DISKUSSIONSBEITRÄGE

aus dem

Fachbereich

WIRTSCHAFTSWISSENSCHAFTEN

der

UNIVERSITÄT DUISBURG - ESSEN Campus Essen

Nr. 137 August 2004

Zwei Beiträge zur Interpretation von statistischen Tests

- Replik auf den Artikel "Von der Wahrscheinlichkeit des Irrtums" von W. Weihe -

Andreas Kladroba Peter von der Lippe Michael Westermann

Vorwort

In seinem Heft 13/2004 vom 26.3.2004 veröffentlichte das Deutsche Ärzteblatt einen Artikel mit dem Titel "Von der Wahrscheinlichkeit des Irrtums",¹ in dem der Autor Wolfgang Weihe eine seiner Meinung nach sowohl neue als auch ungewöhnliche Position bezüglich der Interpretation von statistischen Tests im Zusammenhang mit klinischen Studien zur Erprobung neuer Behandlungsmethoden einnimmt.² Er nimmt dabei eine strenge Trennung zwischen den Begriffen Signifikanz und Irrtumswahrscheinlichkeit vor und legt dar, dass das Signifikanzniveau nichts darüber aussagt, wie hoch die tatsächliche Irrtumswahrscheinlichkeit ist. "Neu" im Sinne von höchst ungewöhnlich ist vor allem die These, dass zwei weitere Aspekte in die Interpretation mit aufgenommen werden müssen:

- 1. Gibt es weitere Studien bezüglich der Behandlungsmethode und wenn ja, zu welchen Ergebnissen sind die gekommen?
- 2. Wie ist die "Qualität" des Forschers (gemessen an seinem "Riecher" bezüglich der Wirksamkeit einer neuen Behandlungsform)?

Der Artikel hat eine ganze Reihe von Reaktionen in Form von Leserbriefen hervorgerufen, die zum Teil auch im Deutschen Ärzteblatt abgedruckt wurden.³ Die Leserbriefe sind zum Teil zustimmend, zum Teil üben sie aber auch Kritik, gehen aber auf einen entscheidenden Makel in den Überlegungen Weihes nicht ein, nämlich dass diese überwiegend schlicht falsch sind.

Die Autoren des vorliegenden Diskussionspapiers haben sich daher zum Ziel gesetzt aufzuzeigen, wo die Schwächen und Fehler bei Weihe liegen und wieso man seinen Schlussfolgerungen aus Sicht der klassischen Statistik nicht folgen kann.

Der Artikel von Weihe ist in Form eines Gesprächs zwischen drei fiktiven Medizinern geschrieben und richtet sich in seinem Aufbau eindeutig an den statistischen Laien. Die erste Replik von Kladroba/Westermann ("Einmal zu viel um die Ecke gedacht") ist im gleichen Stil und für die gleiche Zielgruppe geschrieben. Die zweite Replik von von der Lippe ("Irrtümer über die Irrtumswahrscheinlichkeit") ist formaler gehalten und richtet sich eher an das statistische Fachpublikum.

Essen, im August 2004

A. Kladroba
P. von der Lippe

M. Westermann

¹ Wiederabdruck im Anschluss an dieses Vorwort mit freundlicher Genehmigung des Deutschen Ärzteblattes.

² Dabei nimmt Weihe Bezug auf das Buch Beck-Bornholdt/Dubben, Der Schein der Weisen, Reinbek, 2003.

³ Wiederabdruck im Anschluss an den Artikel von Weihe.

Andreas Kladroba, Michael Westermann

Einmal zu viel um die Ecke gedacht

- Einige Anmerkungen zu Wolfgang Weihe -

Im "Deutschen Ärzteblatt" 101 (2004), Heft 13, S. A834 – A838 versucht Wolfgang Weihe anhand eines fiktiven Gesprächs zwischen den Medizinern Sagredo, Simplicio (dessen Alkoholkonsum ein schlechtes Beispiel für seine Patienten darstellt) und Salviati einige Grundprinzipien klinischer Studien und der damit verbundenen statistischen Testtheorie kritisch zu hinterfragen. Er kommt dabei zu einigen verblüffenden Ergebnissen. Die angehenden Statistiker Gass, Bernalli und Poissin diskutieren im folgenden die Gedanken der drei Ärzte.

GASS: Seht mal, was ich hier gefunden habe. Eine Diskussion dreier Mediziner über statistische Methoden. Lest Euch das doch einmal durch.

(Bernalli und Poissin lesen)

BERNALLI: Klingt komisch.

POISSIN: Obwohl ich spontan nicht sagen kann, was komisch ist.

GASS: Schauen wir uns das doch einmal im Detail an. Als erstes haben wir ein Beispiel zweier fiktiver Studien bezüglich eines Medikamentes für Herzinfarktpatienten. In der ersten Studie, bei der eine Verum- genauso wie eine Placebogruppe nur aus je zwei Patienten bestehen, sterben beide Patienten der Placebogruppe, während die Patienten der Verumgruppe überleben. Bei der zweiten Studie (gleiche Gruppengrößen) ist es genau umgekehrt. Jetzt wird diskutiert, was das über die Wirksamkeit dieses Medikaments aussagt. Zunächst die ganz einfache die Frage an Euch: Was haben wir hier vorliegen?

BERNALLI: Den Fall eines Zwei-Stichproben-Tests auf Anteilswerte.

GASS: Wie lauten also die Hypothesen?

BERNALLI: Die Nullhypothese sagt, dass der Anteil der Erfolge in der Verumgruppe höchstens so groß ist wie der in der Placebo-Gruppe, die Gegenhypothese sagt entsprechend, dass der Anteil höher ist.

GASS: Und weiter?

BERNALLI: Wir haben hier natürlich das Problem einer extrem kleinen Stichprobe, so dass es nicht möglich ist, die hier vorliegende Binomialverteilung mit einer Normalverteilung zu approximieren.

POISSIN: Gehen wir doch einfach "zu Fuß" vor. Nehmen wir als Prüfgröße eine Variable, die den Unterschied der Erfolge in der Verum- und der in der Placebogruppe anzeigt. Also, wenn von mir aus X die Anzahl der Erfolge in der Verum- und Y die Anzahl der Erfolge in der Patientengruppe ist, dann ist Z = X - Y unsere Prüfgröße.

BERNALLI: Damit ist auch klar, dass Z größer als Null sein muss, damit ich die Nullhypothese ablehnen kann. Die Frage ist nur, muss Z = 2 sein, womit wir den Fall bekommen, den Simplicio beschreibt, nämlich dass in der Verumgruppe beide Patienten überleben und beide Placebo-Patienten sterben oder reicht ein Z = 1 aus, also z.B. zwei Erfolge in der Verum- und ein Erfolg in der Placebogruppe oder ein Erfolg in der Verum- und kein Erfolg in der Placebogruppe um ein signifikantes Ergebnis zu bekommen?

POISSIN: Freundlicherweise werden uns ja die 16 möglichen Ergebnisse eines solchen Experiments von Simplicio aufgelistet. Berechnen wir daran doch einfach mal die Wahrscheinlichkeiten für die einzelnen Z-Werte. Sie sind in Tab. 1 zusammengefasst.

Zi	$P(Z = z_i)$	$P(Z \ge z_i)$
-2	0,0625	1
-1	0,25	0,75
0	0,375	0,375
1	0,25	0,125
2	0,0625	0,0625

Tab. 1

BERNALLI: Moment, das müsst Ihr mir erklären.

