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Abstract

Using a time-varying parameters VAR, we nd that supply and demand shocks
had much stronger long-run e ects on nominal wages and the price level during the
"Great Ination" than in the preceding and subsequent periods. In the case of supply
shocks, there is even a sign switch in the nominal wage response. Before and after
the "Great Ination", nominal wages moved in the same direction as real wages and
in the opposite direction of the price level. In contrast, in the 1970s, nominal wages

and prices moved in the same direction at longer horizons after the shock. Estimation
of a standard DSGE model shows that this result reects changes in the conduct of
monetary policy and, especially, changes in the degree of wage indexation over time.
Wage indexation is found to have been very high during the "Great Ination", and low
before and after this period. These ndings support the notion that wage-price spirals,
resulting in particular from high wage indexation, amplied the e ects of inationary
shocks during the "Great Ination".
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1 Introduction

Time variation in the dynamics of U.S. output and ination has been extensively explored

over the past couple of years. The literature has documented a signicant drop in output

and ination volatility since the mid 1980s, a phenomenon referred to as the "Great

Moderation", as well as the rise and fall in the level and persistence of ination in the wake

of the "Great Ination" of the 1970s (e.g. McConnell and Perez-Quiroz 2000; Blanchard

and Simon 2001; Cogley and Sargent 2002). Several studies have argued that a shift in

the systematic component of monetary policy can explain these phenomena (e.g. Clarida

et al. 2000; Gali et al. 2003; Lubik and Schorfheide 2004), whereas others attribute

the changes in macroeconomic uctuations mainly to a shift in the variance of structural

shocks a ecting the economy (Stock and Watson 2002; Primiceri 2005; Sims and Zha 2006;

Gambetti et al. 2008; Justiniano and Primiceri 2008).

However, time variation in wage dynamics has not been studied to any great extent in

this context, which stands in stark contrast to the important role of wages for macroeco-

nomic outcomes. In modern macroeconomic models, ination is driven by the dynamics

of real marginal costs, which are directly linked to wages.1 Accordingly, the dynamic

adjustment of wages to shocks should matter for macroeconomic dynamics. For instance,

if nominal wage growth closely follows the ination rate because of explicit or implicit

wage indexation, inationary shocks can trigger second-round e ects, i.e. mutually rein-

forcing feedback e ects between wages and prices, that can greatly amplify and protract

the e ects of the shock on ination. As a consequence, a larger shift in the policy rate is

required to bring ination back to the target. The adjustment of wages is hence crucial

for the inationary consequences of shocks that hit the economy, the costs of disination

and the volatility of output and prices.

In this paper, we explore the patterns and underlying sources of time variation in U.S.

wage dynamics and its interlinkage with time variation in macroeconomic dynamics. The

analysis proceeds in two steps. We rst estimate an otherwise standard time-varying para-

meters Bayesian structural vector autoregressive (TVP-BVAR) model including nominal

1 For instance the New Keynesian Phillips Curve embedded in several DSGE models (e.g. Gali and

Gertler 1999; Christiano et al. 2005; Smets and Wouters 2007).
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wages and assess the time variation in the dynamic e ects of a supply and a demand shock.

The estimations show that there has been considerable time variation in macroeconomic

dynamics, and in particular in nominal wage dynamics. Supply and demand shocks are

found to have had much stronger long-run e ects on nominal wages and the price level

during the "Great Ination" than in the preceding and subsequent periods. For a sup-

ply shock, we even nd a sign switch in the long-run co-movement of nominal wages and

prices. Specically, we nd that nominal wages moved in the same direction as real wages

and in the opposite direction of prices before and after the "Great Ination". During the

"Great Ination", in contrast, nominal wages moved in the same direction as prices and

in the opposite direction of real wages at longer horizons after the shock.

Since the TVP-BVAR is silent about the causes of time variation in wage dynamics,

we estimate in the second step of the analysis the parameters of a standard DSGE model

for specic periods of time by matching the respective impulse responses for this period

from the TVP-BVAR using the Bayesian impulse response matching procedure proposed

by Christiano et al. (2010). The estimation of the DSGE model indicates, in line with the

existing literature, a less aggressive monetary policy response to ination and higher price

indexation during the "Great Ination" compared to the earlier and later periods. The

results of the matching procedure, however, also reveal that the time variation in wage

dynamics uncovered in the VAR analysis reects considerable variation over time in the

degree of wage indexation to past ination. Wage indexation was very high in the 1970s,

in contrast to very low values before and after this period. Specically, the estimated

degree of wage indexation is 0.91 for 1974Q1, compared to 0.30 and 0.17 for respectively

1960Q1 and 2000Q1. This pattern of changes in wage indexation over time is consistent

with independent evidence on the use of cost-of-living adjustment (COLA) clauses in

major wage bargaining agreements, and turns out to be important for macroeconomic

uctuations. The decline in the degree of wage indexation from 0.91 in 1974Q1 to 0.17 in

2000Q1 implies, for instance, a reduction in the long-run impact of a supply and demand

shock on prices by respectively 44 and 39 percent.

The pattern of time variation in wage indexation supports the notion that the inci-

dence of second-round e ects and, as a consequence, the occurrence of wage-price spirals,
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were pervasive during the "Great Ination", but not during the preceding and following

periods. This is in line with the widely held perception among policy makers that the in-

cidence of second-round e ects of inationary shocks has fundamentally changed over the

past thirty years as a result of the credible establishment of price stability (e.g. Bernanke

2006). Indeed, our nding that the Fed�’s response to ination and the degree of wage

indexation have changed at about the same time suggests that the parameters of a central

bank reaction function and the degree of wage and price indexation are two sides of the

same coin, i.e. the monetary policy regime. A weakly ination stabilizing policy rule

is conducive to high and volatile ination. This fosters the use of indexation clauses as

protection against ination uncertainty, which in turn contributes to ination uncertainty

by amplifying the e ects of inationary shocks. On the other hand, a regime of price sta-

bility with a more strongly ination stabilizing policy rule reduces the need for protection

against ination uncertainty, thus mitigating wage and price indexation. A lower degree

of indexation in turn reduces the e ect of inationary shocks, thus further contributing to

price stability. This reasoning essentially reects the Lucas (1976) critique that a change

in the policy regime could have wider e ects on empirical macroeconomic regularities, in

this case on the prevalence of indexation practices in wage setting.

