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Institute for Advanced Studies

Stumpergasse 56

1060 Vienna, Austria

December 4, 2012

Abstract

We study dynamic panel data models with a cointegration relationship that includes a spatial lag.

Such a relationship postulates that the long run outcome for a particular cross-section is affected by

a weighted average of the outcomes in the other cross-sections. This model produces outcomes that

are non-linear in the coefficients to be estimated. It also renders the existing estimation methods that

typically assume cross-sectional independence inapplicable. Assuming that the weights are exogenously

given, we extend the dynamic ordinary least squares (DOLS) methodology and provide a dynamic two-

stage least squares estimator (D2SLS). We derive the large sample properties of our proposed estimator

under a set of low-level assumptions and investigate its small sample distribution in a simulation study.

We illustrate our estimation methodology by investigating the structure of spatial correlation of firm-

level implied credit risk. Credit default swaps, firm specific data and industry data from the US market

are used to estimate spatial correlation models. We construct the economic space based on a ”closeness”

measure for firms based on input-output matrices. Our estimates show that the spatial correlation of

credit default spreads is substantial and highly significant.

Keywords: Dynamic Least Squares, Cointegration, Credit Risk.

JEL: C31, C32.
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1 Introduction

Estimating the parameters of a cointegrating relationship is perceived to be a relatively straightforward

task. The challenges arise when we attempt to provide guidance for statistical inference and hypothesis

testing. Two broad approaches have emerged in the literature. One possibility is to use a simple estimation

routine, i.e. ordinary least squares (OLS) and then work out the (sometimes complicated) large sample

distribution of the estimated parameters, e.g. Phillips and Hansen (1990), Phillips and Loretan (1991).

Using such approach might involve making assumptions (e.g. no serial correlation of the disturbances)

that are possibly violated in some applications.

Another opportunity is to adjust the estimation routine, such that the large sample distribution is

either simpler, or free of nuisance parameters. An example along these lines is the fully modified OLS

estimator (see e.g. Phillips and Hansen (1990), Phillips and Moon (1999), Pedroni (2000); or Vogelsang

and Wagner (2011) for a fixed-b perspective). The necessity to modify the OLS estimation arises from the

presence of endogeneity and serial correlation of the errors. A further alternative where the estimation

routine is augmented is the dynamic OLS estimation (DOLS). Here the serial correlation and the regressor

endogeneity is controlled for by including time-series leads and lags of the regressors (cf. Phillips and

Loretan (1991), Saikonnen (1991), Kao and Chiang (2000), or Mark and Sul (2003)). This approach will

also be used and augmented in this article.

This paper investigates the estimation of a non-standard cointegrating relationship under the presence

of regressor endogeneity and serial correlation in the disturbances. Our cointegrating vector in a panel

setting is extended to include peer or neighborhood effects which are modeled as spatial lags following

Cliff and Ord (1973). The spatially lagged variables in the cointegrating relationship are endogenous, such

that the endogeneity cannot be controlled for by the dynamic OLS modification (DOLS). Therefore, we

propose to use a dynamic two-stage least squares (D2SLS) estimator, which combines DOLS literature

and two stage least squares estimation. In addition, to the serial lags used by DOLS our estimation

procedure uses cross-sectional lags of the regressors to control for the endogeneity of the spatial lags in

the cointegrating vector.

In the rest of the paper we first describe our model and the formal assumptions in Section 2. Section 3
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describes the D2SLS estimation and states our large sample results. We then investigate the small

sample properties of the D2SLS estimator in Section 4 and provide an illustrative application to modeling

correlation of credit default swaps in Section 5. Finally, Section 6 offers conclusions.

2 The Model

Suppose that the data are generated from

yit = ρ
n∑
j=1

Wijyjt + β′xit + αi + u†it = ρy∗it + β′xit + αi + u†it, (1)

where yit is the scalar response random variable, xit is a k × 1 vector of prediction random variables.

t = 1, . . . , T is the time index, i = 1, . . . , n is the cross-sectional dimension. n is kept fixed throughout the

following analysis. The term y∗it =
∑n

j=1Wijyjt is referred to as a spatial lag and represents the long-run

impact of the neighboring observations on yit. We collect the weights Wij into an n × n spatial weights

matrix W and follow the spatial econometrics literature and maintain the following assumptions regarding

the cross-sectional (or spatial) structure of the model:

Assumption 1 (Spatial Lag). The spatial weights Wij are non-stochastic and observable with Wii = 0

and W 6= 0n×n. The parameter ρ is such that largest absolute eigenvalue of ρW is smaller than one.

The restriction that Wii = 0 is a normalization of the model, which requires that no observation is its

own neighbor. The second part of the assumption guarantees that the matrix (In − ρW) is invertible (see

e.g. Corollary 5.6.16 in Horn and Johnson (1985)).1 The invertibility of the matrix In − ρW is needed

in order to provide a unique solution of the model and rule out multiple solutions for yit that would be

consistent with the explanatory variables and disturbances.

The disturbance term is assumed to include an individual-specific effect αi and an idiosyncratic compo-

nent u†it that is independent across i but possibly dependent across t. Analogically to Mark and Sul (2003)

1Observe that the requirement for invertibility is that there exists some matrix norm ‖.‖ such that ‖ρW‖ < 1. Given that
the spectral radius is the smallest matrix norm (cf. Theorem 5.6.9 in Horn and Johnson (1985)), our assumption is in this
sense least restrictive. It will, for example, be satisfied when the maximum absolute row or column sums of ρW are less than
one.
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the prediction random variable xit is assumed to be integrated of order one, I (1), and to be generated

from

∆xit = vit. (2)

In order to fully specify the model, we augment our set of assumptions by defining the process gener-

ating the disturbances:

Assumption 2. [Error Dynamics I; see Mark and Sul (2003), Mark et al. (2005)] Let us define the

stacked vector w†it =
(
u†it, v

′
it

)′
. Then (w†it) is independent across i = 1, . . . , n and has a moving average

representation

w†it = Ψ†i (L) ε†it,

where ε†it is iid with mean zero, covariance Ik and finite fourth moments. Ψ†i (L) =
∑∞

j=0 Ψ†ijL
j is a

k + 1 × k + 1 dimensional matrix lag polynomial in the lag operator L, where
∑∞

j=0 j
[
Ψ†ij

]
(m,n)

< ∞;[
Ψ†ij

]
(m,n)

is the m,n element of the matrix Ψ†ij .

The short-run k + 1× k + 1 covariance matrix Γ†i0 and the autocovariance matrix Γ†ij are

Γ†i0 = E
(
w†itw

†′
it

)
and Γ†ij = E

(
w†itw

†′
i,t−j

)
, (3)

We will use the following notation: Γ†uu,ij is the 1, 1 element of Γ†ij , Γ†uv,j corresponds to
[
Γ†ij

]
(2:k+1,1)

,

Γ†vu,j corresponds to
[
Γ†ij

]
(1,2:k+1)

while Γvv,j corresponds to k× k submatrix
[
Γ†ii

]
(2:k+1,2:k+1)

; regarding

notation (a : b, c : d) stands for ”form row a to b and column c to d”.

Let us define w†t =
(
w†′1t, . . . ,w

†′
nt

)′
, u†t =

(
u†1t, . . . , u

†
nt

)′
and vt = (v′1t, . . . ,v

′
nt)
′. Then the (k + 1) ·

n × (k + 1) · n covariance matrices Γ†0 = E
(
w†tw

†′
t

)
and Γ†j = E

(
w†tw

†′
t−j

)
are block diagonal with the

blocks Γ†i0 and Γ†ij along the main diagonal (i = 1, . . . , n). The k + 1× k + 1 long run covariance matrix

Ω†i of w†it is given by
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Ω†i =

∞∑
j=−∞

E
(
w†itw

†′
i,t+j

)
= Ψ†i (1)IkΨ

†
i (1)′ = Γ†i0 +

∞∑
j=1

(
Γ†ij + Γ†′ij

)
(4)

=

 Ω†uu,i Ω†vu,i

Ω†uv,i Ωvv,i

 =

 Γ†uu,i0 Γ†vu,i0

Γ†uv,i0 Γvv,i0

+ 2
∞∑
j=1

 Γ†uu,ij Γ†vu,ij

Γ†uv,ij Γvv,ij

 .

The long-run covariance matrix of w†t , denoted as Ω†, is then also block diagonal with the blocks Ω†i along

the main diagonal. Analogically, the matrices Ω†uu and Ωvv contain scalars Ω†uu,i and blocks Ωvv,i along

their main diagonal. Given such covariance structure, we want to exclude a cointegration relationship

between the terms of ∆xit. In addition our large sample results will require that Ω†uu,i is invertible.

Therefore we impose the following assumption:

Assumption 3. [Error Dynamics II; see Phillips (2006)]

Ψ†i (1) is non-singular such that xit is a full rank integrated process and Ωvv,i has full rank k.

By the independence across i assumption (i.e. Assumption 2), this implies that the rank of Ωvv is nk. In

the next step we impose an additional restriction on the error dynamics:

XXX check whether is is correct - to be completed by JAN

Assumption 4. [Error Dynamics III; see Saikkonen (1991), Mark et al. (2005)]

Given the Assumptions 2 and 3, p(T ) fulfills p(T )3

T → 0 and
√
T
∑

k>p(T ) δkt → 0 as T →∞.

XXX rewrite this paragraph Note that Assumption 4 should be interpreted as a restriction on the

coefficients of the lag polynomial Ψ†i (L) that implies that at most p leads and lags of vit are conditionally

correlated with u†it. Equipped with Assumption 4 a dynamic least squares estimator can be constructed.