POISSIN: Die erste Spalte in Tabelle 1 gibt die Werte an, die Z annehmen kann. Die zweite Spalte beschreibt die Wahrscheinlichkeit, genau diesen Wert zu erhalten. Dabei haben wir vorausgesetzt, dass die Wahrscheinlichkeit einen Herzinfarkt zu überleben bei einer Nicht-Behandlung bei 50% liegt. Ich bin kein Arzt, ich weiß also nicht wie realistisch diese Zahl ist, aber Simplicio hat diese Annahme auch getroffen, obwohl ich mir nicht so ganz sicher bin, ob er es gemerkt hat. Die dritte Spalte ist etwas ungewöhnlich. Sie beschreibt die Wahrscheinlichkeit den entsprechenden Z-Wert oder einen höheren zu bekommen. Diese Wahrscheinlichkeit müsste unter unserer Signifikanzschranke liegen, damit die Null-Hypothese abgelehnt wird. Wir sehen, dass wir eine Signifikanz von 5% nirgendwo erreichen, aber ein Z=2 führt zumindest zu einer Ablehnung bei einem Signifikanzniveau von 10%, was ja auch nicht so ungewöhnlich ist.

GASS: Was heißt das jetzt für die beiden hier zitierten Untersuchungen?

POISSIN: Völlig klar: Bei der ersten Untersuchung (alle Mitglieder der Verumgruppe überleben) wird die Nullhypothese abgelehnt (bei einem Niveau von 10%) und bei der zweiten Untersuchung mit dem umgekehrten Ergebnis wird sie angenommen. Einmal komme ich also zu einer positiven Beurteilung des Medikaments und einmal zu einer negativen. Das ist einzig und allein abhängig von der gezogenen Stichprobe und widerspricht sich in keinster Weise. Das nennt man in der Statistik den Stichprobenfehler.

BERNALLI: Das heißt?

POISSIN: Das heißt ganz einfach, dass ich das Pech haben kann eine Stichprobe zu ziehen, die so ungewöhnlich ist, dass ich zu einer völlig falschen Entscheidung komme. Und die beiden hier vorgestellten Stichproben sind ja auch wirklich sehr extrem.

BERNALLI: Aber eine der beiden Beurteilungen muss doch falsch sein.

POISSIN: Richtig, aber man kann leider nicht feststellen welche. Das einzige, was man sagen kann, ist, wie wahrscheinlich es ist, dass man im ersten Fall die Nullhypothese fälschlicherweise abgelehnt hat, nämlich hier 10%.

GASS: Diese Wahrscheinlichkeit entspricht nämlich dem Signifikanzniveau. Man bezeichnet das in der Statistik übrigens als den sogenannten α -Fehler oder auch Fehler 1. Art.

POISSIN: Und ich kann sagen, wie wahrscheinlich es ist, dass ich im zweiten Fall die Nullhypothese fälschlicherweise angenommen habe.

GASS: Der β -Fehler oder Fehler 2. Art. Diese Wahrscheinlichkeit ist allerdings relativ schwer zu berechnen und auch davon abhängig, wie man die Alternativhypothese quantifiziert. Wir sollten uns damit nicht aufhalten.

BERNALLI: Welches Fazit können wir bisher ziehen?

POISSIN: Wie ich gerade schon sagte: Wir haben hier zwar zwei unterschiedliche Aussagen über die Wirksamkeit des Medikaments. Die sind aber aus zwei sehr unterschiedlichen Stichproben hervorgegangen. Daher kommen wir zu dem Schluss, dass die Aussagen durchaus konsistent sind.

GASS: Kommen wir aber jetzt zum Kern der Salviati'schen Thesen, nämlich, dass Signifikanzniveau und Irrtumswahrscheinlichkeit nicht das gleiche sind. Salviati macht das an zwei Beispielen fest (Tabellen 3 und 4 im Text von Weihe). Zunächst sollten wir die Definitionen der beiden Begriffe, wie sie im Text vorgegeben sind, vergleichen.

BERNALLI: Also, das Signifikanzniveau wird definiert als die Wahrscheinlichkeit, dass die Studie ein positives Ergebnis zeigt, obwohl die untersuchten Behandlungen sich nicht unterscheiden. Ich versuche das gleich einmal in die Terminologie der Testtheorie zu übersetzen: Ein positives Ergebnis heißt, dass ein Medikament als wirksam eingestuft wird, also dass die Nullhypothese abgelehnt wird. Gleichzeitig soll es in Wirklichkeit aber keinen Unterschied geben. Die Nullhypothese wird also fälschlicherweise abgelehnt. Unser α -Fehler!

GASS: Richtig!

BERNALLI: Weiter geht es: Die Irrtumswahrscheinlichkeit wird definiert als die Wahrscheinlichkeit, "ein zufälliges Ergebnis für bare Münze zu nehmen". Hm, ein bisschen volkstümlich ausgedrückt. Was heißt das jetzt?

POISSIN: Im Rahmen der Testtheorie taucht der Zufall nur an einer Stelle auf, nämlich im Stichprobenergebnis. Das Stichprobenergebnis wird in den allermeisten Fällen von der Nullhypothese abweichen. Die Frage ist, ist diese Abweichung zufällig, also durch den Stichprobenfehler erklärbar oder ist die Wahrscheinlichkeit dafür so gering...

BERNALLI: Unter dem Signifikanzniveau!

GASS: Genau!

POISSIN: ..., dass die Abweichung nicht mehr zufällig ist, sondern systematisch.

BERNALLI: Ich übersetze wieder: Wir haben also ein zufälliges Ergebnis, sprich eine zufällige Abweichung zwischen Stichprobe und Nullhypothese. Das heißt die Nullhypothese gilt. Gleichzeitig nehmen wir die zufällige Abweichung als "bare

Münze", lehnen die Nullhypothese also ab. Das ist doch das gleiche wie oben, nämlich der Fehler 1. Art!!

GASS: Das sehe ich auch so. Hinter beiden Begriffen versteckt sich die Wahrscheinlichkeit, dass ein Medikament positiv getestet wird, obwohl es völlig unwirksam ist. Das würde jeder Statistiker so auch unterschreiben. Betrachten wir aber jetzt das Beispiel von Simplicio. Er vergleicht zwei Forschergruppen, wobei Gruppe A jeden Wirkstoff zur Überprüfung annimmt und in 10% aller Fälle ein positives Ergebnis herausbekommt. Gruppe B stellt einige Vorüberlegungen an und nimmt eine Auswahl vor, was dazu führt, dass bei Gruppe B 40% der Medikamente positiv getestet werden.

BERNALLI: Moment! Das steht zwar so im Text, ist in den beiden Tabellen aber ganz anders umgesetzt. Die Tabellen sagen aus, dass 10% bzw. 40% der Medikamente in den beiden Gruppen wirksam <u>sind</u>, nicht dass sie so getestet wurden. Das ist etwas ganz anderes.

GASS: Da stimmt. Hier klaffen Text und Tabellen deutlich auseinander. Nehmen wir aber die Tabellen als weitere Arbeitsgrundlage, also nehmen wir an, dass 10% bzw. 40% wirklich wirksam sind. Was berechnet der Autor dann unter dem Stichwort der Irrtumswahrscheinlichkeit?

POISSIN: Ich zitiere: Die "Wahrscheinlichkeit, dass bei positivem Studienergebnis das neue Medikament wirklich besser ist" Also, die Wahrscheinlichkeit, dass ein Medikament wirksam ist, wenn es positiv getestet wurde.

BERNALLI: Das ist ja etwas ganz anderes als oben in der Definition angegeben wurde!

GASS: Eben!

