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1. Introduction 

Most of the economic data is reported either quarterly or annually but it may happen 

that quarterly figures are required and only annual ones are available. Therefore, 

some different approaches for disaggregating annual data to quarterly data have 

been developed in the past years. In this paper we want to introduce some of the 

most popular methods (chapter 2) and then we want to compare them with the help 

of some simulations (chapters 3 and 4). 

 

 Fig. 1.1 

According to Figure 1.1 the different approaches can be divided into the following 

categories: 

Temporal
Disaggregation

Regression

Least
Squares“plausible”

+ Linear Interpolation
+ “Dividing by 4”
+ Lisman/Sandee (1964)

+ Boot et. al. (1967)
+ Stram/Wei (1986)
+ Jacobs et.al. (1989)
+ Hodgess/Wei (1996)

+ Chow/Lin (1971)
+ Fernandez (1981)
+ Litterman (1983)

Model-based

+ Guerrero (1990)
+ Nijman/Palm (1990)
+ Gudmundsson (1999)
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1. In the first group we have methods which divide the annual data into a quarterly 

figure „in a plausible way“. This means linear interpolation if we have stocks and 

in the case of flows a simple „dividing by four“ of which the method of 

Lisman/Sandee is a special case.  

2. The second group is formed by the so called model-based procedures. That 

means 

• first, using high correlating time series for creating the disaggregated series or 

• second, assuming that the wanted disaggregated series follow an ARIMA-

process. 

3. The third group („Least Squares“) tries to minimize the sum of the squared 

changes of the quarterly values respectively their d-th differences. 

Assuming that y is the known T x 1 vector of the annual data for T,...,1t =  and x is 

the unknown 4T x 1 vector of the quarterly data, then in case of aggregation we have 

the following connection: 

(1.1)  xCy '=  

where C is a 4T x T aggregation matrix 

(1.2)  '
T

' eIC ⊗=  

while IT is the T x T identity matrix and e is 

(1.3a)  ( )1111e =  in the case of flows 

(1.3b)  ( )0001e =  in the case of stocks if the first quarter is observed. 

Otherwise the „1“ has to be moved to one of the other positions. 

Similary we get for disaggregation: 

(1.4)  yHx '=  

with H being a T x 4T disaggregation matrix. In the following we have to show what 

the matrix H has to look like for the different procedures of disaggregation. 
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2. Some disaggregation procedures 

2.1 „Plausible“ Methods 

2.1.1 „Dividing by four“ and linear Interpolation 

The first procedure we want to present is the simple „dividing by 4“ method in the 

case of flows. It is easy to see that the disaggregation matrix must be 

(2.1)  C
4
1H' =  

In the case of flows it must be considered that after disaggregation we only have 4(T-

1) observations. We get the disaggregation matrix: 

(2.2) BD
4
1AH' +=  

with ( )[ ]1T4
'

1T 0CA −−= , 

where ( )1T40 −  is a ( )1T4 − -zero vector. Furthermore, it is 
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2.1.2 The Procedure of Lisman/Sandee 

In the case of the „dividing by four“ method at the beginning of every year there is a 

„step“ in the disaggregated time series. Lisman/Sandee (1964) want to avoid this by 

building a weighted mean of the quarterly values of the years t-1, t and t+1. So the 

procedure of Lisman/Sandee includes two steps. 

In the first step we build the quarters of yt: 

(2.3)  tt4t3t2t1 y
4
1

=ψ=ψ=ψ=ψ  

In the second step we get the weighted arithmetic means of ψi,t-1, ψit and ψi,t+1 for 

estimating xit: 

(2.4) 
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 with: 
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respectively 

(2.4a) GCy
4
1x =  

Therefore we have a system of equations with six unknown Variables a,...,f,.which 

can be solved with the help of the following considerations: 

(1) For all T,...,1t =  it is 

 (2.5) t

4

1i
it 4x ψ=∑

=

 

 So we have: 

 (2.6) 0dcba =+++  

 (2.7) ( ) 4fe2 =+  
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(2) In the special case where 1tt1t +− ψ=ψ=ψ  we have: 

 (2.8) 1dea =++  

 (2.9) 1fcb =++  

 (3) In the case of a rise/decline of the annual value by p we assume that the 

quarterly value in-/decreases by p
4
1 : 

 (2.10) p
4
1xx t,1iit =− −  

 For the transition from the first to the second quarter, that is: 

 (2.11) ( ) ( ) ( ) 1tt1tt1t2 dcefabp
4
1xx +− ψ−+ψ−+ψ−==−  

 Because of pyy 1tt =− − 4
p

4
py

4
y

t
t

1t
1t −ψ=

−
=ψ=⇒ −

−  and 
4
p

t1t +ψ=ψ +  we 

get from (2.10): 

