −.007 −.159 −.007 −.137
SE .002 .008 .001 .004 .001 .003

RMSE .071 .297 .044 .205 .036 .166
Factorised GMM
Untransformed Bias −.325 −.706 −.463 −.826 −.502 −.856

SE .014 .018 .014 .015 .011 .013
RMSE .550 .913 .632 .945 .607 .949

Limited (Ltd.) Bias −.165 −.534 −.300 −.646 −.399 −.760
SE .008 .017 .010 .014 .010 .013

RMSE .305 .769 .447 .781 .501 .861
Collapsed (Col.) Bias +.004 −.026 +.003 −.007 +.004 .000

SE .002 .006 .001 .002 .001 .002
RMSE .059 .189 .035 .077 .029 .048

Ltd. & Col. Bias +.002 +.005 +.002 −.002 +.003 .000
SE .002 .007 .001 .003 .001 .002

RMSE .067 .217 .037 .084 .031 .055

Note: For the sake of brevity, results for values of the autoregressive parameter
other than β = .2 and β = .8 are not displayed here. The results obtained for
these values are similar to those presented above.
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Table 2: Instrument count J and rejection frequency of the null hypothesis

T = 10 T = 20 T = 30
Method J β = .2 β = .8 J β = .2 β = .8 J β = .2 β = .8
Standard GMM
Untransformed 36 .103 .202 171 .176 .400 406 .318 .605
Limited (Ltd.) 26 .096 .181 126 .140 .365 301 .228 .568
Collapsed (Col.) 8 .091 .166 18 .077 .169 28 .092 .185
Ltd. & Col. 4 .047 .097 9 .069 .096 14 .074 .099
Factorised GMM
Untransformed 3 .080 .076 4 .064 .057 5 .070 .064
Limited (Ltd.) 3 .100 .109 4 .063 .064 5 .076 .072
Collapsed (Col.) 2 .000 .000 3 .000 .000 4 .000 .000
Ltd. & Col. 2 .000 .001 3 .000 .000 4 .000 .000

Table 2 shows the number of instruments employed in the estimation for each of

the methods used and the proportions to which the validity of the overidentifying

restrictions have been rejected at the nominal 5% significance level. It should be

borne in mind that the power of the test is not weakened by many instruments.

For limited instrument sets, the number of lags employed is set to be half of the

available lags; for factorised instrument sets, the number of retained components

has been fixed. Both choices are to a certain extent arbitrary.

Standard GMM with the untransformed or limited instrument set generates

invalid overidentifying restrictions in an unacceptably high number of cases. This

is due to the impossibility of fulfilling all restrictions simultaneously owing to the

large number of instruments and the resulting overfitting of endogenous variables.

Probabilities of rejection increase with β as well as with T . As it is known a

priori that the null hypothesis of valid instruments or overidentifying restrictions

is true in all cases, severe size distortions of the test become visible. While the

test of the factorised variants of the collapsed (and limited) instrument set is

undersized, rejecting the null hypothesis in virtually none of the cases, all tests of

other instrument sets are oversized, some rather heavily.

Table 3 reports the explained variance and MSA from PCA. The explained

variance states the proportion of the instrument set’s variance that can be ex-

plained by the retained components. MSA is a statistical criterion to judge the
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Table 3: Fraction of explained variance ρ and measure of sampling adequacy

T = 10 T = 20 T = 30
Method Statistic β = .2 β = .8 β = .2 β = .8 β = .2 β = .8
Untransformed ρ .398 .562 .247 .363 .200 .297

MSA .051 .859 .108 .930 .132 .948
Limited (Ltd.) ρ .350 .457 .197 .279 .154 .224

MSA .028 .776 .079 .901 .112 .931
Collapsed (Col.) ρ .700 .911 .670 .917 .669 .923

MSA .938 .999 .974 1.000 .981 1.000
Ltd. & Col. ρ .828 .968 .766 .966 .748 .967

MSA .926 .999 .977 1.000 .987 1.000

adequacy of the covariance matrix to be factorised; the closer it gets to one, the

better. A value in the .90s is regarded as being “marvellous” in the literature.

The explained variance from PCA of the collapsed (and limited) instrument

set is in the high .70s, low .80s for β = .2 and in the high .90s for β = .8.

Almost all of the variation of the standard instrument set can be explained by

much fewer components. Irrespective of β, PCAs of the untransformed or limited

instrument set do not score appreciable values. This is the main reason why these

procedures fail to result in plausible estimates (cf. Table 1). Although high MSAs

can be achieved for β = .8, the explained variance remains low. MSAs for the

first two procedures are close to one in all instances. The collapsed instrument set

is much more suitable for PCA as each instrument is non-zero for all applicable

observations, unlike untransformed instruments which are non-zero for just a single

observation.