Remark 1. Let us briefly discuss how Assumption 4 is related to ARMA(p, q) models. Assumption 4

restricts the autocorrelation/autocovariance structure of the process (w†it). The conditional covariance

between w†t±s and w†t , conditional on w†t−p, . . . , w
†
t , . . . , w

†
t+p, becomes zero for s > p. For the univariate

case this corresponds to a partial autocorrelations of zero for orders higher than p.
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From literature (e.g. Brockwell and Davis (2006)[Chapter 11]) it follows that if w†t ∈ Rd follows a

causal2 ARMA(p, q) process (where WN stands for white noise)

w†t − Φ1w
†
t−1 + . . .Φpw

†
t−p = ε†t + Θ1ε

†
t−1 + · · ·+ Θqε

†
t−q

Φ(B)w†t = Θ(B)ε†t where ε†t ∼WN(0,Γ†0) , (5)

then (5) has a unique stationary solution

w†t =
∞∑
j=0

Ψjε
†
t−j where Ψ(z) =

∞∑
j=0

Ψjz
j = Φ−1(z)Θ(z) . (6)

I.e. a causal multivariate ARMA process has a MA(∞) representation (a more general treatment of

linear processes and its Wold representation is provided in Hannan and Deistler (2012)[Chapter 1]).

If (w†t ) follows an ARMA(p, 0) process the conditional covariance becomes zero for orders larger than

p. Since ε†it is iid, conditionally uncorrelated implies conditionally independent such that the condition

E
(
u†itvi,t+s

∣∣∣ vi,t+p, .., vi,t−p) = 0k×1 for all |s| > p is met. In constrast, an ARMA(0, 1) does not fulfill

the requirement of Assumption 4.

Equipped with Assumptions 1 to 4, we can follow Mark and Sul (2003) and Mark et al. (2005) and

remove the serial correlation by projecting on leads and lags of ∆xit. In particular, Assumption 4 implies

that at most p leads and lags of ∆xit are correlated with u†it. Hence we have that the projection of u†it on

the p leads and lags of ∆xit yields a new disturbance uit that by construction is orthogonal to ∆xit:

u†it =

+p∑
s=−p

δ′i,s∆xi,t−s + uit = δ′iζit + uit , (7)

where ∆xi,t−s and δi,s are a vectors of dimension k, such that the (2p + 1)k × 1 dimensional vectors of

2I.e. det(Φ(z)) 6= 0 for all z ∈ C such that |z| ≤ 1.
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projection variables and projection coefficients are given by

ζit =
(
∆x′i,t+p, ...,∆x′i,t−p

)′
and δi =

(
δ′i,−p, ..., δ

′
i,+p

)′
. (8)

Based on Assumptions 2 to 4 and (7), the process (wit) = (uit,v
′
it)
′ is covariance stationary with

wit = Ψi(L)εit , Ψi(L) =

 Ψuu,i(L) 01×k

0k×1 Ψvv,i(L)

 , (9)

where Ψuu,i(L) is a scalar and Ψvv,i(L) is a k × k matrix lag polynomial.

Given our assumptions, a functional central theorem (see e.g. Johansen (1995)[Appendix], Karatzas

and Shreve (1991)[Chapter 4] or Davidson (1994)[Chapters 27-30]) can be applied. This yields

1√
T

[Tr]∑
t=1

wit
d→ Bi(r) = Ψi (1)Wi(r) , r ∈ [0, 1] , (10)

with Bi(r) = (Bui(r),Bvi(r)′)′, where Bui and Bvi are independent Brownian motions, in R and Rk,

respectively. While Bi stands for a Brownian motion with covariance matrix Ωi, Wi stands for a standard

Brownian motion, where Wi(r) = (Wui(r),Wvi(r)
′)′. [Tr] denotes the integer part of rT .

3

The k + 1× k + 1 long-run variance-covariance matrix of wit which we denote Ωi is given by

Ωi =

 Ψuu,i(1)2 0k×1

01×k Ψvv,i(1)Ψvv,i(1)′

 =

 Ωuu,i 01×k

0k×1 Ωvv,i

 = Γi0 +

∞∑
j=1

(
Γij + Γ′ij

)
, (11)

where the matrices Γij are given by

Γij = E
(
witw

′
i,t−j

)
=

 Γuu,ij 01×k

0k×1 Γvv,ij

 , (12)

3In addition we follow the econometrics literature in this field (see e.g. Mark et al. (2005)) and omit the borders of inte-
gration as well as the dependence of the Brownian motion on r, i.e. we write

∫
W instead of

∫ 1

0
W (r)dr, while

∫ 1

0
W (r)dW (r)

is abbreviated by
∫
WdW .
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with Γuu,ij = E (uitui,t−j) and Γvv,ij = E
(
vitv

′
i,t−j

)
.

Observe that our model includes a full set of individual specific effects and hence a set of individual

dummies αi is typically included to the regression (1) (fixed effects specification). In order to simplify the

algebra, we will use the within transformation and derive the asymptotic distribution of the estimates of

the slope coefficients ρ and β using within-transformed data. In a linear regression, these estimated slope

coefficients are algebraically equivalent to the LSDV estimates (see e.g. Baltagi (2008)[p. 11]). We thus

define the variables in deviations from their individual means as

ỹit = yit −
1

T

T∑
t=1

yit, x̃it = xit −
1

T

T∑
t=1

xit, ỹ∗it =
n∑
j=1

Wij ỹit

ζ̃it = ζit −
1

T

T∑
t=1

ζit, ũit = uit −
1

T

T∑
t=1

uit , (13)

such that (1) after applying the within transform reads as follows:

ỹit = ρ

n∑
j=1

Wij ỹjt + β′x̃it + ũ†it = ρỹ∗it + β′x̃it + ũ†it

= ρ
n∑
j=1

Wij ỹjt + β′x̃it + δ′itζ̃it + ũit = ρỹ∗it + β′x̃it + δ′itζ̃it + ũit . (14)

Remark 2. An important point is that uit and ũit have similar limit properties (see e.g. the arguments

in Mark and Sul (2003)[p. 663]). In (10) we observed that 1√
T

∑[Tr]
t=1 vit

d→ Bi(r) = Ωvv,iWvi(r). For the

demeaned term ṽit = vit − 1
T

∑T
t=1 vit we get

1√
T

[Tr]∑
t=1

ṽit =
1√
T

[Tr]∑
t=1

(
vit −

1

T

T∑
t=1

vit

)
d→ Bvi(r)− rBvi(1).

Bvi(r)− rBvi(1) is a Brownian bridge. Since xit is an I(1) process, xit arises from the partial sum process∑t
ι=1 viι. Then x̃it =

∑t
ι=1 viι −

1
T

∑T
t=1

∑t
ι=1 viι. By the continuous mapping theorem (see Klenke
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(2008)[p. 257], Davidson (1994)[Theorem 26.13 & 30.2]) the T →∞ limit is given by

1√
T

x̃it
d→ Bvi(r)−

∫ 1

0
Bvi(s)ds.

Bvi(r)−
∫ 1

0 Bvi(s)ds will be abbreviated by B̃vi(r). By Davidson (1994)[Theorem 30.2] we also obtain the

result that 1
T 2

∑T
t=1 x̃itx̃

′
it converges in distribution to

∫ 1
0 Bvi(s)B

′
vi(s)ds. In addition Davidson (1994)[The-

orem 30.13] and some algebra shows that 1
T

∑T
t=1 x̃itũit

d→
√

Ωuu,i

∫ 1
0 B̃vi(r)dWui(r).

XXX begin two dimensional system

Remark 3. Consider (1) for the two-dimensional case, i.e. n = 2. Due to Assumption 1 the matrix

I2 − ρW has to be invertible. In more details we get

I2 − ρ

 0 W12

W21 0

−1

=
1

1 + ρ2W12W21
·

 1 −ρW21

−ρW12 1

 . (15)

Equations (1) and (15) with n = 2 now result in

 y1t

y21t

 =
1

1 + ρ2W12W21
·

 β>x1t −ρW21β
>x2t +u†1t −ρW21u

†
2t +α1

−ρW12β
>x1t +β>x2t +u†2t −ρW12u

†
1t +α1

 . (16)

Equation 16 also shows the n = 2 coinintegration relationships. These are described by the first and the

second row of this equation. The cointegrating relationship does not have the usual linear form in the

sense that the solution for yit is a nonlinear function of the parameter ρ. For an arbitrary but fixed n ∈ N

we obtain n cointegration relationships. This can be seen by looking at yit = (In − ρW)−1
(
β>xit + u†it

)
.

By considering the terms
(
β>xit + u†it

)
and Assumptions 2-4 we have n cointegration relationships. Since

Assumption 1 guarantees that In− ρW has the full rank n, the cointegration space remains of dimension

n.

In addition we observe that: (i) xit and u†it are correlated by the assumptions on Ψ†i . (ii) yjt depends

on yit and vice versa. (iii) u†it and u†jt are independent by Assumption 2. (iv) Since yjt depends on yit we
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know that ρWijyjt and u†it have to be correlated. We account for ”serial” endogeneity by means of DOLS

as proposed in Mark and Sul (2003), Mark et al. (2005). In addition endogeneity enters via the spatial

correlation modelled by ρW. To account for this kind of ”spatial” endogeneity the DOLS approach has

to be augmented.

XXX end two dimensional system

3 Estimation Procedure and Large Sample Results

The goal of the following analysis is to construct the D2SLS estimator and show that it leads to consistent

estimates of the parameters ρ and β. Then we provide the large sample distribution of the D2SLS

estimator. The parameters δ are nuisance parameters. By our analysis it should also become more clear

why applying DOLS is not sufficient to obtain consistent parameter estimates. In order to write down

our estimator, we first define the model in a stacked notation. For notational simplicity we drop the tilde

notation in the stacked model and define

y = (ỹ11, ..., ỹ1T , ..., ỹn1, ..., ỹnT )′ , (17)

y∗ = (ỹ∗11, ..., ỹ
∗
1T , ..., ỹ

∗
n1, ..., ỹ

∗
nT )′ ,

x =
(
x̃′11, ..., x̃

′
1T , ..., x̃

′
n1, ..., x̃

′
nT

)′
,

u = (ũ11, ..., ũ1T , ..., ũn1, ..., ũnT )′

where y and y∗ are of dimension nT × 1, while x is an nT × k matrix. Furthermore, we have

ζδ =


δ′11ζ̃11

...