BERNALLI: Aber die Zahlen bleiben doch bestehen. Wenn ein Medikament von Gruppe A als positiv getestet wurde, beträgt die Wahrscheinlichkeit, dass es auch tatsächlich wirksam ist, nur 36%, während die Wahrscheinlichkeit bei Gruppe B bei 91% liegt. Das heißt doch, dass ich als Pharmaunternehmen lieber bei B testen lassen würde, weil die Wahrscheinlichkeit, dass mein Medikament nach einem positiven Test, tatsächlich wirksam ist, dann viel höher ist. Aber es bleibt doch das gleiche Medikament. Das kann doch gar nicht sein.

GASS: Kann es auch nicht. Es fehlt nämlich ein ganz entscheidender Teil in der Aussage: Damit B ein Medikament positiv testen kann, muss er es erst einmal zum Test annehmen. Das ganze ist nämlich eine bedingte Wahrscheinlichkeit: Wenn B ein Medikament annimmt und positiv testet, dann ist die Wahrscheinlichkeit für die Wirksamkeit 91%. Wir wissen aber überhaupt nichts über die Annahmequote des B. Bei A ist das kein Problem. Der nimmt alles an. Bei B hängen diese 40% (und die daraus folgenden 91%) aber ganz massiv von der Annahmequote ab. Nehmen wir einfach einmal an, B würde 70% aller Medikamente annehmen, dann wäre die "Irrtumswahrscheinlichkeit" (mir fällt kein besseres Wort ein) $1-0.91\cdot0.7=0.363$ und liegt somit im Bereich von A. Es ist sicherlich nicht zu gewagt, wenn man sagt, dass die Wahrscheinlichkeit für die Wirksamkeit eines Medikaments stark abnehmen würde, wenn B mehr Medikamente zum Test annehmen würde. Im Extremfall landet er bei den 10% von A.

BERNALLI: Welches Fazit ziehen wir also?

GASS: Zunächst das, dass die drei Herren hier einige Begriffe recht großzügig verwenden, aber das ist nicht das Problem. Als problematisch sehe ich an, dass das

Beispiel mit den beiden Forschungsgruppen nicht zu Ende gedacht wurde und das hier versucht wird Aussagen in die Testprozedur hinein zu interpretieren, die schlicht überhaupt nicht vorhanden sind. Ich denke, wir haben deutlich gemacht, was ein Test leisten kann und mehr sollte man auch nicht verlangen. Und was die Forschungs- und Veröffentlichungspraxis der Mediziner angeht, die hier zum Teil kritisiert wird: Das ist deren Problem. Damit müssen die zurechtkommen. Dafür kann man nicht die Statistik verantwortlich machen.

Peter von der Lippe

Irrtümer über die Irrtumswahrscheinlichkeit Testtheorie nach T. Bayes in der medizinischen Statistik

Einen Artikel, wie der des Mediziners W. Weihe "Von der Wahrscheinlichkeit des Irrtums" dürften wohl die meisten Statistikern ziemlich blamabel finden. Ich habe es jedenfalls so empfunden, ich kann mir aber auch gut vorstellen, dass umgekehrt Mediziner die Hände über den Kopf zusammenschlagen würden, wenn ich mich über medizinische Dinge äußern würde. Zugegeben, manchmal bringt der Mut des Nichtfachmanns Bewegung ins Geschehen, und er kann anregend und produktiv sein. Aber ein solcher Fall scheint hier nicht vorzuliegen. Weihes Ausführungen enthalten vielmehr einige katastrophale Mißverständnisse, und sie fordern vor allem in folgenden Punkten eine Erwiderung heraus:

- 1. Es wäre schön gewesen, wenn die angeblich so fehlerhafte Test-Logik klar herausgearbeitet worden wäre; weil dies jedoch nicht geschehen ist, wird in Abschnitt 1 versucht, dies nachzuholen, was um so wichtiger ist, weil wir hierauf in den folgenden Abschnitten 2 und 3 aufbauen wollen.
- 2. Peinlich ist der belehrend vorgetragene Unsinn eines Unterschieds zwischen der Irrtumswahrscheinlichkeit und dem Signifikanzniveau. Dabei ist zu unterscheiden: Zwar ist die Kritik an der Unterschlagung nicht-signifikanter Ergebnisse in empirischen Forschungen durchaus berechtigt, aber die mysteriöse Veränderung der "Irrtumswahrscheinlichkeit" bei der Beurteilung der Wirksamkeit eines Medikaments durch die Existenz von anderen Forschern mit einem besseren oder schlechteren "Riecher" für wirksame Medikamente blanker Unsinn. Es ist schlicht und einfach Unsinn zu behaupten,

"die Irrtumswahrscheinlichkeit hängt von einem völlig subjektiven und nicht berechenbaren Faktor ab, dem 'guten Händchen' oder dem 'Riecher' einer Forschungsgruppe" (Weihe),

was uns Weihe und die von ihm als Kronzeugen bemühten Autoren Hans-Peter Beck-Bornholdt und Hans-Hermann Dubben² weismachen wollen.

3. Es ist Unsinn zumindest vom Standpunkt der "klassischen" Testtheorie von Neyman und Pearson, die mit recht die Statistik-Lehrbücher beherrscht, und die wir hier zu verteidigen versuchen. Es gibt zwar Beispiel, in denen die alternative Bayes'sche Betrachtungsweise, auf die sich Weihe sowie Beck-Bornholdt und Dubben berufen, Sinn macht, aber die hier zur Diskussion stehenden Überprüfungen der Wirksamkeit von Medikamenten gehören sicher nicht dazu. Wir versuchen dies in Abschn. 3 zu zeigen.

Die genannten und im folgenden kritisierten Arbeiten von Weihe, Beck-Bornholdt und Dubben sind vor allem deshalb ein Ärgernis, weil hier eine sehr spezielle Betrachtungsweise der Statistik, die sich nicht durchgesetzt hat, nämlich die Bayessche Testtheorie als allein gültig dargestellt wird und keine Gelegenheit versäumt wird, den Mainstream Statistiker als Dummkopf lächerlich zu machen. Noch dazu wird für

¹ Deutsches Ärzteblatt Jg. 101, Heft 13, 26. März 2004.

² Der Schein der Weisen, Irrtümer und Fehlurteile im täglichen Denken, Rowohlt Taschenbuch, Reinbek 2003.

einen ohnehin problematischen Punkt im Bayes'schen Ansatz, nämlich die Gewinnung von a priori Wahrscheinlichkeiten der höchst zweifelhafte Vorschlag gemacht, eine Statistik der Ergebnisse anderer Forschergruppen heranzuziehen.

Insbesondere zum ersten Punkt wurde im Text "Einmal zu viel um die Ecke gedacht" von M. Westermann und A. Kladroba bereits das Nötige gesagt. Es wurde dort deutlich gezeigt, wie die Hypothese der Wirksamkeit eines Medikaments bei Herzinfarkt Patienten statistisch getestet wird und wie die dabei unternommenen Verfahrensschritte zu interpretieren sind (und vor allem auch: wie nicht). Ich will hierauf nur kurz eingehen und mich dann darauf konzentrieren zu zeigen, wann eine Bayes'sche Verfahrenslogik (die allerdings in den genannten Texten eher mißverstanden ist) angebracht ist und wann nicht.

