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Abstract

In order to construct forecasts for time series exhibiting structural changes, the paper
examines long autoregressions, where the number of lagged endogenous regressors
is growing with the sample size. First, we rigorously show that the OLS estimators
are elementwise consistent for the true autoregressive coefficients even when a break
in the mean is ignored, but that the sum of the estimators converges to unity under
such misspecification. Thanks to this unit-root like behavior of the fitted model,
the resulting conditional forecasts are consistent for the true values which take the
break into account. As long as the dynamic structure is invariant over time, the
robustness property of the forecasts holds true more generally, a) for a piecewise
smoothly varying mean function, and b) under general autoregressive dynamics of
possibly infinite order including stationary long memory. Second, under breaks in
the dynamic structure, parameter estimators are asymptotically biased and, corre-
spondingly, the forecasts from long autoregressions are biased themselves for the
conditional mean. Simulations confirm the relevance of our asymptotic findings for
finite samples.
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1 Introduction

Dynamic modelling and forecasting of economic and financial time series under breaks in
parameters is a topic of long history and with recent interest in econometrics; see e.g. the
editorial by Timmermann and van Dijk (2013) to a special issue in the Journal of Econo-
metrics or the recent review articles by Clements and Hendry (2011) and Rossi (2013).
The present paper investigates the behaviour of long autoregressions estimated by ordi-
nary least squares (OLS), where the number of lagged endogenous regressors is growing
with the sample size, in the presence of ignored instability. The use of autoregressive (AR)
models for forecasting purposes can be traced back at least to Akaike (1969); long autore-
gressions (LAR), or AR approximations, have been studied by without breaks by Berk
(1974), Bhansali (1978), and Gonçalves and Kilian (2007) under more classical assump-
tions, while Poskitt (2007, 2008) extends the analysis to long memory and noninvertible
processes. Wang, Bauwens, and Hsiao (2013) (WBH) open the floor for a discussion under
breaks. They investigate experimentally several forecast strategies when the underlying
process is fractionally integrated with breaks in the order of integration d and/or subject
to means shifts. The clearly dominating strategy in samples of length T = 200 ignores
eventual breaks and simply produces forecasts relying on a LAR.1 Wang et al. (2013,
Theorem 1) offer as theoretical explanation for their experimental evidence that a frac-
tionally integrated process with break in the order of integration and/or in the mean has
a stationary AR representation of infinite order characterized by fractional integration of
a certain order d∗ given as a convex combination of the orders before and after the break.
This claim, however, is not correct, as we will see in Section 2; see (10) below.

Our paper sets the LAR on firm theoretical grounds with two contributions. First, we
address the situation of an ignored mean shift under constant dynamics. If the process
is autoregressive of finite order, the estimated coefficients from a LAR converge to the
true parameters elementwise (Proposition 1 and Remark 1), while the sum of the LAR
coefficients (the number thereof diverges with the sample size) converges to one (Remark
2). The latter is the reason why the LAR residuals behave as if the series had been
differenced such that the shift in mean is effectively removed from the data. Consequently,
the LAR forecast converges to the conditional mean as true forecast function (Corollary
1). In fact, this result holds under more general conditions. We allow for a piecewise
(Hölder) continuous mean function with several breaks under AR dynamics of infinite
order that may even display long memory. As long as the AR structure is invariant over
time, the LAR forecast is unbiased for the conditional mean asymptotically (Proposition
2). To sum up our first contribution: under constant dynamics the proposal by WBH can

1AR approximations as alternatives to fractional modelling for forecasting purposes have been sug-
gested as early as by Ray (1993) in the context of no breaks.
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indeed be theoretically justified, and is very valuable since LAR results in robust forecasts
irrespective of eventual mean shifts at unknown time and irrespective of a continuously
varying mean function that does not have to be specified. Second, we turn to the case
of breaks in the autoregressive parameters. Again, we obtain the limits of OLS-LAR
(Proposition 3) that differ from the true parameters of the post-break period, such the
the LAR forecasts are conditionally biased in the limit and miss the true forecast function
(Remark 3). This shows that the favourable evidence presented in WBH under changes in
persistence is a finite sample effect that does not carry over to larger samples. We present
experimental evidence with growing sample sizes confirming our theoretical results.

The next section becomes precise on the model under breaks in parameters and clarifies
where and why the theoretical underpinning of LAR by WBH is flawed. Section 3 deals,
first, with the case of a mean shift under constant finite order dynamics, and, second, with
a smoothly varying mean function subject to eventual breaks under dynamics of infinite
order and long memory. Section 4 turns to instability in the dynamic structure. In the fifth
section, our asymptotic results are illustrated experimentally for a large variety of finite
sample sizes. Concluding remarks are offered in the last section, and the mathematical
proofs are collected in the Appendix.

Finally a word on notation: ‖·‖ is the Euclidean vector norm and the corresponding
induced matrix norm, bxc denotes the integer part of a positive number x, probabilistic
Landau symbols op(·) and Op(·) have their usual meanings, while p→ stands for convergence
in probability as the sample size T goes off to infinity.

2 Model

We assume to observe T observations of a univariate process with changing parameters
over time:

yt = mt +

{
x

(1)
t , t = 1, 2, . . . , T1 = bτ T c
x

(2)
t , t = T1 + 1, T1 + 2, . . . , T

. (1)

In the most general case, {mt} is only assumed to be piecewise Hölder continuous; see
Assumption 4 below for details. The leading case, however, will be the one by WBH
where {mt} simply captures a mean-shift,

yt =

{
µ1 + x

(1)
t , t = 1, 2, . . . , T1 = bτ T c

µ2 + x
(2)
t , t = T1 + 1, T1 + 2, . . . , T

. (2)
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At the same time the dynamic structure may be subject to a change,

x
(r)
t = A−1

r (L)εt =
∞∑
j=0

c
(r)
j εt−j ,

∞∑
j=0

(
c

(r)
j

)2

<∞ , (3)

with break fraction τ ∈ [0, 1]. To distinguish the two regimes we use superscripts or
subscripts r ∈ {1, 2}. With the autoregressive polynomials Ar in the usual lag operator
L, we may summarize (2) and (3) as

A1(L)yt = A1(1)µ1 + εt , t ≤ T1

A2(L)yt = A2(1)µ2 + εt , t > T1

, Ar(L) = 1−
∞∑
j=1

a
(r)
j Lj ,

∞∑
j=1

(
a

(r)
j

)2

<∞ . (4)

In general, for the process to have a bounded mean, it must hold Ar(1) = 1−
∑∞

j=1 a
(r)
j <

∞ if µr 6= 0. Further, we maintain the assumption that the innovations form a sequence
of identically and independently distributed (iid) errors.

Assumption 1 The sequence {εt} is iid (0, σ2) ∀t ∈ Z with finite 4th order moments.