δ′nT ζ̃nT

 =



ζ̃ ′11 01×(2p+1)k 01×(2p+1)k

...

ζ̃ ′1T 01×(2p+1)k 01×(2p+1)k

01×(2p+1)k ζ̃21 01×(2p+1)k

. . .

01×(2p+1)k 01×(2p+1)k ζ̃nT




δ1

...

δn

 . (18)
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ζ is a nT × (2p+ 1)k · n matrix, while (given δi of dimension (2p+1)k ) δ is of dimension (2p+ 1)k · n× 1.

This provides us with model (14) in stacked form:

y = ρy∗ + xβ + ζδ + u = (y∗,x) γ + ζδ + u = X
(
γ′, δ′

)′
+ u , (19)

where γ = (ρ, β′)′. The right hand side variables are collected in X = (y∗,x, ζ).

We shall estimate the model by using instruments for the endogenous variable ỹ∗it =
∑n

j=1Wij ỹjt.

Here, we could proceed in an abstract way by assuming that instruments of dimension qρ ≥ kρ = 1 are

available fulfilling the properties necessary for instrumental variable estimation. In contrast to this, we

follow Kelejian and Prucha (XX) and base the instruments on the spatial lags of the explanatory variables.

Observe that our model can be solved as

y =
[
IT ⊗ (In − ρW)−1

]
(xβ + ζδ + u) , (20)

where the inverse exists by our Assumption 1. The matrix (In − ρW)−1 can then be expanded as (see

e.g. Corollary 5.6.16 in Horn and Johnson (1985)):

(In − ρW)−1 =
∞∑
s=0

(ρW)s , (21)

This implies that variables of the form
∑n

j=1Wijxjtv,
∑n

j=1W
2
ijxjtv, . . . are suitable instruments for Wy.

We hence assume that the following set of instruments is used:

Assumption 5. [Valid Instruments] The instruments are x̃∗itv =
∑n

j=1W
τv
ij x̃jtv; v = 1, . . . , qρ and τv ∈ N.

We assume that these instruments fulfill the necessary requirements for instrumental variable estimation

(see e.g. Ruud (2000)[Chapter 20], Phillips and Hansen (1990) and Kitamura and Phillips (1997)).

By the above assumptions x̃∗itv is correlated with ỹ∗it. The independence of x̃∗itv and ũit follows from the

construction of ũit which implies that x̃it and ũit are independent. Appendix B shows that with τv = 1

and some regularity conditions on W the rank condition is satisfied.

To keep the notation simple we consider a model with kρ = 1. With qρ = kρ = 1 we are in the just
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identified case, while if k ≥ qρ > kρ = 1 we consider the over-identified case. We collect our instruments

in the matrix

x∗ =
(
x̃∗′11, ..x̃

∗′
1T , ....x̃

∗′
n1, ..x̃

∗′
nT

)′
, (22)

which is of dimension nT×qρ. The set of our instruments is then Z = (x∗,x, ζ). The matrix of explanatory

variables X is of dimension Tn×1+k+(2p+1)k ·n, while the dimension of Z is Tn×qρ+k+(2p+1)k ·n.4

Before we present our estimator, let us discuss why e.g. DOLS does not provide us with a consistent

estimator:

Remark 4 (Endogeneity). Let us consider (19). If ũit and the explanatory variables (y∗,x, ζ) were

orthogonal, the results of Mark and Sul (2003) and Mark et al. (2005) could be applied to obtain consistent

estimates. However, ỹit is influenced by ỹjt (if some Wij 6= 0). Since ỹjt is affected by the noise ũjt it

follows that (y∗,x, ζ) and u are not orthogonal. Therefore, the DOLS estimate does not provide consistent

estimates.

In analogy to a standard regression setting with endogenous regressors, we now construct a two stage-least

square procedure for our panel setting. With two-stage least squares the initial stage results in projected

values

ŷ∗ = x∗
(
x∗′x∗

)−1
x∗′y∗, (23)

while the second stage estimator is


ρ̂

β̂

δ̂


D2SLS

=


ŷ∗
′
ŷ∗ x′ŷ∗ ζ ′ŷ∗

ŷ∗
′
x x′x ζ ′x

ŷ∗
′
ζ x′ζ ζ ′ζ


−1

ŷ∗
′

x′

ζ ′

y. (24)

Since x̃it is orthogonal to ũit, we will also have (for a fixed n) that our instruments x̃∗it are also orthogonal

to ũit. Since in the first stage we project the endogenous variable ỹ∗it on x̃∗it, the projected values denoted

by ̂̃y∗it will also be orthogonal to ũit. Our analysis will show that this results in a consistent estimator in

the second stage regression. Based in this discussion, we can now compactly write the dynamic two-stage

4If Ψ†i (L) = Ψ†(L) then X is of dimension Tn× 1 + k + (2p+ 1)k while Z is of dimension Tn× qρ + k + (2p+ 1)k.
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least squares estimator of (ρ, β′, δ′)′ = (γ′, δ′)′ as

(γ̂′, δ′)′D2SLS =
(
X′PHX

)−1
X′PHy

= (γ′, δ′)′ +
(
X′PHX

)−1
X′PHu . (25)

PH is the project operator (see e.g. Ruud (2000)[Chapter 3]) , projecting on the space spanned by Z, i.e.

PH = Z
(
Z′Z

)−1
Z′ . (26)

Since Z is a Tn× qρ + k + (2p+ 1)k · n matrix, PH has to by a Tn× Tn matrix. With qρ = 1, we are in

the just identified case, where the estimator is given by:

̂(γ′, δ′)′D2SLS =
(
Z′X

)−1
Z′y = (γ′, δ′)′ +

(
Z′X

)−1
Z′u . (27)

Equipped with the D2SLS estimator (25) we obtain the following result:

Theorem 1 (Limits for D2SLS Estimation). Consider the fixed effects spatial correlation model (14) and

the estimator (25). Then for n fixed and T →∞ it follows that

1. T (γ̂D2SLS − γ) and
√
T (δ̂D2SLS,i − δi) are asymptotically independent for each i = 1, . . . , n.

2.
√
nT (γ̂D2SLS − γ) converges in distribution to M−1

n mn where mn and Mn are given by (61) and

(62).

3. Given a s × k + 1 restriction matrix R, the Wald statistic Sγ,nT defined in (69) converges to a χ2

random variable with s degrees of freedom.

Remark 5. The reader should note that the two-stage least squares estimator and the DOLS estimator

are special cases of the dynamic two-stage least squares estimator. With p = 0 the matrix ζ becomes

empty, yielding the two-stage least squares estimator. If x∗ = y∗, then we obtain the DOLS estimator.
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The Wald-statistic presented in Section 4, can therefore also be used to obtain the Wald statistic for the

two-stage least squares estimator and the DOLS estimator.

4 Monte Carlo Simulations

This section investigates the small sample properties of the D2SLS estimator as well as the size and power

of the Wald tests defined in Theorem 1. We generate the data based on an error process that follows from

Assumptions 2-4.

To operationalize this we need to specify the lag polynomials Ψ†i (L). In particular, we have to specify

the error dynamics of the vector w†it. Here we assume the same error dynamics for all cross sections

i = 1, . . . , n. We use two explanatory variables xit such that k = 2 and set β = (1, 1)′. The number of

instruments is kρ = 2.

Regarding the error dynamics we use the stationary designs of Binder et al. (2005) to generate the

data for the vector w†it. The innovations ε†it are generated as independent draws from ε†it ∼ N (0,Σε). For

Σε we use Σε = diag(1, 0.1, 0.1), Σε = I3 and Σε = diag(1, 10, 10); I3 stands for the three-dimensional

identity matrix, while diag(1, 0.1, 0.1) stands for a diagonal matrix with entries 1, 0.1 and 0.1 along the

main diagonal. In a first step we generate w†it by means of the first order vector autoregressive system

(V AR(1))

w†it = Φw†i,t−1 + ε†it . (28)

For the 3× 3 matrix Φ we use the following designs:

Design 1: Stationary V AR(1) with maximum eigenvalue of 0.6

Φ =


0.4 0.1 0.1

0.1 0.4 0.1

0.1 0.1 0.4

 . (29)
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Design 2: Stationary V AR(1) with maximum eigenvalue of 0.8

Φ =


0.6 0.1 0.1

0.1 0.6 0.1

0.1 0.1 0.6

 . (30)

Design 3: Stationary V AR(1) with maximum eigenvalue of 0.95

Φ =


0.75 0.1 0.1

0.1 0.75 0.1

0.1 0.1 0.75

 . (31)

In addition we consider a finite-order vector moving average processes of the form

w†it = ε†it +

q∑
l=1

Ψ†ilε
†
i,t−l, (32)

where we choose:

Design 4: First-order MA, q = 1

Ψ†i1 =


0.4 0.1 0.1

0.1 0.4 0.1

0.1 0.1 0.4

 . (33)

Design 5: Second-order MA, q = 2

Ψ†i1 =


0.6 0.1 0.1

0.1 0.6 0.1

0.1 0.1 0.6

 , Ψ†i2 =


0.4 0.1 0.1

0.1 0.4 0.1

0.1 0.1 0.4

 . (34)

Recall that the disturbance of the model is given by the first element of the vector w†it, while its remaining

elements are the innovations of the explanatory variables. Therefore, the maximum numbers of leads and

lags of the explanatory variables that are conditionally correlated with the disturbances is 1 in Designs
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1-3, while the Designs 4 and 5 fail to satisfy Assumption 4.