1. Interpretation des Zwei-Stichproben-Tests in der "klassischen" Testtheorie

Weihes Ausführungen machen nicht deutlich, wie der von ihm kritisierte Signifikanz-Test hinsichtlich Hypothesen, Prüfgröße und deren Stichprobenverteilung usw. aufgebaut ist. Es wird insbesondere nicht klar, dass ein Zwei-Stichproben-Test vorliegt, wie dies von Westermann und Kladroba richtiger weise festgestellt wurde. Bei der Fragestellung "wirkt Verum (V) oder besteht kein Unterschied zu einem Placebo (P)?" interessiert die Hypothese

 H_0 : $\pi_V = \pi_P$ oder gleichbedeutend $\pi_V - \pi_P = 0$ (daher auch der Ausdruck Nullhypothese), die gegen die Alternativhypothese

 H_1 : $\pi_V > \pi_P$ (was unsere eigentliche Vermutung ist)

getestet wird, wobei π jeweils die Wahrscheinlichkeit des "Erfolgs" (Überlebens³) bedeutet, die keineswegs 0,5 sein muß, sondern z.B. auch $\pi_V = \pi_P = 0,8$ sein kann, weil die Wahrscheinlichkeit, an der entsprechenden Krankheit zu sterben ohnehin nicht besonders groß ist (nur 0,2). Nur unter solchen Voraussetzungen macht es Sinn, zu fragen, wie wahrscheinlich es ist, dass alle n_V Personen (wie etwa im Beispiel⁴ Weihes $n_V = 2$) der V-Gruppe überleben ($p_V = 1$) und dass keine der n_P Personen der P-Gruppe überlebt. Bei hinreichend großem n_V und n_P ist die Prüfgröße

$$(1) \qquad t = \frac{p_{_{V}} - p_{_{P}}}{\sqrt{\overline{p}(1-\overline{p})}\!\!\left(\frac{1}{n_{_{V}}}\!+\!\frac{1}{n_{_{P}}}\right)} \ \, (\text{mit} \ \, \overline{p} = \frac{n_{_{V}}p_{_{V}} + n_{_{P}}p_{_{P}}}{n_{_{V}} + n_{_{P}}} \,) \, \, t_{\text{n-2}} \, \, \text{verteilt}.$$

Es ist wichtig sich klar zu machen, dass die folgenden Grundsätze (**G1** bis **G4**) für die Interpretation eines "klassischen" Tests gelten:

- **G1** (Stichprobenbeobachtung) Allein die Größen p_V und p_P schwanken zufällig, so dass man hier (und auch nur hier, also bei p_V und p_P) verschiedene Ergebnisse erzielen kann, je nachdem wie die Stichproben "ausfallen".
- **G2** (Parameter feste Größen) Die Größen π_V und π_P sind dagegen fest und völlig unveränderlich: es ist beispielsweise $\pi_V > \pi_P$ (und in diesem Sinne ist Verum

 $^{^3}$ natürlich stets bezogen auf einen bestimmten Zeitraum. Auch bei der Wahrscheinlichkeit zu sterben 1- π ("Fehlschlag" bei Weihe) geht es nicht darum, "irgendwann" an einer Krankheit zu sterben (was ja mit Sicherheit geschieht, wenn man den Zeitraum nur lange genug macht), sondern z.B. innerhalb des nächsten Jahres (so auch bei Weihe) zu sterben.

⁴ Wir gehen absichtlich nicht von der unrealistischen Annahme aus, dass die Stichproben jeweils nur zwei Personen umfassen und präsentieren die allgemeine Vorgehensweise bei beliebigem (bzw. hinreichend großem) Umfang der V- und P-Gruppe.

"wirksam") und es kann dann nicht gleichzeitig $\pi_V = \pi_P$ sein (also V unwirksam sein), und es **ist** z.B. die Wahrscheinlichkeit $\pi_V = 0.7$ (als ein dem Medikament V inhärentes Maß der Wirksamkeit) und diese Wahrscheinlichkeit wird nicht dadurch kleiner oder größer weil irgend ein Forscher bei seiner Untersuchung $p_V = 0.6$ oder $p_V = 0.8$ findet.

- **G3** (Asymmetrie) Der Test dient der Widerlegung von H_0 und nur diese Hypothese H_0 ist genau spezifiziert, die Hypothese H_1 ist dagegen allgemein gehalten ($\pi_V > \pi_P$, nicht etwa $\pi_V \pi_P = 0,2$ oder ähnlich): es geht um Annahme oder Ablehnung von H_0 weil das Stichprobenergebnis bei Geltung von H_0 zufällig erzeugt sein kann, oder aber so unwahrscheinlich (weniger wahrscheinlich als α)⁵ ist, dass es durch Zufall nicht erklärt werden kann. Es geht nicht darum, welche Hypothese, H_0 , H_1 , H_2 usw. als die "glaubwürdigste" und in diesem Sinne die "wahrscheinlichste" gelten sollte, sondern nur darum, ein Urteil über H_0 abzugeben⁶.
- **G4** (Tragweite der Entscheidung) Mit der Annahme (Ablehnung) von H₀ ist nicht gezeigt, dass H₀ richtig (bzw. falsch) ist, sondern nur, dass
 - a) es bei der konkret vorliegenden Stichprobe und **der** Grundgesamtheit aus der sie stammt gerechtfertigt erscheint H₀ anzunehmen⁷ bzw. zu verwerfen, und zwar weil
 - b) das Stichprobenergebnis noch relativ wahrscheinlich (unwahrscheinlich) ist **wenn** H_0 richtig wäre (wie angenommen).

Aus der Sicht der "herrschenden Lehre" in der Statistik, d.h. der "klassischen Testtheorie" ist das alles Grundstudium im Fach Statistik, d.h. es ist ein Wissen, das eigentlich jeder Student in den ersten paar Semestern seines Studiums verstanden haben sollte.

Es ist danach vor allem **allein G2** mit dem "**objektiven**" (frequentistischen) **Wahrscheinlichkeitsbegriff** vereinbar. Es gilt entweder die Hypothese H_0 oder sie gilt nicht, es kann nicht beides gleichzeitig gelten oder mit einer bestimmten Wahrscheinlichkeit diese und einer bestimmten Wahrscheinlichkeit jene Hypothese gelten. Verum ist wirksam oder es ist nicht wirksam. Wirksamkeit ist eine dem Medikament inhärente Eigenschaft und nicht etwas, was mehr oder weniger zutrifft, je nachdem ob das wenige oder viele glauben, oder wie fest die Überzeugungen dieser Menschen sind. Objektive Wahrscheinlichkeit heißt, dass die beobachtbaren Konsequenzen unabhängig davon auftreten, was wir für möglich und wahrscheinlich halten, ganz genau so wie 1 + 1 = 2 ist und nicht 3 oder 5, und es dabei auch völlig egal ist, wer wie oft und mit welchem Ergebnis darüber nachgedacht, wie groß 1 + 1 ist. Weil wir eine solche Situation für gegeben halten, also von **G2** ausgehen – aber auch wegen noch zu zeigender Widersprüche lehnen wir die alternative Betrachtungsweise von Weihe usw. ab.

⁵ Die Orientierung erfolgt an der Wahrscheinlichkeit α . Die Wahrscheinlichkeit β kommt nicht ins Spiel und sie ist auch, solange nicht auch H₁ exakt spezifiziert wird, nicht berechenbar. Deshalb ist auch die Macht (power) 1- β nicht zu bestimmen.

 $^{^6}$ Die Asymmetrie zeigt sich daran, dass nur α nicht auch β numerisch vorgegeben (bekannt) sind und die Entscheidung lautet "H $_0$ annehmen" oder "H $_0$ ablehnen" (es gibt nie eine Entscheidung "H $_1$ annehmen" oder "H $_1$ ablehnen"

⁷ "Annahme von H_0 heißt nicht, dass H_0 "wahr" ist, sondern nur "there is not enough evidence against H_0 in favor of H_1 ".

⁸ Man kann keine subjektiven Wahrscheinlichkeiten bilden über derartige unbestreitbare Fakten, über etwas was zu allen Zeiten so gewesen ist und auch nie anders sein wird.