It is noteworthy that {yt} has no stationary autoregressive representation neither in the
case of a mean shift nor in the presence of a break in the dynamics. Filtering the process
with any A∗(L) results in

A∗(L)yt = A∗(1)µr + A∗(L)A−1
r (L)εt , r ∈ {1, 2} . (5)

Hence, A∗(L)yt = m+ εt for all t if and only if A1 = A2 = A∗ and µ1 = µ2.

For forecasting purposes, let us consider a LAR of yt (estimated by OLS) ignoring eventual
breaks in parameters,

yt = m̂+

hT∑
j=1

âj,hT yt−j + ε̂t = m̂+ â′hTyt−hT + ε̂t, (6)

where yt−hT = (yt−1, . . . , yt−hT )′ and âhT is the vector of OLS estimators. Let ahT =

(a1, . . . , ahT )′ denote the vector of the first hT true parameters. In this setup, hT is a
function of T such that hT →∞ and hT/T → 0 at suitable rates. In practice one would
either use some deterministic function of T or determine hT in a data-driven manner, say
using information criteria. The implied one step ahead forecast function is then

ŷT (1) = m̂+ â′hTyT+1−hT = m̂+

hT∑
j=1

âj,hT yT+1−j,
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while the true forecast function is given by

yT (1) = E (yT+1|yT , yT−1, . . .) .

The use of long autoregressions like in (6) has been advocated by WBH assuming frac-
tionally integrated noise in (4), i.e.

Ar(L) = (1− L)dr = 1−
∞∑
j=1

a
(r)
j,dL

j , |dr| < 0.5 , (7)

with a(r)
j,d = −π(r)

j,d and

π
(r)
j,d =

j − 1− dr
j

π
(r)
j−1,d , j ≥ 1 , π

(r)
0,d = 1

∼ j−dr−1

Γ(−dr)
, j →∞ .

For negative dr the binomial expansion of (1−L)dr is not summable, so that we now assume
dr > 0 for Ar(1)µr in (4) to be defined. For dr > 0, however, one has 1−

∑∞
j=1 a

(r)
j,d = 0, so

that we may drop the means altogether. Therefore, we assume for now that µ1 = µ2 = 0.
Wang et al. (2013, Lemma 1) state that {yt} from (4) with (7) has a representation as a
fractionally integrated process without break,

(1− L)d
∗
yt = εt , d∗ = λd1 + (1− λ)d2 , λ ∈ [0, 1] , (8)

where the apparent order of fractional integration d∗ is a convex combination of d1 and
d2, such that

(1− L)d
∗
yt = yt −

∞∑
j=1

a
(∗)
j yt−j = εt , (9)

with the autoregressive coefficients a(∗)
j taken from the expansion of (1 − L)d

∗ . This
statement is not correct as can be been from (5). In fact, differencing yt from (4) under
(7) results under µ1 = µ2 = 0 in

(1− L)d
∗
yt =

{
(1− L)d

∗−d1εt ∼ I(d1 − d∗)
(1− L)d

∗−d2εt ∼ I(d2 − d∗)
. (10)

Hence, the process yt is I(d∗) only under d1 = d2 = d∗ (no break), which corrects the
claim by Wang et al. (2013, Lemma 1). In all other cases there exists no white noise
sequence that, upon filtering with (1− L)−d

∗ , recovers the yt series with breaks.
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Let us briefly understand why WBH are mislead to claim (8). Their argument builds on
establishing the following variance behaviour:

Var

(
T∑
t=1

yt

)
= O

(
T 2d∗+1

)
. (11)

Such a variance behaviour is implied by fractional integration of order d∗; but there is no
equivalence between (11) and fractional integration of order d∗. Indeed, many processes
that satisfy (11) but are not I(d∗) have been suggested under the label of “spurious long
memory”. See amongst others Engle and Smith (1999), Diebold and Inoue (2001), and
Granger and Hyung (2004); the first paper we are aware of that addressed the potential
confusion of long memory (“Hurst phenomenon”) and mean shifts is by (Klemeš, 1974, p.
675): “It is shown that the Hurst phenomenon is not necessarily an indicator of infinite
memory of a process. It can also be caused by nonstationarity in the mean [...]”. Recently,
the variance behaviour in (11) has been related to the concept of “summability of order
d∗” introduced by Berenguer-Rico and Gonzalo (2014) of which fractional integration is
a special case.

Assuming that Wang et al. (2013, Lemma 1) is correct, Wang et al. (2013) try to provide
grounds for a forecasting strategy building on LAR ignoring eventual breaks in mean
and/or memory. Given the autoregressive representation (9), Wang et al. (2013, Theorem
1) argue that (6) results in consistent estimators converging to a(∗)

j at a rate depending
on hT . In the model with break, however, such a convergence cannot take place, simply
because the assumed AR representation in (9) does not exist. Nevertheless, WBH provide
very promising experimental evidence on LAR as a forecast device. Since their theoretical
justification is flawed, one question comes in naturally: in what situation do LAR actually
account for breaks in parameters?

3 Changes in the mean

In this section we focus on the case where A1(L) = A2(L) = A(L). With respect to the
mean function we begin with the special case of (2) and then move on to the more general
model (1). Similarly, the first subsection is restricted to the situation of a finite order
AR(p) process rendering itself to simpler interpretation, while the second subsection is
reserved for AR(∞) and long memory.
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3.1 AR(p) with break in mean

For polynomials A1(L) = A2(L) constant over time, the model in (2) reduces to a sta-
tionary process except for the mean shift,

yt = mt + xt , (12)

where the deterministic mean function mt exhibits a jump:

mt =

µ1 = − (1− τ) (m2 −m1) , t ≤ τT

µ2 = τ (m2 −m1) , t > τT
. (13)

To simplify matters, we assume a demeaned structural break mt. Hence, we do not have
to allow for an intercept in the long autoregression (6) without loss of generality.

In this subsection, the assumptions on the stochastic component are as follows.

Assumption 2 The process {xt} is autoregressive of finite order p given by A (L)xt =

xt −
∑p

j=1 ajxt−j = εt ∀t ∈ Z where {εt} is from Assumption 1, and A (z) has all roots
outside the unit circle. Let ΣhT = Cov (xt−hT ) denote the hT th order covariance matrix
of {xt}, and ΓhT = E(xt−hTxt) where xt−hT = (xt−1, . . . , xt−hT )′.

Following Clements and Hendry (2006), the occurrence of a structural break is not only
a matter of the data generating process but also of the model employed. If one manages
to define a step dummy variable Dt indicating the break point correctly, and fits yt =

µ1 +µ2Dt+xt to the data from (12), the extended model with parameters µ1 and µ2 does
not suffer from a structural break. Omitting the dummy variable Dt, however, typically
results in an omitted variable bias. We will now show why and how the long autoregression
overcomes this omitted variable bias.