In the case of the VAR models, we generate the initial values for the process w†it from the implied stationary

distribution. Note that by backward substitution, we obtain

w†i0 =
∞∑
j=0

Φjε†i,−j . (35)

and hence w†i0 is a random variable that is independent from ε†it for t > 0. When innovations ε†it are

normally distributed, it also follows that w†i0 is normally distributed. Furthermore, it has a mean of zero

and k + 1× k + 1 variance-covariance matrix E
(
w†itw

†′
it

)
= Γi0 where

Γi0 = E

 ∞∑
j=0

Φjε†i,−j

 ∞∑
j=0

Φjε†i,−j

′ = ∞∑
j=0

ΦjΦ′j . (36)

The above expression implies

ΦΓi0Φ
′ =

∞∑
j=0

Φj+1Φ′j+1 = I(k+1) +

∞∑
j=0

ΦjΦ′j = I(k+1) + Γi0. (37)

After vectorizing and solving for Γi0 we obtain

vec (Γi0) =
(
I(k+1)2 −Φ⊗Φ

)−1
vec

(
I(k+1)

)
. (38)

The remaining parameters of the model are chosen as follows: We generate the individual ef-

fects αi from αi ∼ N (03×1, I3). The spatial correlation parameter ρ is chosen from the set

{−0.95,−0.5,−0.1, 0, 0.1, 0.5, 0.95}. The choice of W is based on Kapoor et al. (2007). In more de-

tails we consider: (i) A ”one step ahead-one step behind circular world” with corresponding entries 1/2.

I.e. Wi,i+1 = 0.5 and Wi+1,i = 0.5 for i = 1, . . . , n − 1. W1,n = 0.5 and Wn,1 = 0.5, the other entries are

zero. (ii) A ”three step ahead-three step behind circular world” with corresponding entries 1/6. (iii) A

”five step ahead-five step behind circular world” with corresponding entries 1/10. (iv) A ”one step ahead-

one step behind Rook constellation” with corresponding entries 1/2. This design is non-circular. Here
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Wi,i+1 = 0.5 and Wi+1,i = 0.5 for i = 1, . . . , n− 1; the other entries are zero. (iv) A ”two step ahead-two

step behind Queen constellation”. In this non-circular design Wi,i+1 = 0.3, Wi,i+2 = 0.2, Wi+1,i = 0.3

and Wi+2,i = 0.2 for i = 1, . . . , n− 2; the other entries are zero. Thus we have in total 525 different data

generating processes (DGP) (3, 5, 7, 5 different settings for Σε, the autoregressive structure of w†it, the

spatial correlation parameter ρ and the spatial correlation matrix W, respectively).

Table 4 presents the fraction of the simulation runs for a ”three step ahead-three step behind circular

world”, where the true null hypothesis ρ = 0 has been rejected by applying αc = {0.01, 0.05, 0.1} signif-

icance levels. The sample size is given by n = 50 and T = 200. The results are obtained by means of

M = 1000 simulation steps. By using the four other designs for the spatial correlation matrix W we observe

very similar results. In more details we get the following results: When increasing the serial correlation

in the wit (from Design 1 to Design 3), the percentages where the true null is rejected increase. A similar

effect is observed when Σε = diag(1, 1, 1) or Σε = diag(1, 10, 10) is used instead of Σε = diag(1, 0.1, 0.1)

(abbreviated by the index 2, 3 and 1 in the second column of Table 4). While the rejection rates are too

low with the covariance matrix with the low variance in the components driving xit, these rates are too

high with the two other alternatives. For ρ = {−0.95,−.5,−0.1, 0.1, 0.5, 0.95} the rejection rates are close

to 100%, therefore we do not present the results in this Table.

αc = 0.01 αc = 0.05 αc = 0.10
Design Σε 2SLS DOLS D2SLS 2SLS DOLS D2SLS 2SLS DOLS D2SLS

1 1 1.80 0.30 0.30 6.70 2.20 2.30 12.50 4.80 4.50
1 2 1.10 1.30 1.40 6.60 6.70 6.50 11.60 13.80 13.80
1 3 1.20 2.00 2.00 6.00 7.20 7.30 11.90 13.30 13.30
2 1 1.60 0.40 0.30 5.70 2.20 2.10 11.30 3.70 4.10
2 2 1.70 2.10 2.00 6.80 8.30 8.50 13.10 15.50 15.50
2 3 1.30 2.20 2.30 7.60 8.40 8.50 13.50 15.10 15.10
3 1 2.70 1.10 1.30 10.80 4.30 4.20 17.60 7.60 7.60
3 2 5.10 2.90 2.90 13.70 12.00 12.00 22.00 19.00 19.10
3 3 5.40 5.60 5.60 13.50 14.90 14.70 21.60 21.90 22.10
4 1 1.10 0.50 0.50 6.40 3.50 3.60 11.20 7.80 8.20
4 2 1.20 1.60 1.60 6.60 7.70 7.90 11.10 11.90 12.20
4 3 1.50 1.80 1.80 6.50 7.60 7.70 10.70 12.80 12.70
5 1 1.30 0.60 0.50 6.10 3.50 3.30 10.90 7.20 7.40
5 2 1.20 1.70 1.70 6.40 7.80 7.70 10.40 13.20 13.20
5 3 1.40 1.80 1.90 6.50 7.70 7.70 11.60 13.20 13.10

Table 1: Size for the parameter ρ for three step ahead-three step behind circular world: Rejections of the true null hypothesis
ρ = 0 in percentage terms, given the significance levels αc = {0.01, 0.05, 0.1}. 1000 Simulation runs. Cross-sectional dimension
n = 50, time series dimension T = 200. M = 1000 Monte Carlo runs.
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We also estimated the bias by means of ρ −
∑M

m=1 ρ̂M, where M = 1000 is the number of Monte Carlo

steps and m is the index of the corresponding Monte Carlo step. Table 4 presents the results for the

Designs 3 and 5, the results for the other designs are very similar. In Table 4 we observe that the biases

of the corresponding estimation approaches are quite small. Only for the unbalanced covariance matrix

with smaller errors in the explanatory variables (indexed by one), a slightly larger bias is observed with

the DOLS approach.

Design Σε ρ 2SLS DOLS D2SLS
3 1 -0.95 1.66E-05 1.59E-04 -6.01E-06
3 1 -0.5 1.59E-05 8.82E-05 -6.47E-06
3 1 -0.1 1.21E-05 1.23E-05 -6.39E-06
3 1 0 1.08E-05 -4.93E-06 -6.27E-06
3 1 0.1 9.27E-06 -2.05E-05 -6.10E-06
3 1 0.5 2.12E-06 -5.61E-05 -4.82E-06
3 1 0.95 -6.12E-06 -1.33E-05 -1.07E-06
3 2 -0.95 -6.89E-05 8.47E-05 -8.77E-05
3 2 -0.5 -6.55E-05 1.02E-05 -8.58E-05
3 2 -0.1 -5.72E-05 -5.77E-05 -7.66E-05
3 2 0 -5.44E-05 -7.16E-05 -7.32E-05
3 2 0.1 -5.12E-05 -8.34E-05 -6.93E-05
3 2 0.5 -3.50E-05 -1.00E-04 -4.88E-05
3 2 0.95 -7.38E-06 -2.59E-05 -1.20E-05
3 3 -0.95 -7.27E-05 2.71E-05 -7.53E-05
3 3 -0.5 -7.20E-05 -2.09E-05 -7.61E-05
3 3 -0.1 -6.50E-05 -5.90E-05 -6.99E-05
3 3 0 -6.23E-05 -6.61E-05 -6.72E-05
3 3 0.1 -5.92E-05 -7.19E-05 -6.41E-05
3 3 0.5 -4.23E-05 -7.67E-05 -4.67E-05
3 3 0.95 -9.18E-06 -2.47E-05 -1.16E-05
5 1 -0.95 4.11E-05 1.25E-02 -2.94E-04
5 1 -0.5 4.25E-05 7.04E-03 -2.96E-04
5 1 -0.1 3.75E-05 1.14E-03 -2.70E-04
5 1 0 3.53E-05 -2.21E-04 -2.59E-04
5 1 0.1 3.27E-05 -1.47E-03 -2.47E-04
5 1 0.5 1.73E-05 -4.56E-03 -1.81E-04
5 1 0.95 -1.10E-05 -1.53E-03 -5.47E-05
5 2 -0.95 -8.80E-06 2.73E-04 -2.29E-05
5 2 -0.5 -9.74E-06 1.45E-04 -2.36E-05
5 2 -0.1 -9.83E-06 9.86E-06 -2.22E-05
5 2 0 -9.72E-06 -2.09E-05 -2.16E-05
5 2 0.1 -9.55E-06 -4.90E-05 -2.07E-05
5 2 0.5 -8.11E-06 -1.16E-04 -1.59E-05
5 2 0.95 -3.65E-06 -3.89E-05 -5.28E-06
5 3 -0.95 -3.91E-06 2.86E-05 -6.14E-06
5 3 -0.5 -4.46E-06 1.30E-05 -6.52E-06
5 3 -0.1 -4.58E-06 -2.61E-06 -6.30E-06
5 3 0 -4.54E-06 -6.07E-06 -6.15E-06
5 3 0.1 -4.47E-06 -9.17E-06 -5.96E-06
5 3 0.5 -3.79E-06 -1.59E-05 -4.71E-06
5 3 0.95 -1.49E-06 -4.91E-06 -1.60E-06

Table 2: Bias for the parameter estimates of ρ for three step ahead-three step behind circular world for the Designs 2 and
5. Cross-sectional dimension n = 50, time series dimension T = 200. M = 1000 Monte Carlo steps.
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Given the above results with the simulation designs proposed in literature, it seems to be the case that

although there are theoretical concerns regarding the DOLS and the two-stage least squares estimator,

working the with the DOLS or 2SLS estimator and the corresponding Wald statistic is sufficient when the

model described by (14) should be estimated. However, in a slightly parallel way as to construct examples

where the ordinary least squares and the two stage least squares estimator do not result in the same

inference, we simply have to construct examples where the noise term u and the explanatory variables

X are correlated. This can be done as follows: (i) Increase the correlation between ỹ∗it and uit: We can

stick to the above designs for wit and Σε and replace the spatial correlation matrix designs with a matrix

W having non-zero entries in all off diagonal positions. As an example we take the input-output data

used in Section 5. From this 148× 148 matrix obtained in Section 5 we take the first n× n components

and normalize this matrix such that the largest eigenvalue of this normalized matrix is equal to one. The

first part of Table 4 already shows that here the D2SLS estimator outperforms the DOLS estimator. (ii)