This implies that hard-wiring a certain degree of wage indexation in macro models

like the ones of Christiano et al. (2005) or Smets and Wouters (2007) is potentially

misleading when changes in the monetary policy regime are analyzed, a point which has

also been made by Benati (2008) for price indexation. Also, counterfactual experiments

in the context of the "Great Ination" and "Great Moderation" literature should take the

wider implications of changes in the monetary policy regime into account, which has not

been the case in several studies concluding that a shift in monetary policy is insu cient

or unable to explain the changed macroeconomic dynamics and volatility over time (e.g.

Primiceri 2005; Sims and Zha 2006; Canova and Gambetti 2006, Bilbiie and Straub, 2011).

The remainder of the paper is structured as follows. In the next section, we present

the empirical evidence on time variation in U.S. wage dynamics. We rst discuss the

methodology and report the results of the estimated e ects of supply and demand shocks

over time. In section 3, we discuss the Bayesian impulse response matching procedure
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used to estimate the coe cients of a standard DSGE model and present the estimation

results obtained for selected periods of the sample. Finally, section 4 concludes.

2 Time variation in wage dynamics - stylized facts

To examine time variation in wage dynamics, we estimate a VAR(p) model with time-

varying parameters and stochastic volatility in the spirit of Cogley and Sargent (2005)

and Primiceri (2005). Within the VAR model, we identify two innovations with a struc-

tural economic interpretation at respectively the supply and demand side of the economy.

Together, these innovations consistently explain between 30 and 60 percent of the long-run

forecast error variance of nominal and real wages over the sample period. For output and

prices, the contribution to the forecast variance is even higher, reaching values above 70

percent.2 In the next subsections, we discuss respectively the reduced form VAR repre-

sentation, identication strategy and estimation results.

2.1 A Bayesian VAR with time-varying parameters

We consider the following reduced form representation of the VAR:

= + 1 1 + + + 0 + (1)

where is a vector of observed endogenous variables containing output (seasonally ad-

justed real GDP), prices (seasonally adjusted GDP deator), nominal wages (seasonally

adjusted hourly compensation in the non-farm business sector) and the interest rate (three-

months Treasury bill rate).3 All variables are transformed to non-annualized quarter-on-

quarter growth rates by taking the rst di erence of the natural logarithm, except the in-

terest rate which remains in levels. The overall sample covers the period 1947Q1-2008Q1,

but the rst ten years of data are used as a pre-sample to generate the priors for the actual

sample period.

2 Other studies, e.g. Gambetti et al. (2008) and Benati and Mumtaz (2007), also nd that similarly

identied supply and demand shocks account for the bulk of the volatility in output and prices.
3 The data series were taken from the St. Louis FRED database.
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The lag length of the VAR is set to = 2, which is standard in the literature on time-

varying VARs. The time-varying intercepts and lagged coe cients are stacked in to

obtain the state-space representation of the model. The of the observation equation are

heteroskedastic disturbance terms with zero mean and a time-varying covariance matrix

, which can be decomposed in the following way: = 1
¡

1
¢0
. is a lower

triangular matrix that models the contemporaneous interactions among the endogenous

variables and is a diagonal matrix which contains the stochastic volatilities:

=

1 0 0 0

21 1 0 0

31 32 1 0

41 42 43 1

=

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

(2)

Let be the vector of non-zero and non-one elements of the matrix (stacked by rows)

and be the vector containing the diagonal elements of . Following Primiceri (2005),

the three driving processes of the system are postulated to evolve as follows:

= 1 + (0 ) (3)

= 1 + (0 ) (4)

ln = ln 1 + (0 1) (5)

The time-varying parameters and are modeled as driftless random walks. The

elements of the vector of volatilities = [ 1 2 3 4 ]
0 are assumed to evolve as

geometric random walks independent of each other. The error terms of the three transition

equations are independent of each other and of the innovations of the observation equation.

In addition, we impose a block-diagonal structure for of the following form:

( ) =

1 01 2 01 3

02 1 2 02 3

03 1 03 2 3

(6)

which implies independence also across the blocks of with 1

¡
21

¢
, 2
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³£
31 32

¤0´, and 3

³£
41 42 43

¤0´ so that the covariance states can

be estimated equation by equation.

We estimate the above model using Bayesian methods (Markov Chain Monte Carlo

algorithm). The priors for the initial states of the regression coe cients, the covariances

and the log volatilities are assumed to be normally distributed, independent of each other

and independent of the hyperparameters. Specically, the priors are calibrated on the

point estimates of a constant-coe cient VAR estimated over the pre-sample. More details

about the prior specications can be found in appendix A. The posterior distribution is

simulated by sequentially drawing from the conditional posterior of four blocks of parame-

ters: the coe cients, the simultaneous relations, the variances and the hyperparameters.

To enforce stationarity of the VAR system, we include an indicator function that selects

only draws where the roots of the associated VAR polynomial are inside the unit circle

(see also Cogley and Sargent 2005). For further details of the implementation and MCMC

algorithm, we refer to Primiceri (2005), Benati and Mumtaz (2007) and Baumeister and

Peersman (2008). We perform 20,000 iterations of the Bayesian Gibbs sampler but keep

only every 10 draw in order to mitigate the autocorrelation among the draws. After a

"burn-in" period of 50,000 iterations, the sequence of draws of the four blocks from their

respective conditional posteriors converges to a sample from the joint posterior distribu-

tion. We ascertain that our chain has converged to the ergodic distribution by computing

the draws�’ ine ciency factors, which are also presented in appendix A (see Primiceri 2005;

Benati and Mumtaz 2007). In total, we collect 2000 simulated values from the Gibbs chain

on which we base our structural analysis.

2.2 Identication of supply and demand shocks

Based on the TVP-BVAR, we analyze time-variation in the dynamic e ects of respectively

an aggregate supply and demand shock. For the identication, we follow Peersman and

Straub (2009). Specically, Peersman and Straub (2009) derive a set of sign restrictions

that are consistent with a large class of DSGEmodels and robust for parameter uncertainty
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to identify both innovations.4 The sign restrictions, which are imposed the rst four

quarters after the shocks, are summarized in Table 1.

{Insert Table 1 about here}

First, a positive supply shock is identied as a shock with a non-negative e ect on out-

put and real wages and non-positive e ects on prices. These restrictions are su cient to

disentangle the innovations from demand-side and labor supply disturbances. In particu-

lar, demand-side shocks are expected to have a positive e ect on prices, while expansionary

labor supply innovations are typically characterized by a fall in real wages. Notice that

the nominal wage response to a supply shock is left unconstrained. The supply shock pri-

marily reects technology shocks as the most important source of exogenous supply shifts,

but it also captures other supply-side shocks such as commodity prices or price mark-up

shocks.