Für das Problem, für das Weihe und wohl auch Beck-Bornholdt und Dubben ihren Bayes'schen Ansatz empfehlen wollen, halten wir diesen für ungeeignet. Er läuft darauf hinaus die obigen Grundsätze in Frage zu stellen. Bei der Überprüfung der Wirksamkeit eines Medikament liegt die Situation von **G3** vor, es ist nicht notwendig vor⁹ und nach einem Stichprobenbefund Wahrscheinlichkeitsausagen zu machen, sondern es ist (isoliert) ein bestimmtes Medikament zu beurteilen und im Falle eines Medikament dürfte **G2** zutreffend sein, nicht ein subjektiver (personalistischer) Wahrscheinlichkeitsbegriff (davon später mehr).

2. Wenn mehr als einmal ein statistischer Test durchgeführt wird: der magische Auftritt einer vom Signifikanzniveau verschiedenen "Irrtumswahrscheinlichkeit"

Es sind hier deutlich zwei Fälle zu unterscheiden, wobei es in einem Fall Sinn macht, im anderen dagegen überhaupt keinen Sinn macht, empirische Feststellungen zu problematisieren und den Begriff "Signifikanzniveau" zu relativieren:

- a) gleiche Untersuchungen (gleiche Methodik, nicht notwendig gleiche Stichprobenumfänge) über ein und das gleiche Medikament, etwa Verum, nur dieses und kein anderes Medikament (in diesem Fall wird mit recht über die Unsitte geklagt, nur signifikante Ergebnisse zu publizieren und die nicht-signifikanten einfach unter den Tisch fallen zu lassen), und der Fall in dem
- b) die Ergebnisse verschiedener Forschergruppen, die sich auf Untersuchungen über offenbar sehr unterschiedliche Medikamente beziehen, verglichen werden¹⁰, und angeblich mit ins Kalkül zu ziehen sind, wenn es um die Irrtumswahrscheinlichkeit geht.

Die Argumentation von Weihe mag manchen Leser überzeugen, weil vielleicht nicht sofort erkennbar ist, dass bei ihr diese zwei sehr unterschiedlichen Fälle in einen Topf geworfen wurden.

a) Mehrere Untersuchung zu dem gleichen Medikament: was bedeutet die Unterschlagung nichtsignifikanter Ergebnisse?

Aus der Betrachtung der Prüfgröße t gem. Gl. 1 ergibt sich, dass beispielsweise bei den Anteilen p_V = 0,5 und p_P = 0,4 (mit n_V = n_P = 50) ein nicht-signifikanter Unterschied besteht, weil dann t = 1,005 ist, während die berühmte 5 % Signifikanzschranke bei einem einseitigen Test und n = 100 den Wert 1,6449 annimmt¹¹. Angenommen wir haben drei Forscher A1, A2 und B, die jeweils mit n_V = n_P = 50 Stichproben arbeiten und die Ergebnisse der Tab. 1 erzielt haben.

B hat als einziger ein signifikantes Ergebnis erzielt (t = 2,0412 > 1,6449). Unterschlägt man nun einfach die Ergebnisse von A1 und A2 so hat man eigentlich nicht das Ergebnis von B als gültigen Befund über V, sondern faktisch eine Stichprobe im Umfang von $n_V = 150$ Personen der V-Gruppe und $n_P = 150$ Personen der P-Gruppe gehabt. Man müßte also praktisch die drei Stichproben zu einer zusammenlegen und

bzw. etwa 1,98 wenn man die t-Verteilung betrachtet (statt wie bei hinreichend großem n die Normalverteilung).

⁹ Es dürfte schwer sein, anders als pharmakologisch begründete subjektive Wahrscheinlichkeiten über neue Medikamente (im Vergleich zu unendlich vielen potenziellen anderen Medikamenten) zu bilden. ¹⁰ Die von ihnen jeweils getroffene **Auswahl** ist **unterschiedlich**, sonst macht es ja auch keinen Sinn von der Forschergruppe mit und der ohne "Riecher" (für wirksame Medikamente) zu sprechen.

hätte dann wie Tab. 1b zeigt ein nicht signifikantes Ergebnis gehabt. Das Ergebnis von B allein zeichnet also eigentlich kein zutreffendes Bild und die Unterschlagung der "negativen" Ergebnisse von A1 und A2 trägt zu dieser Irreführung bei.

Tabelle 1: a) Drei Forscher und zwei unterschlagene Ergebnisse (A1, A2)

	p _V	pР	Prüfgröße
A1	0,5	0,4	$\frac{0.1}{\sqrt{0.45 \cdot 0.55 \cdot \frac{2}{50}}} = 1,0050$
A2	0,5	0,48	$\frac{0,02}{\sqrt{0,49\cdot0,51\cdot\frac{2}{50}}} = 0,2004$
В	0,5	0,3	$\frac{0.2}{\sqrt{0.4 \cdot 0.6 \cdot \frac{2}{50}}} = 2.0412$

b) Alle drei Studien zusammengenommen

$$p_V = 75/150 = 0.5 \qquad p_P = 59/150 = 0.3933 \qquad \frac{0.1067}{\sqrt{0.4467 \cdot 0.5533 \cdot \frac{2}{150}}} = 1.8581$$

Die Sache mit der Unterschlagung ist allerdings nicht ganz so einfach, weil

- sich das Bild bei einem Ergebnis mit einer nicht ganz so geringen Prüfgröße (wie die von A2), das unterschlagen wurde, schon anders darstellen kann, und
- weil mit wachsendem Stichprobenumfang wegen der Größen $1/n_V$ und $1/n_P$ in der Gl. 1 die Prüfgröße verändert und mit Zunahme von $n = n_V + n_P$ ein immer geringerer Unterschied zwischen p_V und p_P bereits "signifikant" wird.

Was den ersten Punkt betrifft, so denke man an den Fall der drei Forscher A1 und B (wie bisher) und A3 mit den Daten der Tab. 2.

Im Fall der Tab. 2 ist es nicht so klar, dass die alleinige Betrachtung von B ein falsches Bild erzeugt. Nimmt man auch die unterschlagenen Ergebnisse der Forscher A1 und A3 hinzu, so ändert sich an dem Bild (signifikanter Unterschied) wenig.

Tab. 3 zeigt schließlich, dass mit zunehmendem Wert von n ein immer kleinerer Unterschied zwischen p_P und p_V = 0,5 bereits signifikant auf dem 5% Niveau (mit der Schranke 1,6449) wird.

b) Untersuchung von verschiedenen Forschergruppen, (bei Geltung verschiedener Hypothesen); Berechnung der sog. "Irrtumswahrscheinlichkeit"

Nicht nur objektiv, auch für die subjektive Wahrscheinlichkeit leuchtet ein: Man fühlt sich sicherer in seinem Urteil, wenn man mehr Beobachtungen der **gleichen** Art (bezogen auf das gleiche Medikament) hat, also der Stichprobenumfang größer ist.

Aber was soll man demgegenüber daraus ableiten, dass verschiedene Forschergruppen offenbar verschiedene Medikamente untersuchen, etwa die weniger fähige

Gruppe A die Medikamente a, x, y und z und die fähigere Gruppe B Medikamente a, b, c und x, wobei a, b und c "wirksam" und x, y und z "unwirksam" sein sollen? Was kann man hieraus insbesondere herleiten über die "Irrtumswahrscheinlichkeit" bei der empirischen Untersuchung der Wirksamkeit von a? Aus Sicht der "klassischen" (Neyman-Pearsonschen) Testtheorie kann man daraus nichts herleiten, und das auch – wie wir meinen - aus sehr guten Gründen und es gibt überhaupt keinen Anlass, gegen diese klassische Testtheorie zu polemisieren.