For the data generating process (DGP) in Assumption 2, it is known that the eigenvalues
of ΣhT and Σ−1

hT
are bounded and bounded away from zero, such that ‖ΣhT ‖ = O (1) and∥∥Σ−1

hT

∥∥ = O (1). See the Fundamental Theorem of Grenander and Szegö given for instance
in Brockwell and Davis (1991, Prop. 4.5.3). This will be used to establish the following
result.

Proposition 1 Let ahT = (a1, . . . , ap, 0, . . . , 0)′ ∈ RhT denote the vector of true parame-
ters, and define

ãhT = ahT +
µ̄2

1 + µ̄2ι′Σ−1
hT
ι
Σ−1
hT
ι (1− ι′ahT )
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where ι is an hT -vector of ones and

µ̄2 = τ (1− τ) (µ2 − µ1)2 .

If h−1
T + hTT

−κ → 0 for some κ ∈
(
0, 1

3

)
, it holds under (12) with (13) and Assumption

2 that
‖âhT − ãhT ‖ = op

(
h−0.5
T

)
as T →∞.

Proof: See the Appendix.

The sequence ãhT forms a triangular array, and ãj,hT changes for fixed j with the sample
size. How close ãhT and ahT are depends on the magnitude and the timing of the jump
through µ̄2, where the effect of the break point is symmetric about 0.5. E.g. for the special
case where {xt} is white noise we have for large hT

ãhT =
µ̄2

σ2

1 + µ̄2

σ2hT
ι ≈ 1

hT
ι.

This nicely illustrates the first-order limiting properties of âhT discussed the the following
two remarks.

Remark 1 The proposition implies elementwise convergence of the LAR OLS estimators,
âj,hT

p→ aj for each j ≤ p and âj,hT
p→ 0 for each p < j ≤ hT even when ignoring breaks

in the mean. This is because ι′Σ−1
hT
ι → ∞ as hT → ∞ and the row sums of Σ−1

hT
are

bounded.

Hence the dynamics of the process are in a sense recovered in spite of not accounting for
breaks in the mean. But this is only half the story. The remark does not explain why
the neglected mean shift would not affect the forecasts, which are after all centered at the
post-break mean. The following remark sheds light on this issue.

Remark 2 Because of ι′Σ−1
hT
ι→∞ one obtains

hT∑
j=1

ãj,hT = ι′ahT +
µ̄2ι′Σ−1

hT
ι

1 + µ̄2ι′Σ−1
hT
ι

(1− ι′ahT ) = ι′ahT + (1 + o (1)) (1− ι′ahT )

→ 1

since 1− ι′ahT is bounded thanks to the stability of {xt}. In other words: the fitted LAR
seemingly has a unit root in that the sum of its coefficients is unity in the limit, which
washes out the change in mean when forecasting by effectively differencing it away.

8



We now take a more rigorous look at the long autoregressive forecast function and show
it to be consistent for the true one, given by

yT (1) = E (yT+1|yT , yT−1, . . .) = µ2 + x′T+1−hTahT .

We have the following result.

Corollary 1 Under the assumptions of Proposition 1 it holds

ŷT (1) = yT (1) + op(1)

as T →∞.

Proof: See the Appendix.

3.2 Extensions

We now extend the model (12) from Proposition 1 in two directions. First, we step beyond
the AR process of finite order from Assumption 2 and allow for AR(∞) with or without
long memory. Second, we replace (13) and consider a more general mean function as
indicated in (1). We will find that results analogous to Proposition 1 with Remark 2
hold true under such much more general conditions, and the robustness property from
Corollary 1 carries over.2

Assumption 3 For 0 ≤ d < 1/2 the stationary process {xt} is given by (1− L)d xt =

B (L) εt where {εt} obeys Assumption 1. The coefficients of B (L) =
∑∞

j=0 bjL
j with

b0 = 1 satisfy
∑∞

j=0 |bj| < ∞,
∑∞

j=0 bj 6= 0, and j1−dbj → 0 as j → ∞. Further, Σ−1
hT

ΓhT
denotes the coefficients of the best linear predictor of xt given xt−hT = (xt−1, . . . , xt−hT )′.

The stationary process {xt} has a Wold representation where the coefficients are given
by convolution: xt = (1− L)−dB (L) εt. The usual expansion of (1− L)−d results in
coefficients with the decay rate jd−1 that is characteristic for fractional integration. For
the long memory case d > 0, we adopt from Hassler and Kokoszka (2010, Prop. 2.1) the
assumption j1−dbj → 0 on B(L), which is necessary and sufficient for the hyperbolic rate
jd−1 to carry over from the filter (1− L)−d to the Wold coefficients of {xt}. For d = 0,
{xt} is simply integrated of order 0.

2The robustness of methods when analyzing long memory under trends has been investigated previ-
ously e.g. by Bhattacharya et al. (1983) and Giraitis et al. (2001).
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Now, we turn to the mean process. There is in fact no a priori reason to assume just one
single break in (13); we may allow, more generally, for several such discontinuities. More-
over, {mt} does not have to be constant between two breaks; we only require continuity,
more precisely only Hölder continuity of some order α. For a function ν (·) on [0, 1] we
hence assume

sup
0≤s<t≤1

|ν(t)− ν(s)|
|t− s|α

<∞ , 0 < α ≤ 1 .

Assumption 4 The mean process {mt} is given by mt = ν(t/T ), where ν (·) is piecewise
Hölder continuous such that the discontinuities are interior points of [0, 1]. Further, we
assume

∫ 1

0
ν (s) ds = 0, and denote µ̄2 =

∫ 1

0
ν2 (s) ds.

This assumption encompasses, in addition to sudden breaks, a slowly evolving trend or
a random level model. For instance, a Wiener process possesses the pathwise property
from Assumption 4 for any 0 < α < 1/2 so ν(s) ≡ W (s) is allowed for. The simplifying
condition

∫
ν (s) ds = 0 assumes that the process is demeaned. Hence, we consider again

a LAR without an intercept without loss of generality.

Proposition 2 Consider {yt} from (12) with {xt} from Assumption 3, and {mt} satisfies
Assumption 4 with 1/4 < α ≤ 1. Then, for hT such that h−1

T + hTT
−κ → 0 for some

0 < κ < min
{

α
α+1.5+2d

; 1−2d
3+4d

}
, it follows that

‖âhT − ãhT ‖ = op
(
h−0.5
T

)
,

as T →∞, where

ãhT = Σ−1
hT

ΓhT +
µ̄2

1 + µ̄2ι′Σ−1
hT
ι
Σ−1
hT
ι
(
1− ι′Σ−1

hT
ΓhT
)

with Σ−1
hT

ΓhT and µ̄2 from Assumption 3 and 4, respectively.

Moreover, Corollary 1 continues to hold.

Proof: See the Appendix.