Second, a positive (real) demand shock is identied as a shock with non-negative e ects

on output, prices and the interest rate. The restriction on the interest rate should di er-

entiate the shock from nominal disturbances such as monetary policy shocks. Examples

of such (real) demand shocks are government spending, time-impatience or investment

shocks.

2.3 Estimation results

The main results are summarized in Figure 1a and Figure 1b. The gures plot the time-

varying contemporaneous impact and long-run e ect (i.e. the e ect 28 quarters after the

shock) of a one standard deviation supply shock (Figure 1a) and demand shock (Figure

4 Peersman and Straub (2009) propose this identication strategy with sign restrictions as an alternative

to Galí�’s (1999) long-run restrictions to estimate the impact of technology shocks on hours worked and

employment. Galí�’s identication strategy, however, cannot be implemented in our time-varying SVAR.

To keep the number of variables manageable, we do not have hours worked or labor productivity as one

of the variables in the model. The approach of Peersman and Straub (2009) does instead not need these

variables for identication purposes. Imposing long-run neutrality of non-technological disturbances in

a model where the underlying structure and dynamics change over time is also something di cult to

implement without making additional assumptions. See also Dedola and Neri (2007) and Peersman (2005)

for a similar sign restrictions approach.
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1b) on the level of nominal wages, prices, output and real wages. The gures show the

median, as well as the 16th and 84th percentiles of the posterior distributions of the

impulse responses.5 Full results for all variables at all horizons are shown in the (three-

dimensional) charts in the appendix (Figures A2 and A3).

{Insert Figure 1a and Figure 1b about here}

The gures reveal that there is considerable time variation in the dynamic e ects of

the shocks. The most striking time-variation is the long-run impact of both shocks on

nominal wages and the price level. Specically, positive supply and demand shocks have

respectively a much stronger negative and positive long-run e ect on nominal wages and

prices between the end of the 1960s and the early 1980s, i.e. during the "Great Ination"

period, compared to the preceding and subsequent periods. Remarkably, in the case of

supply shocks, there is even a sign switch in the long-run response of the nominal wage,

from positive to negative just before 1970 and then back to positive just after 1980. At

the same time, there is basically no time variation in the immediate response of nominal

wages to supply shocks, which has always been positive and even of a similar magnitude.

Only after a few quarters, there is a sign switch in the nominal wage reaction in the 1970s.

The sign switch in the response of nominal wages to a supply shock at the start and

5We use a Monte Carlo integration procedure to compute the impulse response functions, which accounts

for all the potential sources of uncertainty deriving from the additive innovations, variations in lagged

coe cients and changes in the contemporaneous relations among the variables. More precisely, we compute

the generalized impulse responses as the di erence between two conditional expectations with and without

the exogenous shock:

+ = [ + | ] [ + | ]

where + contains the forecasts of the endogenous variables at horizon , represents the current

information set and is the current disturbance term. At each point in time, the information set we

condition upon contains the actual values of the lagged endogenous variables and a random draw of the

model parameters and hyperparameters. In particular, in order to calculate the conditional expectations

we randomly draw from the Gibbs sampler one possible state of the economy at time represented by the

time-varying lagged coe cients and the elements of the variance-covariance matrix. Based on this draw,

we employ the transition laws and stochastically simulate the future paths of the coe cient vector and

the components of the variance-covariance matrix. To obtain the time-varying structural impact matrix,

we implement the decomposition procedure proposed by Rubio-Ramirez et al. (2010). The gures are

based on 1,000 draws for each quarter over the sample period. The impulse response function of the real

wage for each draw is obtained via the response of the nominal wage rate and the GDP deator.
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at the end of the "Great Ination" is a new stylized fact which has not been documented

before. As a matter of fact, the few studies that do analyze the impact of supply (tech-

nology) shocks on wages using SVARs assume constant parameters over the whole sample

period (e.g. Basu et al. 2006 or Liu and Phaneuf, 2007), conclude that there is only

a very weak negative or insignicant response of nominal wages accompanying a signif-

icant rise in real wages. The present analysis suggests that this result is misleading as

it ignores considerable time variation in the reaction pattern of nominal wages. More

generally, from the perspective of our results, empirical studies of changes in macroeco-

nomic dynamics only distinguishing between the period after the disination of the early

1980s, i.e. the so-called Volcker-Greenspan period, and preceding period, i.e. the so-called

pre-Volcker period, miss a change in the macroeconomic regime. Our results indicate that

the pre-Volcker period actually covers two di erent regimes with fundamentally di erent

dynamics.6

Although we cannot pin-down the exact magnitude of the shocks,7 the smaller contem-

poraneous impact of demand shocks and the smaller immediate and long-run (permanent)

e ects of supply shocks on economic activity since the early 1980s,8 appear consistent with

the so-called "good luck" hypothesis of the "Great Moderation", i.e. the notion that the

lower macroeconomic volatility over this period is at least in part due to systematically

smaller shocks. However, it is implausible that only changes in the size of shocks are

driving the pattern of the responses of prices and nominal wages over time. If this were

the case, then we should see the same pattern of time variation in the impulse responses of

6 For instance, Gali et al. (2003) detect a much stronger impact of a technology shock on ination in

the pre-Volcker period (1954Q1-1979Q2) relative to the Volcker-Greenspan era (1982Q3-1998Q3). Our re-

sults, however, suggest that their pre-Volcker-Greenspan era covers two regimes with signicantly di erent

dynamics.
7 This is a well-known problem when VAR results are compared across di erent samples (see Baumeister

and Peersman 2008 for a detailed discussion of this problem). Only the impact of an "average" shock on

a number of variables can be measured. Consequently, it is not possible to know exactly whether the

magnitude of an average shock has changed or the reaction of the economy (economic structure) to this

shock, unless an arbitrary normalization on one of the variables is done (e.g. Gambetti et al. 2006

normalize demand shocks on output and supply shocks on prices).
8 Given the estimated long-run neutrality on output (with the exception of two quarters within the

sample), the impact of aggregate demand shocks on economic activity is best captured by its immediate

e ect. In particular, the contemporaneous impact is always very close to the maximum e ect of the shock

on output.
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the other variables, which is not the case. For instance, there is no evidence of a reduced

e ect of supply shocks on real wages, a variable which is also expected to be closely related

to productivity changes. The short-run e ect is even found to have slightly increased over

time, while the long-run e ect has remained at the elevated levels reached in the early

1970s.9 The time variation of the output e ects is also much more subdued in terms

of magnitude than the time variation of the impact on nominal wages and prices. And,

most importantly, a di erent size of the underlying shocks over time cannot explain why

the contemporaneous impact of supply shocks on nominal wages has always been positive

(and of a similar magnitude), whereas the long-run e ects became negative at the start of

the "Great Ination" and changed back to positive at the end of this episode in the early

1980s. The sign switches in the reaction of nominal wages to supply shocks clearly points

to structural changes in the economy. In the next section, we examine this more carefully.