Increase the correlation between x̃it and uit: E.g. we can use the V AR(1) designs 6 and 7:

Φ =


0 0.95 0

0.95 0 0

0 0 0

 and Φ =


0 0.45 0.45

0.45 0 0.45

0.45 0.45 0

 . (39)

The results obtained in a Monte Carlo study are presented in last two lines of Table 4, where we observe

that with these designs the performance of the D2SLS is slightly better than the performance of the

2SLS estimator. We call the performance slightly better since for a critical value αc = 0.01 the number

of rejections is much too low for the D2SLS estimator. By these final simulation runs we conclude that

although the size with the D2SLS does not perfectly fit to the critical levels, we can also construct data

generating processes where the performance of the D2SLS estimator is also superior in the finite sample

compared to the DOLS and the 2SLS estimator. These last simulation runs justify the application of

the D2SLS estimator when model (14) is applied.
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α3 = 0.01 αc = 0.05 αc = 0.10
Design Σε DOLS D2SLS D2SLS DOLS D2SLS D2SLS DOLS D2SLS D2SLS

1 2 1.00 9.00 5.00 7.00 22.00 7.00 9.00 35.00 15.00
2 2 2.00 8.00 3.00 8.00 18.00 10.00 11.00 25.00 16.00
3 2 5.00 4.00 2.00 8.00 11.00 11.00 18.00 18.00 17.00
4 2 4.00 12.00 3.00 8.00 24.00 7.00 11.00 31.00 14.00
5 2 4.00 15.00 4.00 8.00 22.00 10.00 14.00 35.00 18.00
6 2 3.00 2.00 1.00 12.00 7.00 3.00 25.00 16.00 8.00
7 2 2.00 3.00 0.01 9.00 10.00 4.00 11.00 13.00 9.00

Table 3: Size for the parameter ρ for W obtained from empirical data. Rejections of the true null hypothesis ρ = 0 in
percentage terms, given the significance levels αc = {0.01, 0.05, 0.1}. 1000 Simulation runs. Cross-sectional dimension n = 50,
time series dimension T = 200. M = 1000 Monte Carlo runs.

5 Empirical Illustration

In this section we apply the tools developed in the former sections to credit risk data. Quantitative

finance literature has mainly focused on the default risk of the entity (see e.g. Eom et al. (2004), Crosbie

and Bohn (2003), Collin-Dufresne et al. (2001), Campbell and Taksler (2003), Ericsson et al. (2009),

Longstaff et al. (2008), among others). In their seminal paper Collin-Dufresne et al. (2001) looked at the

residuals – arising from regressing bond spreads on usual credit risk factors – by means of a principal

component analysis, where the authors detected a strong factor in the residuals. While the coefficients

of determination in the initial regressions are surprisingly low, this factor has a higher explanatory power

than the regressors obtained from economic literature. Collin-Dufresne et al. (2001) claim that the strong

factor is driven by liquidity risk or other joint market behavior. Based on these findings a lot of articles

also looked on joint determinants of credit spreads (see e.g. Zhou (2001), Collin-Dufresne et al. (2003),

Jorion and Zhang (2007) and Norden and Weber (2009)). In the following a spatial correlation matrix W

will be derived from input-output data. Equipped with this matrix W we shall estimate model (14) by

the D2SLS approach. Similar to Berndt et al. (2008) the left hand side variable is the CDS spread, while

firm specific credit risk proxies and the V IX volatility index are used as the right hand side variables.

By means of the matrix W we model some form of default risk correlation. The Wald test developed

in Theorem 1 checks whether the impact of spatial correlation described by W is significant. While our

approach cannot ”solve” the economic problem highlighted by Collin-Dufresne et al. (2001), the following

analysis tries to add a further part to the puzzle of modeling credit spreads.
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5.1 Data

In this analysis CDS spreads are used to describe the implied credit risk of a firm.5 The insurance premium

the buyer has to pay to the seller is the CDS premium. The CDS premium is the amount payable per year

to insure against the event of default of any underlying with notational amount 1, it is usually measured in

basis points. With the usual quarterly frequency, the buyer pays premium/(4 · 10000) times the nominal

value stipulated in the contract to the seller. The probability of default and the loss given default (one

minus the recovery rate) should be the main driving forces of the CDS spreads (see e.g. Hull (2006),

Schönbucher (2003)).

We utilize the dataset already used in Schneider et al. (2010), where CDS spreads of 278 firms –

obtained from the Markit Group – have been investigated. We focus on the five year maturities which are

said to be the most liquid ones (see e.g. Hull et al. (2004)). The observation period is January 2, 2001

to May 30, 2008. In line with a bulk of quantitative finance literature we stick to weekly data, such that

T = 230. Using weekly data instead of daily observations is often done to avoid day of the week effects.

Next the CDS data are matched with firm specific characteristics obtained from Thomson Datastream

and Compustat data. We construct the KMV distance to default, DDit from firm specific data by following

Crosbie and Bohn (2003). Moreover, we calculate the debt to value ratio, DV Rit. This firm specific data

was available for 176 out of the 278 firms. Following Berndt et al. (2008) we also include the V IX volatility

index from the Chicago Board Options Exchange (http://www.cboe.com/micro/VIX/vixintro.aspx) as

an explanatory variable. Additionally, we include a short run and a long run interest rate obtained from

the Federal Reserve (http://federalreserve.gov/releases/h15/data.htm). In more details we use

two year and ten year US treasury yields, denoted by r2t and r10t, respectively. Since a firm’s cost of

capital is usually affected by interest rates, government bond yields are often included when credit risk is

investigated. A more detailed description of the data and the construction of the explanatory variables is

provided in Appendix C.

To apply and estimate the spatial autocorrelation model the spatial weights matrix W has to be

5 With a CDS contract a protection buyer acquires insurance against the default of a specified entity. The protection seller
declares his willingness to compensate the protection buyer for a loss arising in the case of default of the specified entity.
For more details on the specification of credit default swap contracts we refer the reader to the International Securities and
Derivatives Association (ISDA); www.isda.org.
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2 3 4 5 6 7 Total

AA 0 4 1 5 0 0 10
A 4 19 5 16 0 1 45
BBB 16 25 18 8 1 4 72
BB 1 6 6 1 0 0 14
B 1 3 2 0 1 0 7

Total 22 57 32 30 2 5 148

Table 4: Distribution of firms according to industry and rating. Horizontally first digit of the firm’s NAIC Code. Cross-
sectional dimension N = 148.

constructed. We use the industry-by-industry total requirements matrix for the year 2002 provided by

the Bureau of Labor Statistics (BLS) and match each firm in our data to a particular BLS industry. In

this data set the total requirements matrix contains for each industry the proportion of inputs ultimately

stemming from each other industry relative to its own sales. We use this to proxy for possible correlation

of shocks coming through the supply chain. The resulting weights matrix thus approximates the possible

correlation patterns due to technology and demand shocks working their way through the economy. The

elements along the main diagonal are set to zero. To improve the numerical properties and to be able

to interpret the estimated coefficients, we normalize our spatial weights matrix by its largest absolute

eigenvalue. As a result, the spatial autocorrelation parameter in our model is bounded by one from above

and thus has the usual range as in the time series autocorrelation models. I.e. with the zeros in the main

diagonal and ρ ∈ (−1, 1), the requirements of Assumption 1 are fulfilled. ρ can be interpreted like a usual

correlation parameter.

After matching the CDS data with the data collected from Thomson Datastream, Compustat and the

Bureau of Labor Statistics and correcting for firms where we detected problems in data (e.g. extreme

spikes, missing values, unclear industry affiliation, etc) we arrived at a cross-section of N = 148 firms. A

clustering of the data toward the first digit of the NAICs industry classification and the S&P rating results

in Table 4. A NAICs code starting with 2 stands for mining, utilities or construction, 3 for manufacturing,

4 for trade and transportation, 5 for information, banking and finance, 6 for educational services, health

care and social assistance, while 7 stands for arts, entertainment, and accommodation and food services.

For more details see http://www.naics.com.
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Before we proceed with the econometric model, let us briefly discuss the expected impacts (expected

based on economic theory, intuition and literature). The reader should note that the CDS spread is often

used as an indicator for the probability of default of a firm. Since the distance to default measures the

distance to the default boundary, we expect a lower spread if the distance to default increases. A raise in

the firm’s leverage should increase the default probability and therefore the CDS spread. With the interest

rate the effect is not so clear. If the interest rate increases the cost of capital increases for a leveraged

firm. This should drive up the CDS spread. However, also banks are in our data set, where this impact

could also be different. With the volatility measure V IX we expect higher spreads in periods of higher

volatility. The rating of a firm should also reflect the probability of default. Rating effects should be

included in the fixed effects αi, i = 1, . . . , n in model (1). Last but not least we expect that CDS spreads

are positively correlated, so we expect a positive ρ when (14) is estimated.

By Assumption 2 the explanatory variables xit should be I(1). The question arises whether this

assumption is met by the data. For the variables considered the distance to default should follow a

geometric Brownian motion as long as the firm does not default based on the model assumptions (see

e.g. Crosbie and Bohn (2003), Schönbucher (2003)). By construction DDit ≥ 0. Translated to discrete

time the distance to default should follow a random walk with an absorbing barrier; only firms where

this barrier is not hit are observed in the data set. By construction the debt to value ration lives on the

interval [0, 100], the V IX index measures volatility and is therefore be non-negative. Following applied

literature and running augmented Dickey-Fuller tests on a unit root for these data show the following:

The null of a unit root is not rejected for almost all time series on a five percent significance level for the

CDS spreads. Im, Pesaran and Shin tests implemented in the EViews package provide us with the same

results. For the distance to default the null of a unit root is rejected, although the serial correlation is

quite high. For the debt-to-value ratios, the V IX and the interest rates there is stronger evidence for the

presence of a unit root. Based on this discussion the data considered cannot exactly match the conditions

of Assumption 2. Based on the time series properties we suppose that the model considered in Section 2

still provides us with a useful approximation of the (unknown) data generating process of the empirical

data considered.
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γ̂ 2SlS DOLS D2SlS

ρ 0.3920 0.0331 0.5094 < 0.001 0.3951 < 0.001
βDD -15.2656 0.4317 -19.4116 < 0.001 -20.1287 < 0.001
βDV R 5.4718 < 0.001 5.1892 < 0.001 5.3026 < 0.001
βr2 4.2952 0.0025 8.1290 0.0103 8.0172 0.0159
βr10 -42.4143 0.8117 -45.8192 0.0000 -48.6698 < 0.001
βV IX -0.0233 < 0.001 -0.1584 0.0673 -0.1436 0.2097

Table 5: Parameter Estimates: Model (14) applied to CDS data. yit is CDS data on a firm level. The explanatory
variables are the distance to default, DDit, the debt to value ratio, DV Rit, a two year bond yield r2t, a ten year bond yield
r10t, and the VIX volatility index V IXt. T = 230, N = 148, k = 5 and kρ = 2.