The choice of κ is more limited than in Proposition 1. On the one hand, the presence
of long memory imposes κ < 1−2d

3+4d
. This is even stricter than the rate derived by Poskitt

(2007), and is due to the presence of a piecewise smoothly varying mean function not
accounted for in the LAR. The intuition behind the rate reduction is that otherwise
vanishing terms cumulate over âj,hT such that hT must be reduced in order to maintain
the first-order limiting behavior derived in Proposition 2. The additional restriction κ <
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α
α+1.5+2d

is due to the smoothness (or rather roughness) condition on the mean function
ν and has essentially the same interpretation. It is not binding, for instance, when ν

satisfies a Lipschitz condition, i.e. when α = 1. The additional restriction for κ depends
on the local properties of ν which may not be easily estimated, but one can always pick it
conservatively as αmin

2.5+2d
for some αmin > 1/4 that one is prepared to accept. The “worst-

case” scenario would be κ < 1/11 for a lower bound of 1/4 for α and a conservative
d = 1/2. But when d is close to 1/2, it is rather 1−2d

3+4d
that is binding: for d > 4/13,

1−2d
3+4d

< 1/11. A logarithmic rate for hT satisfies both.

4 Breaks in the autoregressive coefficients

As a special case of (2) we now consider the situation of breaks in the dynamic structure,

yt =

x
(1)
t = A−1

1 (L) εt, t ≤ τT

x
(2)
t = A−1

2 (L) εt, t > τT
, (14)

under the simplifying assumption of a constant mean equal to zero. Since it will turn out
that in this simplest case the LAR does not yield a valid forecast function, this will be all
the more true for more complicated structures. For the same reason we assume the AR
polynomials to be of finite order and need not examine the AR(∞) case.

The true forecast function is based on A2, i.e.

yT (1) =

p∑
j=1

a
(2)
j yT+1−j .

Again, the break is ignored and a long autoregression of order hT is fitted, intending to
use it for forecasting:

ŷT (1) =

hT∑
j=1

âj,hT yT+1−j.

The process from (14) is nonstationary, and does not have a Wold representation. Still,
we may examine the first-order asymptotics of the OLS estimators like before, in order
to subsequently analyze the forecast function.

Proposition 3 Let {yt} be from (14) and x(r)
t , r = 1, 2, satisfy Assumption 2 each, with

true parameter vectors a(r)
hT

=
(
a

(r)
1 , . . . , a

(r)
p , 0, . . . , 0

)′
. Define

āhT =

(
IhT +

1− τ
τ

Σ−1
hT ,1

ΣhT ,2

)−1(
a

(1)
hT

+
1− τ
τ

Σ−1
hT ,1

ΣhT ,2a
(2)
hT

)
.
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If h−1
T + hTT

−κ → 0 for some κ ∈
(
0, 1

3

)
, it holds that

‖âhT − āhT ‖ = op
(
h−0.5
T

)
as T →∞.

Proof: Analogous to the proof of Proposition 1 and omitted.

Unlike the case of a break in the mean we no longer have elementwise convergence to a(2)
hT
.

We stress this fact and the consequences for forecasting in the following remark.

Remark 3 Consider for simplicity the case p = 1 where in the first regime a(1)
1 6= 0, while

the postbreak regime is characterized by white noise, i.e. a(2)
1 = 0. Then

āhT =

(
IhT +

1− τ
τ

Σ−1
hT ,1

)−1

a
(1)
hT

where a(1)
hT

=
(
a

(1)
1 , 0, . . . , 0

)′
and Σ−1

hT ,1
is correspondingly a positive definite band matrix,

so IhT + 1−τ
τ

Σ−1
1,hT

has eigenvalues bounded and bounded away from zero. Thus āhT must
be nonzero since it equals a(1)

1 times the first row of
(
IhT + 1−τ

τ
Σ−1
hT ,1

)−1; and since this
inverse exists, its first row is nonzero. But the required limit for a correct forecast is, at
the end of the sample, the true vector a(2)

hT
= (0, 0, . . . , 0)′. This shows that ŷT (1) is biased

for the conditional forecast yT (1) even asymptotically.

It is interesting to add some intuition to Proposition 3. The first regime of the sample
(which should be irrelevant for forecasting at the end of the second one) has an effect on
the estimator, weighted by τ . This parallels the situation where some process of interest
has no break but is superimposed by disturbances with own dynamics. To become precise,
let

yt = (1− τ)A−1
2 ε

(2)
t + τA−1

1 ε
(1)
t ,

where {ε(1)
t } is independent of {ε

(2)
t }. Then for any fixed autoregressive order p̄ the limit

of the OLS autoregressive estimators for yt is given by

(τΣp̄,1 + (1− τ) Σp̄,2)−1 (τΓp̄,1 + (1− τ) Γp̄,2) .

Of course one encounters the typical errors in variables effect. Note that the limit under
errors in variables is essentially the same expression as the one derived in Proposition
3. An analogous result can be shown to hold when the order is p̄ = hT → ∞. Hence,
ignoring changes in the dynamics when running a LAR amounts to estimating under
measurement errors, and forecasting the signal component using the estimated dynamics
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of signal with noise. Therefore, inconsistency may not come as a surprise, and there is no
hope to construct unbiased conditional forecasts without accounting for the breaks.

5 Simulation evidence

In order to assess the finite-sample relevance of our limiting results, we conduct a Monte
Carlo analysis examining four particular situations. First, {yt} exhibits a break in the
mean but has otherwise homogenous AR(1) dynamics. Second, {yt} is fractionally inte-
grated noise of order d having a break in the mean. Third, {yt} is a zero-mean AR(1)
process with a break in the autoregressive parameter, and fourth, {yt} has a constant
mean zero with fractionally integrated noise subject to a break in the integration order d.

For all four scenarios we examine series of length T ∈ {50, 100, 200, 500, 1000, 2000} with a
burn-in period of 100 observations that are discarded. The shocks εt are standard normal
independent white noise, and the results rely on 25000 replications for each parameter
constellation. The lag length hT of the LAR is chosen by Akaike’s information criterion,
AIC, with a maximum order given by b12(T/100)0.25c. We report a) the in-sample residual
variance averaged over the 25000 replications, and b) the variance over 25000 replications
of the difference between the fitted forecast function ŷT (1) and the true forecast function
yT (1). We report both, since the residual variance averages over the entire series, whereas
the difference between the forecast functions, although only relevant at the end of the
sample, quantifies the optimality loss of the forecast, and this is the relevant figure for
practitioners.

The simulated data generating processes are for the four scenarios as follows.

1. For the AR(1) process with a break in the mean we simulate with an autoregressive
parameter a1 ∈ {0, 0.1, 0.3, 0.5, 0.7}. The break fraction is taken to be τ = 0.5, and
the magnitude of the break is either µ2 − µ1 = 0.2 or µ2 − µ1 = 1.