3 Explaining the time-variation in wage dynamics

In order to assess the causes of the time variation in wage dynamics in a more structural

and comprehensive manner, we estimate the parameters of a standard DSGE model for

specic periods by matching the respective impulse responses for this period from the TVP-

VAR based on a Bayesian impulse response matching procedure in the spirit of Christiano

et al. (2010). This should enable us to better disentangle the underlying reasons for the

time variation, which was not possible within the connes of the VAR analysis.

In the impulse response matching exercise, we match the VAR supply shock impulse

responses with the DSGE model impulse responses to a permanent technology shock and

the VAR demand shock impulse responses with the DSGE model impulse responses to a

government spending shock. Matching the supply shock with a technology shock is consis-

tent with the notion that technology shocks are the most important source of exogenous

9 This result is in line with recent micro evidence reported by Davis and Kahn (2008), who document

that the "Great Moderation" was not associated with a reduction in household income volatility. Interesting

is also the negative long-run response of real wages to a demand shock, in particular during the 1970s.

By simulating a standard DSGE model, Peersman and Straub (2009) show that the sign of the e ects of

demand-side shocks on real wages depends on the combination of the parameter values of the model. A

more detailed analysis of the source is out of the scope of this paper.
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supply shifts. While the nding that there is a sign switch in the wage response to a

supply shock is clearly the most interesting result from the VAR analysis and hence also

the focus of the impulse-response matching exercise, we also exploit the VAR results for

the demand shock in order to strengthen identication of the model coe cients (relative

to a procedure solely based on the matching of the supply and technology shock). To this

end, we match impulse responses to the demand shock to the DSGE impulse responses to

the government spending shock. This involves the implicit assumption that other poten-

tially important demand shocks, such as preference shocks, have e ects on the observable

variables that are similar to those of a government spending shock.

3.1 The model

We use a standard DSGE model with Calvo sticky prices and wages, price and wage index-

ation, habit formation, and a conventional Taylor rule. The model can be considered as a

simplied version of Smets and Wouters (2007) or Christiano et al. (2005). This section

presents the log-linearized equations of the model. Details of the derivation, including the

agent�’s objective functions and constraints, can be found in the appendix.

The DSGE model economy is subject to a (permanent) technology and government

spending shock. To induce stationarity, we divide real variables in our model by the level

of the permanent productivity shock . As a result, we denote the transformed vari-

ables output, consumption, government spending and real wages by e = e = ,

e = and f = Furthermore, we label log-deviations of a stationary variable e

from its steady-state value by e = log( e e) . In what follows, we describe the station-

ary equilibrium of the log-linearized model that is used for the estimations. First, price

ination dynamics are explained by a Phillips Curve augmented with price indexation:

= ¡
1 +

¢ +1 + ¡
1 +

¢ 1 +
(1 )(1 )¡

1 +
¢ e (7)

whereby is the price ination rate, is the expectations operator at time , is price

indexation, is the time preference rate and measures the degree of nominal price

rigidity in the Calvo pricing model. Correspondingly, wage ination is modelled by
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the following equation:

= +1 + 1+
1

(1 + )

(1 )(1 )

( (1 + 1+ ))

1
1 e +

e 1 (e 1 )

(8)

whereby is the degree of wage indexation, is the the degree of monopolistic com-

petition in the labour market, is the labor supply elasticity, measures the degree of

nominal rigidity in a Calvo pricing model, is hours worked, and is the rst di er-

ence of the stochastic productivity process . Real wage dynamics are described by the

following equation:

e = e 1 + (9)

Consumption dynamics is modelled via the following standard Euler equation:

+1 =
1

1
( e+1 (1 + )e + e 1 ) (10)

where is the nominal interest rate, and is the degree of habit persistence. The aggregate

resource constraint of the economy is described by:

e = e + e (11)

where represent the share of government spending in terms of output in the stationary

steady state. Aggregate supply is represented by the following linear production function:

e = (12)

Monetary policy follows a Taylor rule, with the interest rate reacting to lagged interest

rates, ination, output gap and the change in the output gap:

= 1 + (1 ) ( e + ) + e (13)

where is a parameter determining the degree of interest rate smoothing, while ,
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and represent the elasticity of the interest rate to the change in the output gap, output

gap and ination respectively.

The exogenous process for the technology shock is dened as = 1+ whereby

we set = 1 implying a random walk productivity shock that induces permanent e ects,

which is in line with the VAR estimations reported above. The exogenous shock process

for government spending follows an AR(1) process in its log-linearized form e = e 1+

Note that we assume that government spending grows along the balanced growth

path ensuring in the long run a stable share of government spending to output despite

permanent technology shocks. For simplicity, we assume that the government budget is

always in balance, nanced by a lump-sum tax , i.e. = holds for each period in

time.

3.2 Methodology

We estimate the standard DSGE model of section 3.1 with Bayesian minimum distance

techniques in the spirit of Christiano et al. (2010). We focus on the impulse response

functions of 1960Q1, 1974Q1 and 2000Q1, which represent the three regimes of wage and

price dynamics that were uncovered in the VAR analysis: the period before the start of

the "Great Ination", the "Great Ination" and the Volcker-Greenspan era.10 The VAR

impulse response functions were recalculated under the assumption that the parameters

do not change over the horizon of the impulse responses. This is necessary as we want

to estimate the structural parameters of the model associated with the VAR impulse

responses in a specic point in time without any inuence of future time variation in the

structure of the economy.