4 Directions for applied research

The Monte Carlo results strongly suggest the use of factorised instruments as these

produce the lowest bias and RMSE. This generates an ultimate set of instruments

and reduces the uncertainty researchers face in their choice of instruments. Fur-

thermore, there is a clear recommendation to collapse the instrument set prior to

factorisation or, if factorisation is not to be used at all, then at the very least

the instrument set should be collapsed. To reiterate, this implies a deterministic

transformation of the standard instrument set, and the factorised variant of this
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instrument set is the method of choice. Preferably, the lag depth is also limited.

The lag limit should be chosen based on a priori information on the value of the

autoregressive parameter, as serial correlation decreases exponentially. Most im-

portantly, standard GMM suffers from instrument proliferation. The findings in

this paper indicate that results of numerous applications of GMM in the literature

may benefit from factorised instruments. LSDV should be applied only if the time

dimension is much larger than 30, while pooled OLS should not be used at all in

the estimation of DPD.

In applied research, the number of retained components from PCA can be

derived from factor analytic criteria, such as MSA, and should be tested for their

validity in the GMM framework. The methodology outlined here can be applied

to System GMM or exogenous variables in a completely analogous fashion. It is

reasonable to make use of the correlation between all instruments to lower the

instrument count.

A Proof of theorems

Proof of Theorem 1. Using the definition of Z∗ in Theorem 1 and Equation (2), the

proposition follows directly from the linearity property of the expectation operator:

E(Z∗′∆ε) = E(F′Z′∆ε) = F′E(Z′∆ε) = 0.

Proof of Theorem 2. Per definitionem of Theorem 2, Z and ε are a matrix and

vector, respectively, of independent random variables, and thus Borel. For any

pair φ(·) and ψ(·) of Borel functions, this is also the case for φ(Z) and ψ(ε).

V̂ar(Z) is a positive semi-definite symmetric matrix meaning that all eigenval-

ues are real and non-negative. It is well-established that the sum and product of

two real-valued measurable functions are measurable. That eigenvectors can be

found in a Borel measurable fashion was shown by Azoff (1974, Corollary 4).

Hence, Z∗∗ = ZΛ(Z) = φ(Z), with F∗ = Λ(Z) being the matrix of component

loadings, and ∆ε = ψ(ε) are independent random variables, too. Moreover, given

quadratic integrability of Z∗∗ and ∆ε, they are uncorrelated. The proposition

follows from the fact that this can be the case if and only if E(Z∗∗′∆ε) = 0 as

E(∆ε) = 0.
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B Structure of transformation matrices

For the sake of exposition, let T = 6 and i = 1, 2, . . . , n. Note that the first

observation is dropped due to differencing.

Untransformed

The standard instrument set consists of lagged values of the endogenous variable;

in particular, one instrument is generated for each time period and lag available.

The instrument count is J = (T − 2)(T − 1)/2 = 10.

Zi =


0 0 0 0 0 0 0 0 0 0

yi,1 0 0 0 0 0 0 0 0 0

0 yi,2 yi,1 0 0 0 0 0 0 0

0 0 0 yi,3 yi,2 yi,1 0 0 0 0

0 0 0 0 0 0 yi,4 yi,3 yi,2 yi,1


Limited (L)

Limiting the maximum lag depth of yi,t−1 to τ = 2, for example, gives as trans-

formation matrix a block matrix of identity matrices up to dimension τ (for each

time period, indicated by solid lines) separated by rows of zeroes (for excluded lags,

indicated by dashed lines). Using this technique reduces the instrument count to

JL = J − (T − 2 − τ)(T − 1 − τ)/2 = 7.

ZL
i = ZiF

L = Zi



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0



=


0 0 0 0 0 0 0

yi,1 0 0 0 0 0 0

0 yi,2 yi,1 0 0 0 0

0 0 0 yi,3 yi,2 0 0

0 0 0 0 0 yi,4 yi,3


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Collapsed (C)

The transformation matrix for collapsing the instrument set is made up of identity

matrices of increasing dimension stacked one upon the other (indicated by solid

lines) with blocks of zero matrices to the right (indicated by dashed lines). By

collapsing the instrument count is cut to JC = T − 2 = 4.

ZC
i = ZiF

C = Zi



1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=


0 0 0 0

yi,1 0 0 0

yi,2 yi,1 0 0

yi,3 yi,2 yi,1 0

yi,4 yi,3 yi,2 yi,1



Limited & Collapsed (LC)

When both techniques are combined, i.e. rows of zeroes from FL and stacked

identity matrices (now again only up to dimension τ) from FC, the instrument

count becomes JLC = τ = 2.

ZLC
i = ZiF

LC = Zi



1 0

1 0

0 1

1 0

0 1

0 0

1 0

0 1

0 0

0 0



=


0 0

yi,1 0

yi,2 yi,1

yi,3 yi,2

yi,4 yi,3


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