 (2.12) ( ) ( )
4
pdcbadcefab

4
p

t −+−+ψ−+−+−=  

 and because of (2.5) and (2.6) we get 

 (2.13) 1dcba =−+−  

 In the same way for the transition from the second to the third quarter we get: 

 (2.14) ( ) 1cb2 =−  

So we get a system of six equations of which only five are independent. The solution 

depends on an unknown variable α: 

4
3a α−

=  
4

1b α+
=  

4
1c −α

=  
4

3d α+
−=  

2
1e α
+=  

2
1f α
−=  

For determining α, Lisman/Sandee propose using prior information like a known 

season figure. 
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2.2 Modelbased Procedures 

2.2.1 Regression model-based Procedures 

Assuming that 1m ≥  time series exist which are highly correlated with the wanted 

disaggregated series. We have 

(2.15) uZx +β=  

 with: Z: (4T x m) matrix of the correlating time series 

  β: (m x 1) vector of coefficients 

  u: (4T x 1) white noice 

An unbiased estimator of x satisfies the requirements 

(2.16) ( )uCZCĤyĤx̂ '''' +β==  

So we have the expected estimation error 

(2.17) ( ) ( ) ( )[ ] ( ) 0ZZCĤuZuCZCĤExx̂E ''''' =β−=+β−+β=−  

For an unbiased estimation the following must be valid: 

(2.18) 0ZZCĤ '' =−  

 uuCĤxx̂ '' −=−  

with the covariance 

(2.19) ( ) ( )( ) VĤVCVCĤĤVCCĤuuCĤuuCĤExx̂Cov ''''''''' +−−=



 −−=−  

By minimizing this term we get the unbiased minimum variance estimator: 

(2.20) ( )[ ] ûCˆZûCVCCVCCˆZx̂ 1'' +β=+β=
− , 

where β̂  is the GLS-estimator using the T aggregated data and û  the corresponding 

residual vector: 

(2.21) ( )[ ] ( ) CyVCCCZZCVCCCZˆ 1''
1

'1'' −−−
=β  

(2.22) β−= ˆZCyûC '  
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2.2.2 ARIMA-based Models 

Assuming that the wanted disaggregated time series follows an ARIMA(p,d,q)-

process: 

(2.23) ( )( ) ( ) tt BxB1B ετ=−φ , 

where B is the shiftoperator 1tt xBx −=  and tε  is gaussian. In a similar way as in 

chapter 2.2.1 based on the conditional mean of x 

(2.24) ( ) ( )t21t xE,...x,xxE =  

we get the unbiased minimum variance estimator: 

(2.25) ( ) ( ) ( )[ ]xECyCCCxEx̂ '1''' −θθθθ+=
−  

with the estimation error 

(2.26) ( ) ∑
−

=
−εθ=−

1t

0j
jtjtt xEx  

where θ1, θ2, ... is the solution of 

(2.27) ( ) ( ) ( ) ( ) 1BBdBB 1 =τφθ − . 

 

2.3 Least Squares Models 

The last group we want to look at is formed by the models of Least Squares 

Estimation. We start by building the (4T – d) vector of the d-th differences of x. 

(2.28) xw d
T4∆=  

 with: 
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where the iδ  are the coefficients of the Bi in ( )d1B − . In the same way we build a 

vector u with the d-th differences of y. 

We use the GLS-approach for estimating the disaggregated time series  
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(2.29) wVwmin 1
w

'

x

− , 

where Vw is the covariance matrix of w. 

The solution of this adjustment problem contains two steps: 

1. Estimating w based on u. 

2. Estimating x based on w. 

Between u and w there is the following connection: 

(2.30) wu dΞ=  

 with: 
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 (T – d) x (4T – d). 

'ξ  is a (3d + 4) x 1 vector with the coefficients of the Bi in ( ) 1d32 BBB1 +
+++  and 0l 

are 1 x l vectors of zero. 

So as an estimator of w we get: 

(2.31) ( ) ( ) yVVuVVŵ d
T

1
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1
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and as an estimator of x 
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 with: Id: d x d identity matrix 

 e4: 1 x 4 vector [1, 1, 1, 1] 

 

3. Simulation 

After describing all the procedures the next question has to be: Which one is the 

best? This question is hard to answer. Some of the methods are „optimal“ by their 

nature because they are built as the result of a consideration of optimization. For 

example the ARIMA- or the regression-based methods are estimators with a minimal 
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variance or the Least Square method results from the minimization of the squared 

differences of the estimated quarterly values. Otherwise methods like Lisman/Sandee 

or „dividing by four“ do not originate from such optimization considerations. Are the 

first ones therefore better than the second ones? The most important question for 

getting the „best“ method is: Which procedure delivers an estimation closest to the 

original disaggregated time series? To answer this question it seems to be useful to 

carry out some simulations for comparing the different methods. We did several of 

them with different time series. In the following, we want to describe the building and 

the results of one of them in detail. In chapter 4 we will shortly agree of the other 

ones. 