The main di erence to Christiano et al. (2010) is that the impulse response functions

that have to be matched are generated with a Bayesian VAR, while the shocks are iden-

tied with sign restrictions. Accordingly, there is no point estimate around which we can

center our minimum distance method. As an alternative, in a rst step, we estimate the

posterior mode of the structural parameters for each of the 1,000 impulse response func-

tions that fulll the selected sign restrictions in the VAR. In a second step, we calculate the

10 The results are however robust to the choice of di erent periods from these three regimes.
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corresponding distribution of the posterior modes for each of the structural parameters.11

More precisely, we rst stack the estimated impulse response functions into a vector

b, which has a dimension of 28 (horizon of responses) times 2 (number of shocks) times

4 (number of variables) for each of the draws. When the number of observations , , is

large, standard asymptotic theory shows that:

³
b ( 0)

´
v (0 ( 0 0)) (14)

where 0 represents the true value of the parameters that we estimate, while 0 denotes

the true values of the parameters of the shocks that are in the model. As a result, the

asymptotic distribution of b can be written in the following form:

bv ( ( 0) ( 0 0 )) (15)

( 0 0 )
( 0 0) (16)

In a next step, we treat b as data and we choose the value of to make ( ) as close

as possible to b Thereby, we dene the approximate likelihood of the data, b, as function

of :

(b p ) =
µ
1

2

¶
2

| ( 0 0 )
1
2×exp

1

2

³
b ( 0)

´0
( 0 0 ) 1

³
b ( 0)

´¸

(17)

In equation (17), denotes the number of elements in b We treat thereby ( 0 0 )

as a xed value. In particular, the weight matrix depends on the second moments of

the conditional impulse response function in each period, i.e. the wider the posterior

distribution of the empirical impulse responses at a point in time, the less weight is given

to the corresponding observation. Treating the function, , as the likelihood of b it follows

that the Bayesian posterior of conditional on b and ( 0 0 ) is:

11So in what follows, the median of the distribution always refers to the median of the distribution of
the posteriore modes. Alternatively, one could also calculate the marginal posteriore distribution of the
selected parameters for each of the 1,000 draws using Markov chains. Note, however, that this approach
cannot be accomplished in an acceptable amount of time.
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( p b) = (b p ) ( )
(b)

(18)

where ( ) denotes the priors on and (b) is the marginal density of b As usual, the

mode of the posterior distribution of can be computed by simply maximizing the value

of the numerator in equation (18).

3.3 Results

Table 2 reports the priors of the DSGE model parameters that we use to match the VAR

impulse response functions. We report the density with admissible parameter range as

well as the mean and the standard deviation. The priors have been specied in a stan-

dard way, following previous studies estimating DSGE model parameters using Bayesian

techniques.12 In line with the empirical literature, we also set some of the structural

parameters to a xed value from the start: the discount factor = 0 99; the inverse

labour supply elasticity = 2; and the degree of monopolistic competition in respectively

the goods and labor market = = 10 These parameter values are consistent with

calibrations in previous studies.13

{Insert Table 2 about here}

The 68% coverage percentiles of the impulse responses of the DSGE model obtained

from the matching procedure, together with the same percentiles of the VAR impulse

responses, are shown in Figure 2. As can be seen from the charts, the DSGE is able

to match the VAR impulse responses fairly well. The only exception is the interest rate

response to the demand shock in the 1960s and the 2000s, where the model impulse

responses are more subdued than the VAR impulse responses. Importantly, the model

12 See e.g. Smets and Wouters (2007) and Christiano et al. (2010). Like these studies, we impose

an ination reaction parameter which is larger than 1 thus neglecting the possibility of indeterminacy.

Lubik and Schorfheid (2004) and Justioniano and Primiceri (2008) estimate DSGE models allowing for

indeterminacy in the 1970s.
13 Robustness checks showed that the main results are not materially a ected by choosing di erent para-

meter values within a reasonable range for the labour supply and the wage and price mark-up parameters.
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can reproduce the magnitudes and the sign switch of the long-run wage response over the

three regimes to the supply shock. It can also match the sign switch of the nominal wage

response to the supply shock in the 1970s from positive on impact to negative over longer

horizons.

{Insert Figure 2 about here}

The distributions of the estimated posterior mode of the model parameters are sum-

marized in Table 2 by reporting the median and the 16th and 84th percentiles. For the

price and wage stickiness parameters there is no indication of a material change over time.

The percentile ranges of our estimates are consistent with estimates of these two parame-

ters reported in previous studies (e.g. Christiano et al. 2005, Smets and Wouters 2007).

The estimates, however, reveal considerable time variation in a number of other structural

parameters of the model. First, the estimated standard deviation of the shocks support

the hypothesis that "good luck" in the form of smaller exogenous shocks contributed to

the "Great Moderation". The median estimates of the standard deviations of the supply

and the demand shock are both notably smaller in 2000 than in the two earlier periods.

Second, we obtain a hump-shaped pattern over the three periods for the habit persistence

parameter, with a median estimate of around 0.35 for the periods 1960 and 2000 and of

0.71 for 1974. The distributions, however, are rather wide and overlap for the 1970 and

2000 periods.

Third, the parameters of the monetary policy rule display a pattern over time that is

consistent with the evidence on the evolution of the conduct of U.S. monetary policy over

time. In particular, the ination reaction coe cient displays a U-shaped pattern across the

three periods. The median estimate is around 1.55 and 1.35 for 1960 and 2000 respectively,

and 1.11 for 1974. There is essentially no variation in the interest rate reaction to the level

of the output gap, but the reaction to the change in the output gap is estimated to have

been somewhat higher in 1974 than in 1960 and 2000, although the percentile ranges for

this parameter are rather wide. The very low interest rate response to ination estimated

for 1974 corroborates very well with the "bad monetary policy" hypothesis of the "Great

Ination" that has been brought forward by Judd and Rudebusch (1999), Clarida et al.
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(2000) and Cogley and Sargent (2002, 2005) among others.14 The time variation in the

price indexation parameter is also in line with earlier studies documenting a rise and

decline of U.S. ination persistence associated with the onset and conquest of the "Great

Ination" (e.g. Cogley and Sargent 2002, 2005 and Kang et al. 2009). In particular, the

median of the estimated price indexation coe cient is around 0.15 in 1960 and 2000, while

it is 0.8 for 1974.

More importantly in the context of the present study, there is also considerable time

variation in the wage indexation parameter. The median estimate of this coe cient is

0.91 for 1974 and respectively 0.3 and 0.17 for 1960 and 2000. While the parameter for

1960�’s has a wider distribution, the percentile ranges for 1974 and 2000 are relatively

tight. The relevance of wage indexation for macroeconomic dynamics over time is also

considerable. For instance, when we simulate the DSGE model with the posterior median

parameter values of 1974, the impact of a supply shock on prices after 5 years is 44 percent

lower when we replace the wage indexation parameter by its 2000 posterior median value

only. As a benchmark, if we do the same exercise for the monetary policy rule and price

indexation parameters, we get a reduction of respectively 31 and 23 percent. Similarly,

when we simulate the e ects of a demand shock, the impact on prices is 39 percent less

when we substitute the wage indexation parameter, compared to 19 and 37 percent for

price indexation and the systematic part of the policy rule.