5.2 Results

Equipped with our data set we estimate the parameter vector γ by means of two-stage least squares, DOLS

and the D2SLS. The results are presented in Table 5. Based on the theoretical considerations of the

former chapters the D2SLS estimator should be used, the results from the other estimation methods are

for comparison. When instrumental variables are used in the estimation, the debt-to-value ratio and the

VIX are used in
∑n

i=1 Wx̃itι, i.e. kρ = 2. For these two variables we observed the highest correlation with∑n
i=1 Wỹit. All the p-values presented in Table 5 are obtained by means of a Wald test. For the distance

to default and the debt to value ratio the parameters are highly significant, also the signs expected have

been realized. Both interest rates are significant, where the short term interest rate r2t increases the CDS

spread, while the long term interest rate decreases the spread. In contrast to results obtained in literature,

the VIX volatility index is not significant when D2SLS estimation is performed and default significance

levels (1%, 5%, 10%) are applied . The additional parameter which has been investigated in our analysis

is the spatial correlation ρ. With the dynamic two stage least squares estimator the spatial correlation

parameter ρ is small, positive as expected and highly significant. I.e. in addition to the methodological

results obtained in the former sections, our model allows to include and to test for spatial correlation.

Here we observed a significant effect.
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6 Conclusions

In this paper we have studied panel data models with a cointegration relationship that include a spatial lag.

Due to this spatial lag standard estimation techniques do not provide us with appropriate tools to estimate

the parameters and to perform inference. Based on this problem we stick to the usual assumptions used in

the dynamic least squares estimation and develop a dynamic two stage least squares estimator. We show

that the parameter vector of interest is asymptotically independent of the nuisance parameters. Moreover,

we derive the asymptotic distribution of the parameters, which also allows to construct a Wald test to

perform statistical inference. Our estimation methodology is applied to simulated data to investigate the

small sample properties and to financial data to test for the impact of spatial correlation on credit default

swap spreads. Our analysis shows that this spatial correlation is highly significant.
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A Proof of Theorem 1

The two stage least squares estimator is given by (25) and hence

(γ̂′, δ
′
)′D2SLS − (γ′, δ′)′ =

(
X′PHX

)−1
X′PHu, (40)

where with PH = Z
(
Z′Z

)−1
Z′ we get

=
(
X′Z

(
Z′Z

)−1
Z′X

)−1
X′Z

(
Z′Z

)−1
Z′u.

X is a Tn × 1 + k + (2p + 1)k · n matrix while Z is of dimension Tn × qρ + k + (2p + 1)k · n. Note that

the orthogonal projection of PH(xt, ζt) = (xt, ζt). This yields

X′PH =



y∗

---

x′

---

ζ ′


PH =



y∗PH

-------

x′

-------

ζ ′


. (41)

Additionally, Zit is the transpose of the row of Z corresponding to the index it. It is of dimension

qρ + k + (2p + 1)kn × 1. Zit,1:dz consists of the first dz elements of Zit, where dz = qρ + k × 1. The

remaining elements of Zit containt ζit. The ”non-it elements” of this vector are zero. In the same way

we obtain Xit which is of dimension and 1 + k + (2p+ 1)kn× 1. The first dx elements are Xit,1:dx , where

dx = k + 1. dx ≤ dz hold throughout the following analysis.

Step 1: Let us consider the term X′PHX. We normalize the elements of Z and X as follows: expand

the first dz and dx elements by 1
T , the remaining terms (accounting for ζt) are multiplied by 1√

T
. Based

on this we arrive at:
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Definition 1. The dx + (2p+ 1)k · n× dx + (2p+ 1)k · n matrix M?
nT is given by:

M?
nT =


y∗′x∗/(T 2n) y∗′x/(T 2n) y∗′ζ/(T

√
T )

x′x∗/(T 2n) x′x/(T 2n) x′ζ/(T
√
T )

ζ ′x∗/(T
√
T ) ζ ′x/(T

√
T ) ζ ′ζ/(

√
T
√
T )

 ·

·


x∗′x∗/(T 2n) x∗′x/(T 2n) x∗′ζ/(T

√
T )

x′x∗/(T 2n) x′x/(T 2n) x′ζ/(T
√
T )

ζ ′x∗/(T
√
T ) ζ ′x/(T

√
T ) ζ ′ζ/(

√
T
√
T )


−1

·

·


x∗′y/(T 2n) x∗′x∗/(T 2n) x∗ζ ′/(T

√
T )

x′y∗/(T 2n) x′x/(T 2n) x′ζ/(T
√
T )

ζ ′y∗/(T
√
T ) ζ ′x/(T

√
T ) ζ ′ζ/(

√
T
√
T )

 , (42)

where the T →∞ limit of M?
nT is denoted by M?

n. In addition we define the dx × dx matrix MnT which

is described by:

MnTi =

(
1

T 2n

n∑
i=1

T∑
t=1

Xit,1:dxZ
′
it,1:dz

)(
1

T 2n

n∑
i=1

T∑
t=1

Zit,1:dzZ
′
it,1:dz

)−1
1

T 2

T∑
t=1

Z′it,1:dzXit,1:dx

MnT =
1

n

n∑
i=1

MnTi . (43)

We denote their T →∞ limits in distribution by Mni and Mn, respectively.

Remark 6. In Remark 5 we already noted that the two-stage least squares estimator and the DOLS

estimator are special cases of the dynamic two-stage least squares estimator. When we consider MnTi and

assume that x∗ = y∗, the product of the first two terms has to result in the identity matrix. In this case

MnTi = 1
T 2

∑T
t=1 Z′it,1:dz

Xit,1:dx . This term exactly corresponds to the term MnTi in the DOLS paper of

Mark and Sul (2003). The same argument holds with mnTi.

In the following steps we observe that Mn is a submatrix of M?
n. To obtain the T →∞ limit of M?

nT , we

27



are confronted with the terms

1

T 2

T∑
t=1

x̃itλx̃jtι
d→
∫
B̃viλB̃vjι ,

1

T κ

T∑
t=1

ζ̃itλx̃jtι
p→ 0 ,

1

T κ

T∑
t=1

ũitλx̃jtι
p→ 0 , (44)

where κ ≥ 3
2 . Thus the terms of the form of 1

T 2

∑T
t=1 x̃itx̃it

d→
∫
B̃viB̃′vi.6 In addition we meet terms of

the structure

1√
T
√
T

T∑
t=1

ζitζit
p→


Γζvv,ij for j = −2p, . . . , 2p and

0k×k else.

(45)

1√
T
√
T

∑T
t=1 ζitζjt converges to a matrix of zeros by the independence across i assumption (i.e. Assump-

tion 2). For each fixed i = 1, . . . , n, the (2p + 1)k · n × (2p + 1)k · n matrix Γζvv,ij contains the k × k

covariance matrices Γvv,ij .

Consider the now terms in (42). By the above arguments each of the three matrices converges to a

block diagonal matrix. For the first matrix we obtain a non-zero block in the north-west of dimension

dx × dx, and a non-zero block consisting of Γvv,ij . The south-west and the north-east blocks are zero.

With the second matrix we observe almost the same effect. The non-zero north-west block is of dimension

dz × dz, the south-east block is the same as the south-east block of the first matrix. The south-west

and the north-east blocks are zero. The third matrix is the transpose of the first matrix. Therefore,

the limit matrix M?
n is block diagonal. From M?

n we can extract the matrix M?
ni focusing on the in-

dex i. The limit of the submatrix [M?
ni](1:k+1,1:k+1) is Mni while the limit of [M?

n](1:k+1,1:k+1) is Mn.

[M?
ni](k+2:k+1+(2p+1)k·n,k+2:k+1+(2p+1)k·n) is a block diagonal matrix consisting of Γζvv,ij . The elements in

the north-eastern and the south-western blocks of M?
ni and M?

n are zero. By this result in the limit only

6The second and the third term converge to zero in probability. This also follows from Johansen (1995)[Chapter 13 &
Appendix], Saikkonen (1991) and Davidson (1994). We already know that

1

T

T∑
t=1

ζ̃itλx̃jtι
d→

∫
dB̃viλB̃vjι and ,

1

T

T∑
t=1

ũitx̃jtι
d→
√

Ωuu,i

∫
B̃vjιdWui .

A random variable convergent in distribution is bounded in probability, or Op(1) in Landau notation. We can now consider
1

T3/2

∑T
t=1 ζ̃itλxjtι as the product a · b, where a = 1√

T
and b = 1

T

∑T
t=1 ζ̃itλxjtι. Since a is converging to zero, it is o(1) and

therefore also op(1). b converges in distribution and therefore it is Op(1). We obtain convergence in probability to zero since
the product op(1)Op(1) behaves like op(1). Landau symbols are e.g. discussed in Poirier (1995)[page 196].
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the first dx and dz columns have an impact of the estimates of γ, while the remaining non-zero block

affects the estimates of δ.