Tabelle 2: a) Drei Forscher und zwei unterschlagene Ergebnisse (A1 und B wie bisher und A3)

	p _V	p _P	Prüfgröße
A3	0,5	0,38	$\frac{0,12}{\sqrt{0,44\cdot0,56\cdot\frac{2}{50}}} = 1,2087$

b) Alle drei Studien zusammengenommen

A1,A3,B
$$p_V = 0.5$$
 $p_P = 57/150 = 0.3933$ $\frac{0.12}{\sqrt{0.44 \cdot 0.56 \cdot \frac{2}{150}}} = 2.0936$

Tabelle 3: Werte von p_P bei denen der Unterschied zu $p_V = 0.5$ signifikant ist ($\alpha = 5\%$)

$n_V = n_P =$	p _P =
50	0,37279
100	0,40968
150	0,42616
200	0,43601
250	0,44274

$n_V = n_P =$	p _P =
300	0,44771
350	0,45158
400	0,45470
450	0,45729
500	0,45948

Wie sieht demgegenüber die Testtheorie von Beck-Bornholdt und Dubben und den sich diesen Autoren gegenüber offenbar als Sprachrohr betätigenden Weihe aus? Wie wird dort insbesondere die magische Irrtumswahrscheinlichkeit berechnet? Betrachtet man das Beispiel von Weihe (Tabelle 4) und ähnliche Überlegungen in dem Buch von Beck-Bornholdt und Dubben, so werden Berechnungen einer angeblichen Irrtumswahrscheinlichkeit (im Unterschied zum Signifikanzniveau) nach Art von Tabelle 4 (die sich so bei Weihe findet) vorgeführt¹²:

Die Irrtumswahrscheinlichkeit wird dann berechnet zu (1-8/12,5)100=100-64=36%. Bei einer anderen Forschergruppe (B) mit dem "besseren Riecher" gelten die Prozentsätze $h_1=40\%$ und $h_0=60\%$ und man erhält dann bei gleichem Signifikanzniveau von $\alpha=5\%$ (= 0,05) eine wesentlich geringere Irrtumswahrscheinlichkeit von nur 9% (statt 36%). Vom Standpunkt der "klassischen" Testtheorie ist das alles sehr abenteuerlich:

¹² Das Muster beruht – wie gleich gezeigt wird – offenbar auf der Berechnung von a posteriori Wahrscheinlichkeiten nach Bayes.

 Gleiches Signifikanzniveau und trotzdem unterschiedliche Irrtumswahrscheinlichkeit je nachdem ob der Forscher einen guten oder keinen guten Riecher hat: Wie soll das möglich sein? Wird ein Irrtum eines Forscher wahrscheinlicher wenn es auch einen anderen Forscher gibt?

	Anteil der Studien		Anteil negativer Studienergebnisse
Das neue Medikament ist tatsächlich wirksam (gute Idee gehabt)	h ₁ = 10%	10 mal 0,8 = 8% wegen Macht (1-β) von 80%	10 mal 0,2 = 2%
Das neue Medikament ist tatsächl. nicht wirksam (schlechte Idee)	h ₀ = 90%	90 mal $0.05 = 4.5\%$ wegen Signifikanz- niveau $\alpha = 5\%$	90 mal 0,95 = 85,5%
Summe	100%	12,5%	87,5%

- Es kommt anscheinend nicht auf die absolute Anzahl der Untersuchungen eines Medikaments an, sondern nur auf die Prozentsätze 10 und 90% oder 40 und 60%, ob also hinter den 10% Untersuchungen 3 oder 80 Untersuchungen stehen ist nicht relevant (obgleich es ja doch wohl ein Unterschied ausmachen dürfte, ob etwas 3 mal oder 80 mal untersucht worden ist).
- Es kommt auch nicht auf die Stichprobenumfänge bei den Untersuchungen an, ob also bei den (allen?) Untersuchungen mit der guten (oder der schlechten) Idee 50 oder 500 Personen in der Experiment- und in der Kontrollgruppe betrachtet worden sind.
- Die Prozentsätze 10% und 90% in Tab. 4 dienen als Schätzung der a priori Wahrscheinlichkeiten der Hypothesen H₀ und H₁ (eine merkwürdige Vorstellung aus Sicht des Grundsatzes G2): dabei spielt es offenbar keine Rolle, wie viele Beobachtungen (Versuchspersonen) der Einschätzung zugrunde liegen (!!).
- Nach "klassischer" Vorstellung ist eine Hypothese entweder zutreffend oder nicht zutreffend. Der Umstand, dass man nicht weiß, was zutrifft, H₀ oder H₁ heißt nicht, dass die Realität nicht so oder so ist (dass nämlich entweder H₀ oder H₁ gilt, nicht beides). Nach Grundsatz G2 kann es keine Wahrscheinlichkeiten für H₀ und H₁ geben (anders wenn das Bayessche Theorem angewendet wird auf eine Zufallsvariable, wie unter Abschn. 3a).
- Selbst wenn H₀ und H₁ nicht Aussagen über feste Parameter wären, sondern Zufallsvariablen oder Ereignisse (wie z.B. dass es morgen regnen wird, R) wären, dann wäre es immer noch nicht klar, ob und wann es legitim ist, Feststellungen über Häufigkeiten als Basis für die Einschätzung einer subjektiven Wahrscheinlichkeit heranzuziehen. Ist es legitim, aus den Erfahrungen zweier Forschergruppen, die diese offenbar mit verschiedenen Medikamenten gewonnen haben, auf subjektive Wahrscheinlichkeiten zu schließen?¹³
- Was bedeutet es, bei einem Medikament die subjektive Wahrscheinlichkeit für dessen Wirksamkeit (um wieviel ist dabei π_V größer als π_P ?) oder Unwirksam-

Tut man dies, wie Weihe und Co. dann ist es noch nicht einmal klar, wessen subjektive Vorstellungen über das Zutreffen von H₀ und H₁ damit erfaßt werden.

keit zu entwickeln? Kann man Vorstellungen über eine solche Wahrscheinlichkeit gewinnen? Wenn ja, wie?¹⁴

 Wer als erster (und damit zunächst als einziger) ein wirksames neues Medikament mit den Ergebnis testet dass es wirksam ist, hat nach Weihe eine Irrtumswahrscheinlichkeit von nur 0%; kommen danach andere Forscher, die ebenfalls das Medikament untersuchen, dann kann es nur schlechter werden mit der Irrtumswahrscheinlichkeit¹⁵. Wird nur eine Untersuchung angestellt, bei der sich dann die Wirksamkeit des Medikaments herausstellt, dann gilt

Tab. 5: Berechnung der Irrtumswahrscheinlichkeit bei einmaliger Untersuchung eines Medikaments

	Anteil der Studien	Anteil positiver Ergebnisse	Anteil negativer Ergebnisse
Medikament wirksam	$h_1 = 100\%$	100 mal 0,8 = 80%	20%
Medikament nicht wirks.	$h_0 = 0\%$	0 mal 0,05 = 0%	0 mal 0,95 = 0%
Summe	100%	80%	20%

was dann nach der oben angegebenen Berechnungsweise (1-80/80)100 = 0% als sog. Irrtumswahrscheinlichkeit gilt. Es kann durch weitere Untersuchungen nur schlimmer (größer) werden mit der Irrtumswahrscheinlichkeit¹⁶. Spätestens jetzt kommt der Verdacht auf, dass etwas nicht ganz stimmen kann bei dem Rechenschema für die sog. Irrtumswahrscheinlichkeit. Dieses Schema sieht wie folgt aus (Tab. 6):