To summarize, the estimates of the DSGEmodel parameters obtained from the Bayesian

impulse response matching procedure suggest that the patterns of time variation in the

VAR impulse responses primarily reect a high degree of price and wage indexation in

conjunction with a weak reaction of monetary policy to ination during the "Great In-

ation", and low indexation together with aggressive ination stabilization of monetary

policy before and after this period. While our ndings in the time-variation of the price

indexation parameters and the ination reaction coe cient in the monetary policy rule

conrm results of previous studies, the strong evidence of a change in wage indexation over

14 Orphanides (2003) suggests however that the evidence of fundamental di erences in the conduct of

monetary policy during the Great Ination compared to the subsequent era of price stability is considerably

mitigated when real-time data are used for the analysis of policy rules. Bilbiie and Straub (2011), on the

other hand, suggest that the low ination responsiveness of monetary policy in the 1970s can be rationalized

by limited asset market participation during this period.
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time, in particular its role for time variation in macroeconomic dynamics, is an entirely

new result.

3.4 Link with institutional evidence

The pattern of time-variation in the wage indexation parameter that we nd is consistent

with institutional evidence on wage indexation practises. Specically, Figure 3 shows the

coverage of private sector workers by cost-of-living adjustment (COLA) clauses.15 The

chart reveals that, from the late 1960s onwards, COLA coverage steadily increased to

levels around 60% in the mid 1980s, after which there was again a decline towards 20%

in the mid 1990s, when the reporting of COLA coverage has been discontinued. As a

matter of fact, studies by Holland (1986, 1995) and Ragan and Bratsberg (2000) nd a

signicant positive impact of ination and ination uncertainty on the prevalence of such

COLA clauses included in major collective wage bargaining agreements.16 Interestingly,

our results suggest that increased wage indexation itself in turn leads to additional ination

variability via second-round e ects, thus further strengthening the incentive to include

cost-of-living adjustments in collective bargaining agreements.

{Insert Figure 3 about here}

4 Conclusions

This paper establishes two new results on the dynamic adjustment of the U.S. economy to

shocks and its underlying causes. First, we nd considerable time variation in U.S. macro-

economic dynamics and in particular in U.S. nominal wage dynamics following supply and

15 COLA coverage obviously only measures explicit wage indexation in major wage agreements for

unionized workers and does therefore not capture explicit wage indexation in other wage agreements or

implicit wage indexation. However, Holland (1988) shows that COLA coverage is positively related to the

responsiveness of union, non-union and economy-wide wage aggregates to price level shocks and suggests,

based on this nding, that COLA coverage is a suitable proxy for the overall prevalence of explicit and

implicit wage indexation in the U.S. economy.
16 Ehrenberg et al. (1984) show in an e cient contract model with risk averse workers that the higher

ination uncertainty is, the greater is the likelihood of indexation.

19



demand shocks over the post-WWII period. Specically, evidence from a time-varying

structural VAR shows that positive supply and demand shocks have respectively a much

stronger negative and positive long-run e ect on nominal wages and prices between the

end of the 1960s and the early 1980s compared to the preceding and subsequent periods.

Strikingly, in the case of supply shocks, there is even a sign switch in the long-run response

of the nominal wage, from positive to negative just before 1970 and then back to positive

just after 1980. Second, estimation of a simple DSGE model reveals that these results are

driven in particular by time-variation in wage indexation, i.e. a high degree of wage index-

ation during the "Great Ination" and low indexation in the preceding and subsequent low

ination periods. This pattern of changes in wage indexation over time is consistent with

independent evidence on the use of cost-of-living adjustment (COLA) clauses in major

wage bargaining agreements. In line with previous studies, the DSGE estimation further

reveals a weak reaction of monetary policy to ination and high price indexation during

the "Great Ination", and more aggressive ination stabilization of monetary policy and

low price indexation before and after this period.

The evidence presented in this paper suggests that, during the "Great Ination", sup-

ply and demand shocks have triggered second-round e ects, in particular via high wage

indexation, which amplied the ultimate e ects on prices and hence increased ination

variability. This mechanism can also explain the sign switch in the long-run nominal

wage response to a supply shock at the beginning and at the end of the "Great Ination"

since high wage indexation pushes nominal wages in the same direction as prices after an

inationary shock.

The rise and fall of wage indexation over time can be linked to the literature that

nds a weaker reaction of monetary policy to ination during the "Great Ination" and

more aggressive ination stabilization of monetary policy before and after this period (e.g.

Clarida et al. 2000). This simultaneous time variation of the ination reaction parameter

in the policy rule and the degree of wage indexation can be regarded as two sides of the

same coin, the monetary policy regime. Specically, a weakly ination stabilizing policy

rule is conducive to high and volatile ination. This fosters the use of wage indexation

clauses as protection against ination uncertainty, which in turn amplies the e ects of
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inationary shocks. On the other hand, a regime of price stability reduces the need

for protection against ination uncertainty, thus mitigating wage indexation. A lower

degree of wage indexation in turn reduces the e ects of inationary shocks, thus further

contributing to price stability.

The fact that the monetary policy regime is not only characterized by the parameters

of the monetary policy rule, but also by the wage setting behavior in the labor market, has

two important implications for policy analysis. First, counterfactual experiments altering

solely the monetary policy rule do not adequately capture the wider consequences of a

change in the policy regime. Based on such counterfactual simulations, a number of studies

(e.g. Primiceri 2005; Sims and Zha 2006; Canova and Gambetti 2006) conclude that a shift

in the monetary policy rule is unable to explain the changes in macroeconomic dynamics

and volatility over time, hence questioning the "good monetary policy" hypothesis of the

"Great Moderation". Our analysis suggests, however, that the additional e ects via lower

wage indexation and contained second-round e ects should also be taken into account.

Finally, a second implication is that embedding a certain degree of wage indexation in

micro-founded macroeconomic models could be highly misleading when optimal monetary

policy or signicant regime changes in policy are investigated, as the analysis of this paper

shows that the degree of wage indexation is not structural in the sense of Lucas (1976).
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A Priors and convergence of Markov chain

A.1 Prior distributions and starting values

As mentioned in section 2.1, the priors for the initial states of the coe cients, covariances

and volatilities are assumed to be normally distributed, independent of each other and

independent of the hyperparameters , and 2 ( = 1 4). Furthermore, they are

calibrated on the point estimates of a constant parameters VAR estimated over the sample

period 1974Q1-1956Q4.

We set 0

h
b b

i
, where b and b correspond to respectively the

OLS point estimates and four times the covariance matrix b
³
b

´
of the pre-sample.