2. For Scenario 2, we use the same setup as in Scenario 1 for the discontinuity in the
mean function, but {yt} has fractionally integrated noise with d ∈ {0, 0.1, 0.2, 0.3, 0.4}
for the purely stochastic component.

3. Third, for the AR(1) process with a break in the autoregressive parameter we have
τ = 0.3 or τ = 0.7; the autoregressive parameter breaks from a

(1)
1 ∈ {0, 0.1, 0.3, 0.5, 0.7}

for the pre-break sample to independent white noise (a(2)
1 = 0) for the post-break

period.
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Figure 1: Average of residual variance (left), and variance of difference between true and
LAR forecast (right) for AR(1) processes with break in mean

4. Finally, for the fractionally integrated process with break in d but not in the mean
we have the setup analogous to that of Scenario 3, with d1 ∈ {0, 0.1, 0.2, 0.3, 0.4}
before the break and independent white noise (d2 = 0) thereafter.

The results for the four scenarios are as follows.

1. Scenario 1; see Figure 1: For a small break in mean (µ2 − µ1 = 0.2), the in-sample
residual variance is close to the theoretical one (σ2 = 1), at least for larger sample
sizes, while at the same time the Monte Carlo variance of ŷT (1) − yT (1) is close
to zero, which illustrates Proposition 1 and Corollary 1, respectively. For a larger
break in mean (µ2 − µ1 = 1) the correspondence between the experimental and the
asymptotic values is not quite so close, and it takes some larger sample to kick in,
especially for the variance of the differences between the forecasts. Interestingly, the
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Figure 2: Average of residual variance (left), and variance of difference between true and
LAR forecast (right) for I(d) processes with break in mean
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Figure 3: Average of residual variance (left), and variance of difference between true and
LAR forecast (right) for AR(1) processes with break in dynamics
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Figure 4: Average of residual variance (left), and variance of difference between true and
LAR forecast (right) for I(d) processes with break in dynamics
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effect of the size of the autoregressive parameter is rather small.

2. Scenario 2; see Figure 2: For the I(d) case the results are quite similar: For a small
break in mean, the in-sample residual variance and variance of ŷT (1) − yT (1) are
close to what we expect from Proposition 1 and Corollary 1, respectively. With
larger breaks in mean, the correspondence is not so close. All in all the graphs very
much resemble the ones under Scenario 1. The size of d is of minor importance, and
in particular the variance of the differences between the forecasts is close to zero.
This confirms the favorable performance of LAR reported by WBH and shows that
it extends to larger sample sizes if the parameter break is restricted to the mean.

3. Scenario 3; see Figure 3: For a(1)
1 = a

(2)
1 = 0 (no break in dynamics), the in-sample

residual variance and the difference between true forecast and LAR forecast converge
to 1 and 0, respectively. For a(1)

1 6= 0, we know that this is no longer the case (see
Proposition 3) which is well illustrated by our experimental evidence. Depending
on the size of the AR parameter, the Monte Carlo means and variances converge
to different levels. Together with the similar findings to Scenario 4 with fractional
integration below, this illustrates once more, that Wang et al. (2013, Theorem 1) is
not correct. In particular, when it comes to forecasting (graphs on the right), we
observe that a late break fraction (τ = 0.7) induces a stronger bias than an earlier
one (τ = 0.3), which is quite intuitive.

4. Scenario 4; see Figure 4: Under long memory, the results from Scenario 3 are essen-
tially reproduced; although, interestingly, the deviations from the theoretical values
1 and 0, respectively, are not as strong as in Figure 3. Still, it is expected that
accounting for the break in persistence would improve the forecast performance, see
Heinen et al. (2009) for experimental evidence.

6 Concluding remarks

The paper considered the use of long autoregressions for forecasting processes subject to
structural change.

A rigorous analysis showed that breaks in the mean, or slowly varying mean functions,
are automatically accounted for in the limit. The fitted long autoregression seemingly has
a unit root, thus implicity differencing breaks away, while the dynamics is recovered, such
that the resulting conditional forecasts converge to the true forecast function. The result
holds under infinite-order autoregressive dynamics including long memory. Furthermore,
it was shown that long autoregressions do not possess this nice property when the changes
are in the dynamics rather than in the mean.
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The Monte Carlo experiments confirmed the theoretical findings, illustrating the use and
misuse of long autoregressions in practice.

Appendix

A lemma

Before proceeding to the proofs of the propositions, we provide an auxiliary result.

Lemma 1 Let {mt} satisfy Assumption 4 with 1/4 < α ≤ 1, andmt−hT = (mt−1, . . . ,mt−hT )′.
Further, let xt = C (L) εt, C(L) =

∑∞
j=0 cjL

j, with {εt} from Assumption 1. The sequence
{cj} with c0 = 1 is either absolutely summable or cj ∼ Gjd−1 for some constant G > 0

and 0 < d < 0.5 as j →∞. Then, as T, hT →∞ and hT ≤ CT κ for some κ < 1/3,∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTm
′
t−hT − µ̄

2ιι′

∥∥∥∥∥ = O

(
h1+α
T

Tα

)

and ∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTx
′
t−hT

∥∥∥∥∥ = Op

(
hT

T 0.5−d

)
.

Proof: For convenience, we subsume the case of absolutely summable {cj} under the
case d = 0 in what follows.

To prove the first item, it suffices to show that

max
1≤j,k≤hT

∣∣∣∣∣ 1

T

T∑
t=hT+1

mt−jmt−k − µ̄2

∣∣∣∣∣ = O

(
hαT
Tα

)
. (15)

Now, for all 1 ≤ j, k ≤ hT ,

1

T

T∑
t=hT+1

∣∣m2
t −mt−jmt−k

∣∣ ≤ C

(
hT
T

)α
(16)

thanks to the piecewise Hölder continuity of ν: while its jump discontinuities may generate
nonvanishing differences between m2

t and mt−jmt−k, there is a finite number thereof and
their effect is of order O

(
1
T

)
in the l.h.s. of (16) and thus negligible compared with

(
hT
T

)α.
In a second step we note that

1

T

T∑
t=hT+1

m2
t →

∫ 1

0

ν2 (s) ds = µ̄2,
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where the difference between the average and the integral is of order O
(

1
Tα

)
(again, the

number of discontinuities is finite and their effect negligible). Summing up, Equation (15)
holds and the desired result follows immediately.

To prove the second item, we treat ν as if it were uniformly Hölder continuous of order
α, since the finite number of jumps in ν has negligible influence; see above. Also, mt is
bounded on [0, 1].