Next we consider X′PHu. Let us define the following terms:

Definition 2. Consider the 1 + k + (2p+ 1)k · n dimensional vector

m?
nT =


y∗′x∗/(T 2n) y∗′x/(T 2n) y∗′ζ/(T

√
T )

x′x∗/(T 2n) x′x/(T 2n) x′ζ/(T
√
T )

ζ ′x∗/(T
√
T ) ζ ′x/(T

√
T ) ζ ′ζ/(

√
T
√
T )

 · (46)

·


x∗′x∗/(T 2n) x∗′x/(T 2n) x∗′ζ/(T

√
T )

x′x∗/(T 2n) x′x/(T 2n) x′ζ/(T
√
T )

ζ ′x∗/(T
√
T ) ζ ′x/(T

√
T ) ζ ′ζ/(

√
T
√
T )


−1

·


x∗′/(T

√
n)

x′/(T
√
n)

ζ ′/
√
T

u .

The T →∞ limit is denoted by m?
n. In addition we define

mnTi =

(
1

T 2n

n∑
i=1

T∑
t=1

Xit,1:dxZ
′
it,1:dz

)(
1

T 2n

n∑
i=1

T∑
t=1

Zit,1:dzZ
′
it,1:dz

)−1
1

T

T∑
t=1

Zit,1:dzuit,

mnT =
1√
n

mnTi . (47)

We denote their T →∞ limits by mni and mn respectively.

The first and the second matrix have already been considered with (42), where we have already observed

that only the first dx and dz elements affect γ as T →∞. The product of these two matrices is multiplied

with 1
T

∑T
t=1 Zituit. By this we observe that only the first dx components of Xit and the first dz components

of Zit enter into the limit of the estimator γ. Therefore we have arrived at the first result: When

T → ∞ the limit distribution of γ is given by the inverse of Mn times mn. By the block diagonal

structure obtained in the above paragraphs, elements of m?
nT and M?

nT outside 1 : dx and 1 : dx × 1 : dx

do not affect the asymptotic distribution of γ. Hence γ and δ are asymptotically independent. Since

[M?
n](k+2:k+1+(2p+1)k·n,k+2:k+1+(2p+1)k·n) converges to a matrix consisting of Γvv,ij , γ and δi are independent

29



for i = 1, . . . , n.

Step 2: Based on this asymptotic independence result we are permitted to focus on the matrix MnT

and on the k + 1 dimensional vector mnT to investigate the limit behavior of γ. In more details:

MZZ,nT i :=
1

T 2

T∑
t=1

Zit,1:dzZ
′
it,1:dz (48)

=
1

T 2

T∑
t=1

(
n∑
j=1

W τ1
ij xjt1, . . . ,

n∑
j=1

W
τqρ
ij x̃jtqρ , x̃

′
it)
′(

n∑
j=1

W τ1
ij x̃jt1, . . . ,

n∑
j=1

W
τqρ
ij x̃jtqρ , x̃

′
it)

Using the functional central limit and the continuous mapping theorem we derive

1

T 2

∑
Zit,1:dzZ

′
it,1:dz

d→MZZ,ni (49)

MZZ,ni,(1:qρ,1:qρ) :=
∫ ∑n

j=1W
τ1
ij B̃vj1

∑n
j=1W

τ1
ij B̃vj1, . . . ,

∫ ∑n
j=1W

τ1
ij B̃vj1

∑n
j=1W

τqρ
ij B̃vjqρ

...
. . .

...∫ ∑n
j=1W

τqρ
ij B̃vjqρ

∑n
j=1W

τ1
ij B̃vj1, . . . ,

∫ ∑n
j=1W

τqρ
ij B̃vjqρ

∑n
j=1W

τqρ
ij B̃vjqρ

 ,

MZZ,ni,(1:qρ,qρ+1:qρ+k) :=


∫ ∑n

j=1W
τ1
ij B̃vj1B̃vi1, . . . ,

∫ ∑n
j=1W

τ1
ij B̃vj1B̃vik

...∫ ∑n
j=1W

τqρ
ij B̃vjqρB̃vi1, . . . ,

∫ ∑n
j=1W

τqρ
ij B̃vjqρBvik

 ,

MZZ,ni,(qρ+1:qρ+k,1:qρ) := M′
ZZ,ni,(1:qρ,qρ+1:qρ+k)

MZZ,ni,(qρ+1:qρ+k,qρ+1:qρ+k) :=

∫
B̃viB̃′vi .

Based on (49) we arrive at

MZZ,T i =
1

n

n∑
i=1

MZZ,nT i
d→MZZ,n =

1

n

n∑
i=1

MZZ,ni . (50)
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In a similar way we derive the limit of

Xit,1:dxZ
′
it,1:dz = (

n∑
j=1

Wij ỹjt, x̃
′
it)
′(

n∑
j=1

W τ1
ij x̃jt1, . . . ,

n∑
j=1

W
τqρ
ij x̃jtqρ , x̃

′
it) . (51)

Based on (51) we arrive at the k + 1× k + qρ matrix

MXZ,nT i =
1

T 2

T∑
t=1

 n∑
j=1

Wij ỹjt, x̃
′
it

′ n∑
j=1

W τ1
ij x̃jt1, . . . ,

n∑
j=1

W
τqρ
ij x̃jtqρ , x̃

′
it

 (52)

=

 MXZ,nT i,(1:1,1:qρ) MXZ,nT i,(1:1,qρ+1:k+qρ)

MXZ,nT i,(2:k+1,1:qρ) MXZ,nT i,(2:k+1,qρ+1:k+qρ)

 ,

MXZ,nT i,(1:1,1:qρ) :=

1

T 2

T∑
t=1


∑n

j=1W
τ1
ij x̃jt1 ·

∑n
j=1 [

∑n
l=1WilKlj ]

(
β′x̃jt + δj ζ̃jt + ũjt

)
...∑n

j=1W
τqρ
ij xjtqρ ·

∑n
j=1 [

∑n
l=1WilKlj ]

(
β′x̃jt + δj ζ̃jt + ũjt

)

′

,

MXZ,nT i,(1:1,qρ+1:k+qρ) :=
1

T 2

T∑
t=1

x̃′it ·
∑n

j=1 [
∑n

l=1WilKlj ]
(
β′x̃jt + δj ζ̃jt + ũjt

)
,

MXZ,nT i,(2:k+1,1:qρ) :=
1

T 2

T∑
t=1

(
x̃it ·

n∑
i=1

W τ1
ij x̃jt1, . . . , x̃it ·

n∑
i=1

W
τqρ
ij x̃jtqρ

)
,

MXZ,nT i,(2:k+1,qρ+1:k+qρ) :=
1

T 2

T∑
t=1

x̃itx̃
′
it .
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The T →∞ limit of MXZ,nT i is given by:

MXZ,nT i,(1:1,1:qρ)
d→

∑n
κ=1W

τ1
iκ

∑n
j=1 [

∑n
l=1WilKlj ]

(
β′B̃vjB̃vκ1

)
...∑n

κ=1W
τqρ
iκ

∑n
j=1 [

∑n
l=1WilKlj ]

(
β′B̃vjB̃vκqρ

)

′

= MXZ,ni,(1:1,1:qρ) . (53)

MXZ,nT i,(1:1,qρ+1+qρ+k)
d→

∑n
j=1 [

∑n
l=1WilKlj ]

(
β′B̃vjB̃vi1

)
∑n

j=1 [
∑n

l=1WilKlj ]
(
β′B̃vjB̃vi2

)
...∑n

j=1 [
∑n

l=1WilKlj ]
(
β′B̃vjB̃vik

)



′

= MXZ,ni,(1:1,qρ+1+qρ+k) . (54)

MXZ,nT i,(2+k+1,1:qρ)
d→ (55) n∑

j=1

W τ1
ij

∫
B̃viB̃vj1, . . . ,

n∑
j=1

W
τqρ
ij

∫
B̃viB̃vjqρ

 = MXZ,ni,(2:k+1,1:qρ) . (56)

MXZ,nT i,(2+k+1,qρ+1:qρ+k)
d→∫

B̃viB̃′vi = MXZ,ni,(2:k+1,qρ+1:+qρ+k) (57)

Note that B̃vj· is a scalar, B̃vi a k dimensional vector. Summing up we arrive at

MXZ,nT i
d→ MXZ,ni ,

MXZ,nT =
1

n

n∑
i=1

MXZ,nT i
d→ MXZ,n =

1

n

n∑
i=1

MXZ,ni . (58)

Remark 7. By Assumption 5 we have assumed that the matrix MXZ,n has rank k+ 1, while the matrix

MZZ,n has rank k+ qρ ≥ k+ 1. Therefore MXZ,n (MZZ,n)−1 MZX,n has rank k+ 1. Lemma 1 shows that

this assumption is non-empty. If the conditions of Lemma 1 hold, then the matrices MXZ,n and MZZ,n

have rank, k + 1 and k + qρ, respectively.