Tab. 6: Interpretation des Rechenschema für die Irrtumswahrscheinlichkeit von Beck-Bornholdt und Dubben nach Art des Bayes'schen Theorems

Zustand	Anteil der Studien	E ₁ = positive Studien- ergebnisse = Ent- scheidung für H ₁	E ₀ = negative Studien- ergebnisse = Ent- scheidung für H ₀
H₁ gilt	a priori Wahr- scheinlichkeit P(H ₁) , h ₁ /100	1- β (H ₀ verworfen, richtiges H ₁ erkannt) P(E ₁ H ₁)	β (H ₀ angenommen, obgleich H ₀ falsch ist): P(E ₀ H ₁)
H₀ gilt	a priori Wahr- scheinlichkeit P(H ₀) , h ₀ /100	α (H ₀ verworfen obgleich H ₀ richtig) P(E ₁ \mid H ₀)	1- α richtige Entscheidung für H ₀ P(E ₀ H ₀)

Als "Irrtumswahrscheinlichkeit" (sie sei $\phi = P(H_0 \mid E_1)$ genannt) wird nun berechnet

¹⁴ Man könnte z.B. daran denken, dass man Wahrscheinlichkeiten aufgrund der chemischen Zusammensetzung eines Medikaments bilden könnte, aber sicherlich nicht aufgrund der Herangehensweise sehr verschiedener Forschergruppen

¹⁵ Allein diese Konsequenz sollte den Verdacht aufkommen lassen, dass mit den Konstruktionen von Bayesianern wie Weihe usw. etwas nicht ganz stimmen kann.

¹⁶ Úmgekehrt ist es bei *einer* Untersuchung eines unwirksamen Mittels. Die Irrtumswahrscheinlichkeit ist 100% und sie kann durch weitere Untersuchungen nur besser (geringer) werden. Es gibt offenbar eine geheimnisvolle Belohnung (Bestrafung) der guten (schlechten) Forscher: je besser (schlechter) der "Riecher" desto geringer (größer) die Irrtumswahrscheinlichkeit.

(2)
$$\phi = 1 - \frac{P(H_1) \cdot (1 - \beta)}{P(H_0) \cdot \alpha + P(H_1) \cdot (1 - \beta)} = \frac{P(H_0) \cdot \alpha}{P(H_0) \cdot \alpha + P(H_1) \cdot (1 - \beta)}$$

oder wegen $P(H_1) = 1 - P(H_0)$

(2a)
$$\phi = \frac{\alpha}{\alpha + \beta - 1 + \frac{1 - \beta}{P(H_0)}}$$

und in Symbolen, die eher zum Bayes'schen Theorem (Bayes' rule) passen

(2b)
$$\phi = P(H_0|E_1) = \frac{P(E_1|H_0) \cdot P(H_0)}{P(E_1|H_0) \cdot P(H_0) + P(E_1|H_1) \cdot P(H_1)} = \frac{P(E_1 \cap H_0)}{P(E_1 \cap H_0) + P(E_1 \cap H_1)} = \frac{P(E_1 \cap H_0)}{P(E_1)}.$$

Wie man sieht hängt die sog. "Irrtumswahrscheinlichkeit" ϕ ab von den a priori Wahrscheinlichkeiten der Hypothesen, von dem Signifikanzniveau α und der Macht 1- β des statistischen Tests, wobei letztere auch von dem konkreten Wert für die Differenz π_V - π_P abhängt, ganz abgesehen vom Stichprobenumfang, der ansonsten gar nicht explizit in den Gleichungen 2 bis 2b vorkommt.

3. Die richtige Anwendung der Bayesschen Schätz- und Testtheorie und Argumente für und gegen diese Theorie im Vergleich zur "klassischen" Schätz- und Testtheorie

Es ist nachgerade klar, dass sich Beck-Bornholdt und Dubben - und in ihrem Schleptau auch Weihe - auf die Bayes'sche Schätz- und Testtheorie berufen. Die bereits erfolgten kritischen Hinweise sollten unseren Standpunkt untermauern, dass sie dies zu unrecht tun und offenbar diese Testtheorie nicht richtig verstanden haben. Wir wollen deshalb abschließend ein paar Hinweise dazu geben, wie demgegenüber die Fälle gelagert sind, in denen man sich durchaus zu Recht der Bayes'schen Theorie bedienen mag.

a) Statt H₀ und H₁ ein (zufälliges) Ereignis R bzw. Nicht-R

Die zweifellos legitime Anwendung des Bayesschen Theorems ist der Fall eines Ereignisses, über dessen Auftreten ein ebenfalls zufällig bestimmter Indikator (Anzeige E_0 und E_1 als Ereignisse) Auskunft geben mag. Beispiel: gefragt ist nach der Wahrscheinlichkeit, dass es *morgen* regnet R oder nicht regnet, was als Zufallsereignis aufgefaßt werden kann (anders als die Frage der Wirksamkeit eines Medikaments oder die Frage ob es *gestern* geregnet hat), so daß man von einer Wahrscheinlichkeit für dieses Ereignis sprechen kann.

Anders als bei H_0 und H_1 kann man bei den Ereignissen R und nicht-R (Symbol $\overline{\mathbb{R}}$) durchaus von zufälligen Erscheinungen sprechen (d.h. es gilt *nicht* Grundsatz **G2**) und man kann sie auch symmetrisch behandeln (es gilt *nicht* **G3**)

(3)
$$P(R|E_1) = \frac{P(E_1|R) \cdot P(R)}{P(E_1|R) \cdot P(R) + P(E_1|\overline{R}) \cdot P(\overline{R})}$$

Mit $P(E_1|R)$ oder $P(E_1|\overline{R})$ wird ein zufälliges Ereignis E_1 (etwa die Feststellung, dass das Barometer steigt statt sinkt, was dann E_0 wäre) in Verbindung mit Regen oder Nicht-Regen gebracht. Es muß also ein Ereignis E_1 (oder E_0 also Barometer steigt) und E_0 (oder E_0 geben und es darf nicht unabhängig sein von E_0 also nicht P(E|R) = P(E|R) = P(E|R) gelten. Nur dann kann man "aus Erfahrung lernen". Wir haben in den kritisierten Schriften die folgende (nach unserer Meinung) an den Haaren herbeigezogene Analogie zu der sinnvollen Betrachtung des Beispiels mit dem Regen und dem Barometer:

Tab. 7: Bayes' Theorem und dessen Interpretation im medizinischen Beispiel

Theorem von Bayes	im Fall des Hypothesentests
a priori Wahrscheinlichkeiten $P(R), P(\overline{R})$	$P(H_0), P(H_1)$
Likelihoods $P(\overline{B} R) = \alpha$, $P(B R) = 1 - \alpha$	$P(E_1 H_0) = \alpha$, $P(E_0 H_0) = 1 - \alpha$
$P(\overline{B} \overline{R}) = 1 - \beta$, $P(B \overline{R}) = \beta$	$P(E_1 H_1) = 1 - \beta$, $P(E_0 H_1) = \beta$

Ob man nun die analog zu $P(H_0|E_1)$ gebildete Größe $P(R|\overline{B}) = \frac{P(\overline{B}|R)P(R)}{P(\overline{B})}$ als Irrtumswahrscheinlichkeit bezeichnet (worin besteht der Irrtum?) oder $P(\overline{R}|B)$ in Analogie zu $P(H_1|E_0)$ ist wohl eher eine Geschmackssache.