The prior for the volatilities is set to ln 0 (ln 0 10× 3), where 0 is a vector that

contains the diagonal elements of a matrix 1 2 squared. In particular, = 1 2 is the

Choleski factor of the time-invariant variance covariance matrix b of the reduced-form

innovations from the estimation of the xed-coe cient VAR, where is a lower triangular

matrix with ones on the diagonal and 1 2 denotes a diagonal matrix whose elements are

the standard deviations of the residuals. The variance-covariance matrix of the volatilities

is set to ten times the identity matrix, which makes the prior only weakly informative (see

also Primiceri 2005; Benati and Mumtaz 2007). The prior for the contemporaneous inter-

relations is set to 0

h
e0 e (e0)

i
where e0 = [e0 21 e0 31 e0 32]0 is a vector stacking

the below diagonal elements of the inverse of , and e (e0) is assumed to be diagonal with

each diagonal element set to ten times the absolute value of the corresponding element in

e0. The latter should account for the relative magnitude of the elements in e0 (Benati

and Mumtaz 2007; Baumeister and Peersman 2008).

For the hyperparameters, we assume that follows an inverted Wishart distribution:
³

1
0

´
, where 0 are the prior degrees of freedom which are set equal to

the length of the pre-sample. Following Cogley and Sargent (2005) and Primiceri (2005),

we use a relatively conservative and weakly informative prior for the time variation in

the parameters by setting the scale matrix to = (0 01)2 · b
³
b

´
multiplied by the

prior degrees of freedom. Notice that this prior should soon be dominated by the sample

information as time moves forward.
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The three blocks of are assumed to be inverted Wishart distributions, with the prior

degrees of freedom set equal to the minimum value required for the prior to be proper:
³

1
+ 1
´
, where = 1 2 3 indexes the blocks of and is a diagonal matrix

with the relevant absolute values of the elements in e0 multiplied by 10 3. Finally, given

the univariate feature of the law of motion of the stochastic volatilities, the variances of

the innovations to the univariate stochastic volatility equations are drawn from an inverse-

Gamma distribution as in Cogley and Sargent (2005): 2
³
10 4

2
1
2

´
.

A.2 Convergence of the Markov chain

To evaluate whether our Markov chain has converged to the ergodic distribution, we follow

Primiceri (2005), Benati and Mumtaz (2007) and Baumeister and Peersman (2008) by

computing the draws�’ ine ciency factors, which are the inverse of the relative numerical

e ciency (RNE) measure:

= (2 ) 1 1

(0)

Z
( )

where ( ) is the spectral density of the retained draws from the Gibbs sampling repli-

cations for each set of parameters at frequency . The results can be found in Figure A1.

As can be seen from the gures, all ine ciency factors for the states and the hyperpara-

meters of the model are far below the value of 20, which is considered as an upper bound

by Primiceri (2005). Specically, the autocorrelation across draws is relatively modest for

all elements indicating that the draws have converged to the ergodic distribution.

{Insert Figure A1 about here}
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B DSGE model

B.1 Households

In the rst step we present the optimization problem of a representative household denoted

by . The household maximizes lifetime utility by choosing consumption and nancial

wealth in form of bonds +1

max 0

X

=0

½
log ( )

1+

1 +

¾
(19)

where is the discount factor and is the inverse of the elasticity of work e ort with

respect to the real wage. The external habit variable is assumed to be proportional to

aggregate past consumption:

= 1 (20)

Household�’s utility depends positively on the change in , and negatively on hours

worked, . The intertemporal budget constraint of the representative household is given

by:

+ 1 +1 (21)

= + + +

Here, is the nominal interest rate, is the nominal wage, are lump-sum taxes

paid to the scal authority, is the price level and is the dividend income. In the fol-

lowing we will assume the existence of state-contingent securities that are traded amongst

households in order to insure households against variations in household-specic wage

income. As a result where possible, we neglect the indexation of individual households.

The maximization of the objective function with respect to consumption, bond hold-

ing and next period capital stock can be summarized by the following standard Euler
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equations:

E
( )

( +1 +1) +1

¸
= 1 (22)

B.2 Firms

There are two types of rms. A continuum of monopolistically competitive rms indexed

by [ 0 1 ], each of which produces a single di erentiated intermediate good, , and a

distinct set of perfectly competitive rms, which combine all the intermediate goods into

a single nal good, .

B.2.1 Final-Good Firms

The nal-good producing rms combine the di erentiated intermediate goods using a

standard Dixit-Stiglitz aggregator:

=

µZ 1

0

1
1+

¶1+
(23)

where is a variable determining the degree of imperfect competition in the goods

market. Minimizing the cost of production subject to the aggregation constraint (23)

results in demand for the di erentiated intermediate goods as a function of their price

relative to the price of the nal good ,

=

µ ¶ 1+

(24)

where the price of the nal good is determined by the following index:

=

µZ 1

0

1
¶
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B.2.2 Intermediate-Goods Firms

Each intermediate-goods rm produces its di erentiated output using a production

function of a standard Cobb Douglas form:

= (25)

where is a technology shock and real marginal cost follows:

=

B.2.3 Price Setting

Following Calvo (1983), intermediate-goods producing rms receive permission to opti-

mally reset their price in a given period with probability 1 . All rms that receive

permission to reset their price choose the same price . Each rm receiving permission

to optimally reset its price in period maximizes the discounted sum of expected nominal

prots,

E

"
X

=0

+ +

#

subject to the demand for its output (24) where + is the stochastic discount factor of

the households owing the rm and

=

are period- nominal prots which are distributed as dividends to the households.

Hence, we obtain the following rst-order condition for the rm�’s optimal price-setting

decision in period :

(1+ ) +E

"
X

=1

+ +

µ µ
+

+ 1

¶
(1 + ) +

¶#
= 0

(26)

With the intermediate-goods prices set according to equation (26), the evolution
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of the aggregate price index is then determined by the following expression:

=

Ã
(1 )( )

1

+

µ
1

µ
1

2

¶ ¶ 1 !

B.3 Wage Setting

There is a continuum of monopolistically competitive unions indexed over the same range

as the households, [ 0 1 ], which act as wage setters for the di erentiated labor services

supplied by the households taking the aggregate nominal wage rate and aggregate labor

demand as given. Following Calvo (1983), unions receive permission to optimally reset

their nominal wage rate in a given period with probability 1 . All unions that receive

permission to reset their wage rate choose the same wage rate . Each union that

receives permission to optimally reset its wage rate in period maximizes the household�’s

lifetime utility function (19) subject to its intertemporal budget constraint (21) and the

demand for labor services of variety , the latter being given by

=

µ ¶ 1+

where is a variable determining the degree of imperfect competition in the labor

market. As a result, we obtain the following rst-order condition for the union�’s optimal

wage-setting decision in period :

(1+ ) +E
X

=1
+

µ
+

+ 1

¶
(1 + ) +

¸
= 0 (27)

where = ( ) stands for the marginal rate of substitution, and deter-

mines the degree of wage indexation. Aggregate labor demand, , and the aggregate

nominal wage rate, , are determined by the following Dixit-Stiglitz indices:

=

µZ 1

0
( )

1
1+

¶1+
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=

µZ 1

0
( )

1
¶

With the labor-specic wage rates set according to (27), the evolution of the aggregate

nominal wage rate is then determined by the following expression:

=

Ã
(1 )( )

1

+

µ
1

µ
1

2

¶ ¶ 1 !