Now, the used matrix norm is bounded by the square root of the product of the maxi-
mum row-sum and maximum column-sum norms. The sum of the absolute values of the
elements on row k is

hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=hT+1

mt−kxt−j

∣∣∣∣∣ ≤
hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=hT+1

mt−jxt−j

∣∣∣∣∣+

hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=hT+1

(mt−k −mt−j)xt−j

∣∣∣∣∣ .
(17)

For the first term on the r.h.s. of (17) we have with the usual convention that
∑n

m = 0

when m > n that

hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=hT+1

mt−jxt−j

∣∣∣∣∣ ≤
hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=2

mt−1xt−1

∣∣∣∣∣
+

hT∑
j=1

∣∣∣∣∣ 1

T

hT−j+1∑
t=2

mt−1xt−1

∣∣∣∣∣+

hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=T−j+2

mt−1xt−1

∣∣∣∣∣ ;
note that the r.h.s. does not depend on k and thus gives an upper bound for the maximum
over all rows of

∑hT
j=1

∣∣∣ 1
T

∑T
t=hT+1mt−jxt−j

∣∣∣. Analyzing its behaviour, the variance of
1
T

∑T
t=2 mt−1xt−1 is easily checked to be O

(
T 2d−1

)
thanks to the boundedness of mt and

the O
(
h2d−1

)
order of the autocovariances of xt for 0 < d < 0.5 (and absolute summability

for d = 0). At the same time,

E

(
hT∑
j=1

∣∣∣∣∣ 1

T

hT−j+1∑
t=2

mt−1xt−1

∣∣∣∣∣
)
≤ max1≤t≤T |mt−1|

T

hT∑
j=1

hT−j+1∑
t=2

E (|xt−1|) ≤ C
h2
T

T

and analogously

E

(
hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=T−j+2

mt−1xt−1

∣∣∣∣∣
)
≤ C

h2
T

T
.

Thus

max
1≤k≤hT

hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=hT+1

mt−jxt−j

∣∣∣∣∣ = Op

(
max

{
h2
T

T
;
hT

T 0.5−d

})
= Op

(
hT

T 0.5−d

)
.
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For the second term on the r.h.s. of (17), we have that max1≤j,k≤hT |mt−k −mt−j| ≤
C
(
hT
T

)α thanks to the Hölder condition on ν, such that

Var

(
hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=hT+1

(mt−k −mt−j)xt−j

∣∣∣∣∣
)
≤ h2

T max
1≤k,j≤hT

Var

(∣∣∣∣∣ 1

T

T∑
t=hT+1

(mt−k −mt−j)xt−j

∣∣∣∣∣
)

≤ Ch2
T

(
hT
T

)2α

T 2d−1.

Now, the maximum over hT uniformly L2-bounded variables is of order Op

(√
hT
)
; by

normalizing
∑hT

j=1

∣∣∣ 1
T

∑T
t=hT+1 (mt−k −mt−j)xt−j

∣∣∣ with hT (hTT )α T d−0.5 we may thus con-
clude that

max
1≤k,j≤hT

hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=hT+1

(mt−k −mt−j)xt−j

∣∣∣∣∣ = Op

(
h1.5
T

(
hT
T

)α
T d−0.5

)

which, for α > 1/4 and κ < 1/3 is Op

(
hT

T 0.5−d

)
as can easily be checked (for any α > 1/4

we have that α
0.5+α

> 1
3
> κ as required). Summing up, we have that

max
1≤k≤hT

hT∑
j=1

∣∣∣∣∣ 1

T

T∑
t=hT+1

mt−kxt−j

∣∣∣∣∣ = Op

(
hT

T 0.5−d

)
;

the same arguments apply for the maximum column-sums norm, such that one has

∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTx
′
t−hT

∥∥∥∥∥ ≤
√√√√∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTx
′
t−hT

∥∥∥∥∥
1

∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTx
′
t−hT

∥∥∥∥∥
∞

= Op

(
hT

T 0.5−d

)

as required.

Proof of Proposition 1

Let Σ̂ = 1
T

∑T
t=hT+1 yt−hTy

′
t−hT and Σ = ΣhT + µ̄2ιι′, as well as Γ̂ = 1

T

∑T
t=hT+1 yt−hT yt

and Γ = ΓhT + µ̄2ι. Let again mt−hT = (mt−1, . . . ,mt−hT )′.

Note as a preliminary result that, using the Sherman-Morrison formula,

Σ−1 =
(
ΣhT + µ̄2ιι′

)−1
= Σ−1

hT

(
I − µ̄2

1 + µ̄2ι′Σ−1
hT
ι
ιι′Σ−1

hT

)
,
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implying that ∥∥Σ−1
∥∥ ≤ ∥∥Σ−1

hT

∥∥(1 +

∣∣∣∣∣ µ̄2

1 + µ̄2ι′Σ−1
hT
ι

∣∣∣∣∣ ∥∥ιι′Σ−1
hT

∥∥) .
Furthermore ι′Σ−1

hT
ι = ChT for a suitable C > 0 has the same order as

∥∥ιι′Σ−1
hT

∥∥ ≤
‖ιι′‖

∥∥Σ−1
hT

∥∥ = O (hT ), hence

∥∥Σ−1
∥∥ = Op

(∥∥Σ−1
hT

∥∥) = Op (1) .

Turning our attention to the OLS estimator, we have

âhT = Σ̂−1Γ̂ = Σ̂−1
(

Γ̂− Γ
)

+
(

Σ̂−1 − Σ−1
)

Γ + Σ−1Γ

such that ∥∥âhT − Σ−1Γ
∥∥ ≤ ∥∥∥Σ̂−1

∥∥∥∥∥∥Γ̂− Γ
∥∥∥+

∥∥∥Σ̂−1 − Σ−1
∥∥∥ ‖Γ‖ .

Obviously, ‖Γ‖ = O
(√

hT
)
. We then need to analyze the remaining norms.

To do so, let us first examine

Σ̂− Σ =
1

T

T∑
t=hT+1

yt−hTy
′
t−hT − ΣhT − µ̄2ιι′

=
1

T

T∑
t=hT+1

xt−hTx
′
t−hT − ΣhT +

1

T

T∑
t=hT+1

mt−hTm
′
t−hT − µ̄

2ιι′

+
1

T

T∑
t=hT+1

mt−hTx
′
t−hT +

1

T

T∑
t=hT+1

xt−hTm
′
t−hT .

It follows from Lemma 1 that∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTx
′
t−hT

∥∥∥∥∥ = Op

(
hT√
T

)
.

Moreover, given the rate restriction hT = O (T κ) for some κ < 1/3 and the uniformly
bounded variance of ε2

t , we have e.g. from Demetrescu (2009, Lemma 7) that∥∥∥∥∥ 1

T

T∑
t=hT+1

xt−hTx
′
t−hT − ΣhT

∥∥∥∥∥ = Op

(
hT√
T

)
,

and for the remaining terms we have from Lemma 1 that∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTm
′
t−hT − µ̄

2ιι′

∥∥∥∥∥ = O

(
h2
T

T

)
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such that ∥∥∥Σ̂− Σ
∥∥∥ = Op

(
max

{
h2
T

T
;
hT√
T

})
.