The simulation we want to describe is based on an ARIMA(1,1,1)-process as the 

disaggregated time series of a flow. For all calculations we have created „optimal“ 

conditions. This means that 

• in the case of Lisman/Sandee several α were tried out and the one that delivered 

the best results was used 

• the correlations of the reference series which were used in the regression model-

based estimations were 95.0≥  

• the „real“ coefficients were used for the estimation of the ARIMA-based model 

• the variances Vw and Vu that were needed for the Least Squares model were 

calculated from the original time series 

 Fig. 3.1: Dividing by 41 

                                            
1 In the figures 3.1 – 3.5 the full line represents the estimated time series and the pointed line 
represents the original time series. 
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The estimations of the disaggregated time series amount to the following results: 

• The simple „dividing by 4“ method comes to a relatively good adaption with a 

fairley small MSE (fig. 3.1). The procedure of Lisman/Sandee (fig. 3.2) amount to 

the worst result of all with a fairely high MSE. It can be decreased by the choice of 

other – theoretically not to be explained and not to be reached by varying α - 

weights. 

 Fig. 3.2: Lisman/Sandee 

• The regression model-based procedure (fig. 3.3) leads to the best result but it 

must be considered that the estimation very strongly depends on the correlation 

between the original and the reference series. A smaller correlation leads to 

worse results. 

 Fig. 3.3 Regression model-based estimation 

• The ARIMA-model (fig. 3.4) comes to a useful MSE, too. However the results 

were worse than the results of the regression-based estimation. Similar to the 

regression-based model the estimation is very sensitive to a false assumption of 

the ARIMA structure. 
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 Fig. 3.4: ARIMA 

• The results of the Least Squares model (fig. 3.5) turned out to be worse than 

those of the modelbased estimation. First of all the MSE is higher and second the 

sum of the estimated quarterly values is not even equal to the observed annual 

value. Moreover the estimation reacts very sensitiv to a false estimation of the 

covariances of w and u. 

 Fig. 3.5 Least Squares 

 

4. Conclusion 

In chapter 3 we mentioned that we did more than just the one simulation we 

described. These ones were based on a MA(2), on an AR(2), and on an ARMA(1, 1) 

process. The results of these simulations were similarly to the one of the ARIMA 

process. The most important difference is that the not model-based methods (dividing 

by four, Lisman/Sandee and Least Squares) delivered estimations with a smaller 
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MSE in the cases of not integrated time series compared to the one of the ARIMA 

process. But here the results also fall behind those of the model-based procedures. 

Even after doing the simulations it is hard to answer the question: Which method is 

the best of all? Based on our criterion „precision of the estimation“ (measured by the 

MSE) it seems that the model-based methods deliver the better results. But also the 

simple „dividing by four“ comes to a low MSE. Here, we see an important difference 

between the two methods. The good results of the model-based procedure can only 

be reached if we can guarantee „optimal conditions“. In the other case the MSE can 

be much higher. Such a restriction does not exist for the „dividing by four“ method. So 

we have a case of „uncertainty“. The same problem exists for the Lisman/Sandee 

procedure (estimation of α), for the ARIMA-based method (finding the ARIMA 

structure of the reference series) and the Least Squares model (setting covariance). 

As a third criterion for choosing one of the methods we should pay attention to the 

expenditure of the estimation. 

 

 Dividing Lisman/ 

Sandee 

Regression ARIMA Least 

Squares 

MSE low 

(8,55) 

high 

(33,86) 

very low 

(0,57) 

low 

(7,57) 

high 

(18,74) 

expenditure very low low middle high very high 

uncertainty none high high high very high 

Tab. 4.1 

 

Based on these criterions (precision, expenditure and uncertainty) we can sum up as 

follows (compare tab. 4.1): 

1. Least Squares do not seem to be suitable for this application. The MSE of the 

described simulation but also of the ones not described is relatively high. 

Moreover the uncertainty and the expenditure are unreasonably highly. 

2. It also seems to be better to avoid the application of the method of 

Lisman/Sandee. The MSE and the uncertainty are too high. 



 14

3. The model-based methods come to rather good results when conditions can be 

guaranteed. Then the relatively high expenditure can be justified. 

4. Probably surprising are the good results of the „dividing by four“ method. 

Moreover the low expenditure and the absent uncertainty have to be 

acknowledged. 
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