B.4 Market Clearing and Shock Process

The labor market is in equilibrium when the demand for the index of labor services by the

intermediate-goods rms equals the di erentiated labor services supplied by households at

the wage rates set by unions. Furthermore, the nal-good market is in equilibrium when

the supply by the nal-good rms equals the demand by households and government:

= + (28)

We assume that government spending grows along the balanced growth path ensuring in

the long run a stable share of government spending to output despite permanent technology

shocks. For simplicity, we assume that the government budget is always in balance, i.e.

=

The model is simulated in its log-linearized form, i.e. small letters will characterize in

the following percentage deviations form the steady state. The exogenous shock process

follows an AR(1) described by the following equations:

= 1 + (29)

whereby we set = 1 implying a random walk productivity shock which induces perma-

nent e ects. Also monetary policy follows a standard log-linearized Taylor rule:

= 1 + (1 ) ( e + ) + e (30)
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where is a parameter determining the degree of interest rate smoothing, while ,

and represent the elasticity of the interest rate to the change in the output gap, output

gap and ination respectively.

Finally, the exogenous shock process for government spending follows an AR(1) process

in its log-linearized form.

= 1 + (31)

{Insert Figure A2 about here}

{Insert Figure A3 about here}
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Table 1: Identication of supply and demand shocks

Output Prices Interest rate Real wages

Supply shock 0 0 0

Demand shock 0 0 0



Table 2: Priors and posterior estimates of DSGE model parameters

Prior Posterior

1960 1974 2000

Parameter Density Mean Median Median Median

[bounds] (Std.dev.) [16%,84%] [16%,84%] [16%,84%]

Price indexation Beta 0.5 0.15 0.80 0.17

[0,1] (0.2) [0.11,0.19] [0.58,0.93] [0.12,0.21]

Wage indexation Beta 0.5 0.30 0.91 0.17

[0,1] (0.2) [0.21,0.67] [0.74,0.96] [0.11,0.25]

Price stickiness Beta 0.75 0.81 0.84 0.78

[0,0.99] (0.05) [0.76,0.85] [0.81,0.87] [0.70,0.84]

Wage stickiness Beta 0.75 0.60 0.64 0.54

[0,0.99] (0.05) [0.46,0.85] [0.54,0.73] [0.43,0.69]

Consumption habit Beta 0.5 0.33 0.71 0.37

[0,1] (0.1) [0.21,0.40] [0.51,0.96] [0.18,0.57]

Taylor rule smoothing Beta 0.7 0.76 0.69 0.78

[0,1] (0.1) [0.68,0.82] [0.58,0.87] [0.70,0.88]

Taylor rule ination Gamma 1.5 1.55 1.11 1.35

[1.01,5] (0.2) [1.34,1.74] [1.07,1.18] [1.24,1.49]

Taylor rule output Gamma 0.5 0.10 0.11 0.10

[0,2] (0.2) [0.07,0.16] [0.06,0.29] [0.07,0.15]

Taylor rule output Gamma 0.2 0.30 0.50 0.39

[0,1] (0.1) [0.21,0.40] [0.27,0.84] [0.27,0.59]

Std.dev. Tech. shock Inv.Gamma 1.0 0.60 1.02 0.31

[0, ] (0.5) [0.46,0.85] [0.71,1.69] [0.25,0.42]

Std.dev. Dem. shock Inv.Gamma 1.0 4.75 4.73 3.25

[0, ] (0.5) [3.41,7.92] [3.94,5.95] [2.30,6.22]

Autocorr. Dem. shock Beta 0.9 0.87 0.89 0.91

[0,1] (0.1) [0.83,0.92] [0.86,0.93] [0.87,0.95]



Figure 1a - Contemporaneous and long-run impact of supply shock

Contemporaneous
impact

Long-run impact
(after 28 quarters)

Note: Figures are median of the posterior, together with 16th and 84th percentiles.

-0,4

0,0

0,4

0,8

1,2

1,6

2,0

2,4

1955Q1 1965Q1 1975Q1 1985Q1 1995Q1 2005Q1

Output

-0,4

0,0

0,4

0,8

1,2

1,6

2,0

2,4

1955Q1 1965Q1 1975Q1 1985Q1 1995Q1 2005Q1

Output

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

1955Q1 1965Q1 1975Q1 1985Q1 1995Q1 2005Q1

Real wages

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

1955Q1 1965Q1 1975Q1 1985Q1 1995Q1 2005Q1

Real wages

-5,0

-4,5

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1955Q1 1965Q1 1975Q1 1985Q1 1995Q1 2005Q1

Prices

-5,0

-4,5

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1955Q1 1965Q1 1975Q1 1985Q1 1995Q1 2005Q1

Prices

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1955Q1 1965Q1 1975Q1 1985Q1 1995Q1 2005Q1

Nominal wages

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1955Q1 1965Q1 1975Q1 1985Q1 1995Q1 2005Q1

Nominal wages



Figure 1b - Contemporaneous and long-run impact of demand shock

Contemporaneous
impact

Long-run impact
(after 28 quarters)

Note: Figures are median of the posterior, together with 16th and 84th percentiles.
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Figure 2 VAR and DSGE model impulse responses for 1960Q1, 1974Q1 and 2000Q1

VAR
DSGE model

Note: 16th and 84th percentiles, quarterly horizon
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Figure 3 - COLA coverage and inflation variability

Note: COLA = cost-of-living adjustment clauses included in major collective bargaining agreements (i.e. contracts covering
         more than 1,000 workers). Figures refer to end of preceding year. Source: Hendricks and Kahn (1985), Weiner (1986)
         and Bureau of Labor Statistics. The observation for 1956 is interpolated, and the series has been discontinued in 1996.
         Standard deviation of price inflation is calculated as an 8-year moving window.
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Figure A1 Inefficiency factors for draws from ergodic distribution
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Figure A2 - Time-varying effects of supply shocks

Note: Median values from the posterior distributions.



Figure A3 - Time-varying effects of demand shocks

Note: Median values from the posterior distributions.