As a consequence, ∥∥∥Σ̂−1
∥∥∥ ≤ ∥∥∥Σ̂−1 − Σ−1

∥∥∥+
∥∥Σ−1

∥∥ = Op (1) ;

moreover, since ‖Σ−1‖
∥∥∥Σ̂− Σ

∥∥∥ < 1, it holds (Lütkepohl, 1996, Section 8.4.1 11(c)) that

∥∥∥Σ−1 − Σ̂−1
∥∥∥ ≤ ∥∥Σ−1

∥∥ ‖Σ−1‖
∥∥∥Σ̂− Σ

∥∥∥
1− ‖Σ−1‖

∥∥∥Σ̂− Σ
∥∥∥

and thus, with ‖Σ−1‖ <∞, it follows that

∥∥∥Σ̂−1 − Σ−1
∥∥∥ = Op

(∥∥∥Σ̂− Σ
∥∥∥) = Op

(
max

{
h2
T

T
;
hT√
T

})
.

Similarly

Γ̂− Γ =
1

T

T∑
t=hT+1

yt−hT yt − ΓhT − µ̄2ι

=
1

T

T∑
t=hT+1

xt−hTxt − ΓhT +
1

T

T∑
t=hT+1

mt−hTmt − µ̄2ι

+
1

T

T∑
t=hT+1

xt−hTmt +
1

T

T∑
t=hT+1

mt−hTxt.

We have analogously to the relations above that∥∥∥∥∥ 1

T

T∑
t=hT+1

xt−hTmt

∥∥∥∥∥ = Op

(√
hT
T

)
=

∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTxt

∥∥∥∥∥ ,
∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTmt − µ̄2ι

∥∥∥∥∥ = O

(
h1.5
T

T

)
;

using again the arguments of Demetrescu (2009, Lemma 7), we furthermore obtain∥∥∥∥∥ 1

T

T∑
t=hT+1

yt−hT yt − ΓhT

∥∥∥∥∥ = Op

(√
hT
T

)
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such that, summing up,

∥∥∥Γ̂− Γ
∥∥∥ = Op

(
max

{
h1.5
T

T
;

√
hT
T

})
.

Hence

∥∥âhT − Σ−1Γ
∥∥ = Op

(
max

{
h2
T

T
;
hT√
T

})
+Op

(
max

{
h1.5
T

T
;

√
hT
T

}
·
√
hT

)
.

This is op
(√

hT
)
when suitably choosing κ < 1/3.

Focusing now on the “centering” sequence

ãhT = Σ−1Γ =
(
ΣhT + µ̄2ιι′

)−1 (
ΓhT + µ̄2ι

)
,

use the Sherman-Morrison formula again to obtain that

ãhT =

(
I − µ̄2

1 + µ̄2ι′Σ−1
hT
ι
Σ−1
hT
ιι′

)
Σ−1
hT

ΓhT + µ̄2Σ−1
hT
ι− 1

1 + µ̄2ι′Σ−1
hT
ι
µ̄2Σ−1

hT
ιµ̄2ι′Σ−1

hT
ι

=

(
I − µ̄2

1 + µ̄2ι′Σ−1
hT
ι
Σ−1
hT
ιι′

)
ahT + µ̄2Σ−1

hT
ι

(
1− 1

1 + µ̄2ι′Σ−1
hT
ι
µ̄2ι′Σ−1

hT
ι

)

= ahT −
µ̄2

1 + µ̄2ι′Σ−1
hT
ι
Σ−1
hT
ιι′ahT +

1

1 + µ̄2ι′Σ−1
hT
ι
µ̄2Σ−1

hT
ι

= ahT +
µ̄2

1 + µ̄2ι′Σ−1
hT
ι
Σ−1
hT
ι (1− ι′ahT )

as required.

Proof of Corollary 1

By definition we have that

ŷT (1) =

hT∑
j=1

ãj,hT yT+1−j +

hT∑
j=1

(âj,hT − ãj,hT ) yT+1−j.

With
∥∥yT+1−hT

∥∥ =
∥∥(yT , . . . , yT+1−hT )′

∥∥ = Op

(√
hT
)
it follows∣∣∣∣∣

hT∑
j=1

(âj,hT − ãj,hT ) yT+1−j

∣∣∣∣∣ ≤√‖âhT − ãhT ‖∥∥yT+1−hT

∥∥ = op (1)
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such that

ŷT (1) =

hT∑
j=1

ãj,hT yT+1−j + op (1) .

Examining the nonnegligible term of ŷT (1) we further obtain that

hT∑
j=1

ãj,hT yT+1−j = µ2

hT∑
j=1

ãj,hT +

hT∑
j=1

ãj,hTxT+1−j.

Since
∑hT

j=1 ãj,hT → 1 as T →∞ by Proposition 1, the correct mean µ2 at the end of the
sample is automatically taken into consideration for the out-of-sample forecast when T is
large. With yT (1) = µ2 + x′T+1−hTahT one obtains

hT∑
j=1

ãj,hTxT+1−j = x′T+1−hT ãhT = yT (1)− µ2 +
µ̄2

1 + µ̄2ι′Σ−1
hT
ι
x′T+1−hTΣ−1

hT
ι (1− ι′ahT ) .

We are thus left with showing that the third summand on the r.h.s. of this equation
vanishes as T →∞. This holds true, since (1− ι′ahT ) is bounded, see above, and

x′t−hTΣ−1
hT
ι = Op

(√
ι′Σ−1

hT
ι

)
since

Var
(
x′t−hTΣ−1

hT
ι
)

= ι′Σ−1
hT

Cov (xt−hT ) Σ−1
hT
ι

= ι′Σ−1
hT
ι.

At the same time,
µ̄2

1 + µ̄2ι′Σ−1
hT
ι

= O

(
1

ι′Σ−1
hT
ι

)
and the result follows given that ι′Σ−1

hT
ι→∞. Hence the proof is complete.

Proof of Proposition 2

The steps of the proof are essentially the same as in the proof of Proposition 1 and we
use the same notation with ãhT = Σ−1Γ etc.

Hassler and Kokoszka (2010) show that, if j1−dbj → 0 with 0 < d < 1, the Wold coefficients
of xt behave asymptotically as those of the fractional white noise of integration order d.
Hence we may build on results derived for fractional white noise for 0 < d < 0.5, and on
the analogous results for absolutely summable coefficients for d = 0.
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Note that, in the presence of long memory 0 < d < 0.5, γh = Cov (xt, xt−h) = O
(
h2d−1

)
such that ‖ΣhT ‖ = O

(
h2d
T

)
and ‖ΓhT ‖ = O

(
hdT
)
. Still,

∥∥Σ−1
hT

∥∥ = O (1) like in the short-
memory case (which is recovered for d = 0 of course). Moreover, ιΣ−1

hT
ι′ ≥ Ch1−2d

T since
Σ−1
hT

is positive definite and its smallest eigenvalue is O
(
h−2d
T

)
, implying that ιΣ−1

hT
ι′ →∞

as T →∞ (and thus hT →∞).