Wichtig ist, dass ein beobachtbares Ereignis mit R in einem empirischen Zusammenhang steht und nicht etwa durch Konvention festgelegt wird. Es genügt nicht, mit R eine Zufallsvariable zu haben (was im Falle von H_0 ja wohl nicht der Fall ist), es muß auch Likelihoods geben. Man kann z.B. sinnvoll subjektive a priori Wahrscheinlichkeiten darüber bilden ob die unsichtbare nicht unbeträchtliche "schwarze" Materie des Weltalls aus WIMPs (weakly interactive massive particles) oder aus MACHOs (massive compact halo objects) besteht also P(W) und P(M) beispielsweise mit 0,3 un 0,7 beziffern, aber es gibt keine Beobachtung (kein Stichprobenergebnis), das als Indikator für das Auftreten von W oder M dienen kann, so dass es auch nichts aus der Erfahrung zu lernen gibt.

Man beachte, dass wir auch bisher noch nicht von einer Stichprobe und einem Stichprobenumfang n gesprochen haben, nur von der Wahrscheinlichkeit des Auftretens eines Ereignisses wie B (oder in "Analogie" H_0) und es ist auch merkwürdig, dass bei der Berechnung der "Irrtumswahrscheinlichkeit" bei Weihe & Co dieses n auch nicht irgendwo auftritt.

b) Variablen statt Ereignisse, Schätztheorie nach Bayes

Man kann die Bayessche Analyse auch anwenden auf eine zu schätzende oder zu testende numerische (metrisch skalierte) Variable (etwa μ oder θ) statt auf Ereignisse.

Ein Lehrbuch-Beispiel ist die Schätzung eines Konfidenzintervalls für μ = E(X) wenn X normalverteilt ist und neben einer Stichprobe vom Umfang n mit der Schätzfunktion \overline{X} auch eine a priori Vermutung über μ = μ_0 existiert. Hat μ eine a priori Verteilung (prior distribution) mit N(μ_0 , σ_0), also eine Normalverteilung und ist \overline{X} nach dem

zentralen Grenzwertsatz ebenfalls normalverteilt mit $N(\mu, \frac{\sigma}{\sqrt{n}})$, dann gilt für die a posteriori Verteilung von μ

(4)
$$N\left(\frac{w_1\overline{x} + w_2\mu_0}{w_1 + w_2}, \sqrt{\frac{1}{w_1 + w_2}}\right) \text{ mit } w_1 = \frac{1}{\sigma^2/n} \text{ und } w_2 = \frac{1}{\sigma_0^2}.$$

Wie man sofort sieht, gilt bei w_2 = 0 eine Normalverteilung mit Erwartungswert \overline{X} und einer Varianz von σ^2/n und das Konfidenzintervall bei einer Irrtumswahrscheinlichkeit (im üblichen Sinne) von α ist gegeben (als Spezialfall) mit

(5)
$$P\left(\overline{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}} < \mu \le \overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Das folgende Zahlenbeispiel mag die Zusammenhänge veranschaulichen. Gegeben sei eine Stichprobe mit n = 100 und \bar{x} = 300, ferner sei σ = 50. Man erhält dann nach Gl. 5 für das 95% zweiseitige Konfidenzintervall ($z\alpha$ = 1,96) in der üblichen ("klassischen") Weise also ohne Berücksichtigung von a priori "Wissen" die Grenzen:

$$\overline{x} \pm z_{\alpha} \frac{\sigma}{\sqrt{n}} = 300 \pm 1,96 \cdot \frac{50}{10}$$
, es liegt also zwischen 290,2 und 309,8.

Verbindet man dies jedoch mit der a priori Verteilung mit μ_0 = 290 und σ_0 = 40, so erhält man wegen $w_1 = \frac{1}{\sigma^2/n} = \frac{100}{50^2} = \frac{100}{2500} = \frac{1}{25}$ und $w_2 = \frac{1}{40^2} = \frac{1}{1600}$ für Gl. 4

$$N\left(\frac{300 \cdot \frac{1}{25} + 290 \cdot \frac{1}{1600}}{1/25 + 1/1600} = 299,846, \sqrt{\frac{1}{1/25 + 1/1600}} = \sqrt{24,615} = 4,9614\right) \text{ und damit für }$$

die Grenzen des Konfidenzintervalls sind 299,8 \pm 1,96 4,96 = 299,8 \pm 9,724 und damit 290,12 und 309,57 statt 300 \pm 10. Die Berücksichtigung von a priori Wissen (oder besser: subjektiver Annahmen) hat also eine geringere Breite des Konfidenzintervalls (19,45 statt 20) bewirkt. Bei großen Stichprobenumfängen ist der Unterschied noch geringer.

c) Testtheorie nach Bayes und Vergleich mit dem klassischem "significance approach"

Die testtheoretischen Ansätze nach Bayes sollen nicht so ausführlich dargestellt werden wie die Schätztheorie. Eine zentrale Rolle spielt dabei

- 1. die Verlustfunktion (loss function) Λ_{ah} also der Verlust der bei Entscheidung (action) a eintritt wenn die Hypothese h gilt, bzw. die regret function r_h (Λ abzügl. des bei dieser Hypothese maximalen Verlusts),
- 2. die Likelihoodfunktion $L(\mathbf{x}, h)$ die Wahrscheinlichkeit des Stichprobenbefunds (Vektor \mathbf{x}) und der daraus abgeleiteten Aktion a (Entscheidung) in Abhängigkeit von der Hypothese h und
- 3. die Wahrscheinlichkeit für die Hypothese h (etwa das θ_1 oder θ_0 gilt), also p(θ_0) und p(θ_1)

Man entscheidet sich für θ_0 und gegen θ_1 wenn gilt

(6)
$$\frac{P(x|\theta_1)}{P(x|\theta_1)} < \frac{r_0 P(\theta_0)}{r_1 P(\theta_1)},$$

so dass die "likelihood ratio" $\frac{L(\theta_1)}{L(\theta_0)} = \frac{P(x|\theta_1)}{P(x|\theta_1)}$ sehr entscheidend ist. Man spricht des-

halb auch vom likelihood ratio criterion. Unter den Verlustfunktionen spielt die quadratische Verlustfunktion eine wichtige Rolle. Sie ist im Falle der Schätzung von beispielsweise θ durch \overline{x} proportional zu $(\overline{x}-\theta)^2$. Die Bevorzugung des arithmetischen Mittels wird verständlich, wenn man davon ausgeht, dass die Verlustfunktion üblicherweise minimiert wird.

Abschließend noch eine tabellarische Übersicht über die in der Literatur zu findenden Argument für und gegen desn Bayes – und den significance approach

Tab. 8: Pro und contra der beiden Ansätze

Vorteile	ach
Gut wenn nur eine Hypothese zur Diskussion steht und es schwierig wäre für alle Alternativen Wahrscheinlichkeiten zu finden (difficult to formulate alternatives and to assign probabilities to them) Man kann auch über of probe hinausgehende tionen verarbeiten; be Stichproben evtl. Kon intervall schmaler + (i other populations not sa	e Informa- ei kleinen fidenz- nferences to

Nachteile

Es gibt keine Möglichkeit a priori	Subjekt
Wissen "einzubauen" und man	haben E
kann Hypothesen nicht nach dem	priori W
Grad ihrer Glaubwürdigkeit ordnen	(problem
(no formal mechanism for utilizing	requiren
information on possible alternative	of altern
hypotheses)	Auch los

Subjektive Einschätzungen haben Einfluß; Schwierigkeiten a priori Wahrsch. zu definieren (problem to quantify prior beliefs + requirement that an exhaustive set of alternatives must be defined). Auch loss function unbekannt.