It follows as in the proof of Proposition 1 that

∥∥Σ−1
∥∥ = Op

(∥∥Σ−1
hT

∥∥ ∥∥ιι′Σ−1
hT

∥∥
ι′Σ−1

hT
ι

)
= Op

(
h2d
T

)
.

Then, ∥∥âhT − Σ−1Γ
∥∥ ≤ ∥∥∥Σ̂−1

∥∥∥∥∥∥Γ̂− Γ
∥∥∥+

∥∥∥Σ̂−1 − Σ−1
∥∥∥ ‖Γ‖

where ‖Γ‖ ≤ ‖ΓhT ‖+ µ̄2 ‖ι‖ = O
(√

hT
)
.

To establish the behavior of the r.h.s. of the above inequality, the same norms as in the
proof of Proposition 1 need to be examined.

From Poskitt (2007, Theorem 1) it follows that∥∥∥∥∥ 1

T

T∑
t=hT+1

xt−hTx
′
t−hT − ΣhT

∥∥∥∥∥ = Op

(
hT

(
log T

T

)0.5−d
)
,

since the innovations εt satisfy his Assumption 1, and our rate restrictions certainly satisfy
his. Using the magnitude orders from Lemma 1, we thus obtain

∥∥∥Σ̂− Σ
∥∥∥ = Op

(
max

{
h1+α
T

Tα
;hT

(
log T

T

)0.5−d
})

.

With both hT
(

log T
T

)0.5−d
vanishing and h1+αT

Tα
dominated by h2d

T since κ < α
α+1.5+2d

and
α

α+1.5+2d
< α

1+α−2d
, we further have that∥∥∥Σ̂−1
∥∥∥ ≤ ∥∥∥Σ̂−1 − Σ−1

∥∥∥+
∥∥Σ−1

∥∥ = Op

(∥∥Σ−1
∥∥) = Op

(
h2d
T

)
.

Moving on to the behavior of
∥∥∥Γ̂− Γ

∥∥∥, we exploit the uniform boundedness of the vari-

ance of 1
T

∑T
t=hT+1 xt−jmt−k for 1 ≤ j, k ≤ hT (implied by boundedness of mt and weak

stationarity of xt) to conclude that∥∥∥∥∥ 1

T

T∑
t=hT+1

xt−hTmt

∥∥∥∥∥ = Op

( √
hT

T 0.5−d

)
=

∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTxt

∥∥∥∥∥ .
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Lemma 1 further allows us to conclude that∥∥∥∥∥ 1

T

T∑
t=hT+1

mt−hTmt − µ̄2ι

∥∥∥∥∥ = O

(
h0.5+α
T

Tα

)
,

and, using again Theorem 1 of Poskitt (2007), we have that∥∥∥∥∥ 1

T

T∑
t=hT+1

xt−hTxt − ΓhT

∥∥∥∥∥ = Op

(√
hT

(
log T

T

)0.5−d
)
.

Hence ∥∥∥Γ̂− Γ
∥∥∥ = Op

(
max

{
h0.5+α
T

Tα
;
√
hT

(
log T

T

)0.5−d
})

such that

∥∥âpT − Σ−1Γ
∥∥ = Op

(
h2d
T ·max

{
h1+α
T

Tα
;hT

(
log T

T

)0.5−d
})

+Op

(
max

{
h1+α
T

Tα
;hT

(
log T

T

)0.5−d
})

= Op

(
max

{
h2d+α+1
T

Tα
;h2d+1

T

(
log T

T

)0.5−d
})

.

To obtain the desired convergence rate for ‖âpT − Σ−1Γ‖ it suffices to show that

max

{
T κ(2d+α+1.5)

Tα
; (log T )0.5−d T

κ(2d+1.5)

T 0.5−d

}
→ 0,

which is indeed implied by our rate restrictions. With Σ−1Γ = (ΣhT + µ̄2ιι′)
−1

(ΓhT + µ̄2ι),
the first part of the desired result follows using the Sherman-Morrison formula.

To show that Corollary 1 still holds, note that

yT (1) = mT +
∞∑
j=1

ajxT+1−j =
∞∑
j=1

ajxT+1−j +mT ã
′
hT
ι+ op (1)

since the coefficients ãj,hT sum up to 1 whenever ιΣ−1
hT
ι′ →∞ (see the proof of Corollary
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1) and indeed ιΣ−1
hT
ι′ ≥ Ch1−2d

T →∞ as argued above. At the same time,

ŷT (1) = â′hTmT+1−hT + â′hTxT+1−hT

= ã′hTmT+1−hT + ã′hTxT+1−hT + (âhT − ãhT )′mT+1−hT + (âhT − ãhT )′ xT+1−hT

= ã′hTmT+1−hT + x′T+1−hT

(
Σ−1
hT

ΓhT +
µ̄2

1 + µ̄2ι′Σ−1
hT
ι
Σ−1
pT
ι
(
1− ι′Σ−1

hT
ΓhT
))

+ op (1)

since ‖âhT − ãhT ‖ = o
(
h−0.5
T

)
and ‖mT+1−hT ‖ = O

(√
hT
)

= ‖xT+1−hT ‖ thanks to the
boundedness of mt and the uniformly bounded variance of xt. Then,

yT (1)− ŷT (1) = ã′hT (mT+1−hT −mT ι)

−

((
xT+1 −

∞∑
j=1

ajxT+1−j

)
−
(
xT+1 − x′T+1−hTΣ−1

hT
ΓhT
))

− µ̄2

1 + µ̄2ι′Σ−1
hT
ι
x′T+1−hTΣ−1

pT
ι
(
1− ι′Σ−1

hT
ΓhT
)

+ op (1) .

The first term is easily shown to vanish, since

∣∣ã′hT (mT+1−hT −mT ι)
∣∣ ≤ ‖ãhT ‖ ‖mT+1−hT −mT ι‖ ≤ C

√
hT

(
hT
T

)α
thanks to the absolute summability of the elements of ãhT and the restrictions on α and
κ (cf. the proof of Lemma 1). For the second term, note that xT+1−

∑∞
j=1 ajxT+1−j is the

forecast error from a projection of xt on its infinite past, and xT+1 − x′T+1−hTΣ−1
hT

ΓhT the
forecast error from a projection on its first hT lags only, and basic Hilbert space arguments
show the difference between the two to vanish as hT → ∞. The third one is shown to
vanish as in the proof of Corollary 1, since ιΣ−1

hT
ι′ →∞. Hence, the proof is complete.
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