Next we derive mni and mn. For the term 1
T

∑T
t=1 Xit,2:dxuit = 1

T

∑T
t=1 xit,1:dxuit the T → ∞ limit
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is already given by
√

Ωuu,i

∫
B̃vidWui. By using the functional central limit theorem 1

T

∑T
t=1 Zit,1:dzuit

converges in distribution to

mniZu =
√

Ωuu,i

 n∑
j=1

W τ1
ij

∫
B̃vj1dWui, . . . ,

n∑
j=1

W
τqρ
ij

∫
B̃vjqρdWui,

(∫
B̃vidWui

)′′ . (59)

To obtain the first term of mn we have to combine MZZ,n provided by (50), MXZ,ni given by (58) and

mniZU . Then the continuous mapping theorem yields

mnT
d→ 1√

n

n∑
i=1

√
Ωuu,i


MXZ,nM

−1
ZZ,n



∑n
j=1W

τ1
ij

∫
B̃vj1dWui

...∑n
j=1W

τqρ
ij

∫
B̃vjqρdWui∫

B̃vidWui




. (60)

MZZ,n is a k + qρ × k + qρ matrix, while mniZu as well as

 n∑
j=1

∫
W τ1
ij B̃vj1dWui, . . . ,

n∑
j=1

W
τqρ
ij

∫
B̃vjqρdWui,

(∫
B̃vidWui

)′′

are vectors of dimension qρ+k. The elements 2 to k+1 of mn are given by a sum of the k dimensional vectors∫
B̃vidWui. Since the application of the projection operator PH on Xi,2:dx is Xi,2:dx (see equation (41)),

the rows 2 : k + 1 have to be equal to the limit of 1
T

∑T
t=1 Xit,2:dxuit = 1

T

∑T
t=1 xit,1:dxuit. This yields

mnT
d→ 1√

n

n∑
i=1

√
Ωuu,i




MXZ,nM

−1
ZZ,n



∑n
j=1W

τ1
ij

∫
B̃vj1dWui

...∑n
j=1W

τqρ
ij

∫
B̃vjqρdWui∫

B̃vidWui




1,1

----------------------------------------------------------------∫
B̃vidWui


= mn . (61)

It remains to calculate the limit distribution of (42). By the asymptotic independence arguments for γ
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and δ, we are allowed to restrict to X′1:dx
Z1:dz

(
Z′1:dz

Z1:dz

)−1
Z′1:dz

X1:dx (weighted by 1/T and 1/
√
n).

Using the above results and the continuous mapping theorem we get

Mni = MXZ,nM
−1
ZZ,nM

′
XZ,ni, (62)

Mn =
1

n

n∑
i=1

Mni =
1

n
MXZ,nM

−1
ZZ,nM

′
XZ,n . (63)

This yields the second result: (γ′, δ′)′ can be consistently estimated.
√
nT (γ̂D2SLS − γ) converges in

distribution to M−1
n mn as T → ∞, where mn and Mn are given by (61) and (62), respectively. With

these estimates we can derive the residuals, which allow us to consistently estimate Ωuu,i.

Step 3: Finally we construct the Wald statistic Sγ,n. We follow Phillips and Hansen (1990) and

Johansen (1995) to derive the so called observed Wald-statistic Sγ,nT and its limit Sγ,n. Consider the

s×k+1 restriction matrix R. Since S-ancillarity is implied by strong exogeneity as observed in our model,

the ancillarity results presented in Johansen (1995) can be used. With Bvi fixed for all i = 1, . . . , n: (i)

the terms Mni and Mn are constant matrices; (ii) mn is a mixed Gaussian vector with mean zero and

variance Vn where7

Vn =
1

n

∑
i=1

Vni where Vni = Ωuu,i · Υ̃ni . (64)

Υ̃ni =

∫ 

[
MXZ,nM

−1
ZZ,nmZ,n

]
(1,1)

B̃vi



[
MXZ,nM

−1
ZZ,nmZ,n

]
(1,1)

B̃vi


′ ,

mZ,n =

 n∑
j=1

W τ1
ij B̃vj1, . . . ,

n∑
j=1

W
τqρ
ij B̃vjqρ , B̃

′
vi

′ (65)

7Note that as with mnT the term MXZ,TnM−1
ZZ,Tn

1
T2

∑T
t=1

(∑n
j=1W

τ1
ij Zit,1, . . . ,

∑n
j=1W

τqρ
ij Zit,qρ , x

′
it

)′
is equal to([

MXZ,TnM−1
ZZ,Tn

1
T2

∑T
t=1

(∑n
j=1W

τ1
ij Zit,1, . . . ,

∑n
j=1W

τqρ
ij Zit,qρ , x

′
it

)′]
1,1
, x′it

)′
by the fact the projection PW applied

to xit is xit.
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Then the asymptotic covariance matrix of
√
nT (γD2SLS − γ) becomes

Dn = M−1
n VnM

−1
n . (66)

An estimate VnT of Vn is derived by means of

VnT =
1

n

n∑
i=1

Ω̂uu,i
1

T 2

T∑
t=1

ΥnTiΥ
′
nTi

ΥnTi =


[(∑n

l=1

∑T
t=1 Xlt,1:dxZ

′
lt,1:dz

)(∑n
j=1

∑T
t=1 Zjt,1:dzZ

′
jt,1:dz

)−1
Zit,1:dz

]
(1,1)

xit

 . (67)

Combining (67) and MnT , which is an estimate of Mn, we arrive at an estimate of the covariance matrix

DnT = M−1
nTVnTM−1

nT . (68)

Equipped with these terms we obtain

Sγ,nT =
(√
nTR (γ̂D2SLS − γ)

)′ (
RDnTR′

)−1 (√
nTR (γ̂D2SLS − γ)

)
(69)

Sγ,nT
d→ Sγ,n =

(√
nTR (γ̂D2SLS − γ)

)′ (
RDnR

′)−1 (√
nTR (γ̂D2SLS − γ)

)
.

Under the null hypothesis the Wald statistic Sγ,nT follows a χ2 distribution with s degrees of freedom.

This yields the third result: Sγ,nT
d→ Sγ,n; DnT provides us with an estimate of the asymptotic covariance

of the estimator Dn.
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B The Rank Condition and the Instruments
∑n

j=1 Wijx̃jtv

Lemma 1. Given the model assumptions of Section 2. Suppose that the τv = 1 and Wij 6= 0 for at least

one j, j 6= i, for each row i. Then the qρ + k× qρ + k matrices MZZ,ni and MZZ,n have rank qρ + k almost

surely. The rank of the k + 1× qρ + k matrices MXZ,ni and MXZ,n is k + 1 almost surely.

Proof. We follow Phillips and Hansen (1990)[Lemma 3] to show that the rows of the corresponding matrices

are independent. Thus, consider the vectors

Zit,1:dz =



∑n
j=1Wijxjt1

...∑n
j=1Wijxjtqρ

xit1
...

xitk


and Xit,1:dx =



∑n
j=1Wijyjt

xit1
...

xitk


.

of dimension qρ + k and 1 + k, respectively. The corresponding transpose vectors are:

Z′it,1:dz =

 n∑
j=1

Wijxjt1, . . . ,
n∑
j=1

Wijxjtqρ , xit1, . . . , xitk


X′it,1:dx =

 n∑
j=1

Wijyjt, xit1, . . . , xitk

 .

In the following we calculate the limits of 1
T 2

∑T
t=1 Zit,1:dzZ

′
it,1:dz

, 1
n

∑n
i=1

1
T 2

∑T
t=1 Zit,1:dzZ

′
it,1:dz

and

1
T 2

∑T
t=1 Xit,1:dxZ

′
it,1:dz

.

36



Let us start with
∑T

t=1 Zit,1:dzZ
′
it,1:dz

where we get

T∑
t=1

Zit,1:dzZ
′
it,1:dz

= (70)

T∑
t=1



∑n
j=1Wijxjt1

∑n
j=1Wijxjt1 . . .

∑n
j=1Wijxjt1

∑n
j=1Wijxjtqρ

∑n
j=1Wijxjt1xit1 . . .

∑n
j=1Wijxjt1xitk

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.∑n
j=1Wijxjtqρ

∑n
j=1Wijxjt1 . . .

∑n
j=1Wijxjtqρ

∑n
j=1Wijxjtqρ

∑n
j=1Wijxjtqρxit1 . . .

∑n
j=1Wijxjtqρxitk

xit1
∑n
j=1Wijxjt1 . . . xit1

∑n
j=1Wijxjtqρ xit1xit1 . . . xit1xitk

.

.

.
. .
.

.

.

.

.

.

.
.
.
.

.

.

.

xitk
∑n
j=1Wijxjt1 . . . xitk

∑n
j=1Wijxjtqρ xitkxit1 . . . xitkxitk


.

Since
∑n

j=1Wijxjtv
∑n

j=1Wijxjtw =
∑n

j=1

∑n
l=1WijWilxjtvxltw the matrix (70) can be written as:

T∑
t=1

Zit,1:dzZ
′
it,1:dz

= (71)

T∑
t=1



∑n
j=1

∑n
l=1WijWilxjt1xlt1 . . .

∑n
j=1

∑n
l=1WijWilxjt1xltqρ

∑n
j=1Wijxjt1xit1 . . .

∑n
j=1Wijxjt1xitk

.

.

.
.
. .

.

.

.

.

.

.
.
. .

.

.

.∑n
j=1

∑n
l=1WijWilxjtqρxlt1 . . .

∑n
j=1

∑n
l=1WijWilxjtqρxltqρ

∑n
j=1Wijxjtqρxit1 . . .

∑n
j=1Wijxjtqρxitk

xit1
∑n
j=1Wijxjt1 . . . xit1

∑n
j=1Wijxjtqρ xit1xit1 . . . xit1xitk

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

xitk
∑n
j=1Wijxjt1 . . . xitk

∑n
j=1Wijxjtqρ xitkxit1 . . . xitkxitk



.

The limit of (71) divided by T 2 was abbreviated by MZZ,ni. By the functional central limit theorem this
expression converges in distribution to

MZZ,ni = lim
t→∞

1

T2

T∑
t=1

Zit,1:dzZ
′
it,1:dz

= (72)



∫ ∑n
j=1

∑n
l=1WijWilB̃vj1B̃vl1 . . .

∫ ∑n
j=1

∑n
l=1WijWilB̃vj1B̃vlqρ

∫ ∑n
j=1Wij B̃vj1Bvi1 . . .

∫ ∑n
j=1Wij B̃vj1B̃vi1

.

.

.
. .
.

.

.

.

.

.

.
. .
.

.

.

.∫ ∑n
j=1

∑n
l=1WijWilB̃vjqρBvl1 . . .

∫ ∑n
j=1

∑n
l=1WijWilB̃vjqρ B̃vlqρ

∫ ∑n
j=1Wij B̃vjqρ B̃vi1 . . .

∫ ∑n
j=1Wij B̃vjqρ B̃vl1∫

B̃vi1
∑n
j=1Wij B̃vj1 . . .

∫
B̃vi1

∑n
j=1Wij B̃vjqρ

∫
Bvi1B̃vi1 . . .

∫
B̃vi1B̃vi1

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.∫
B̃vik

∑n
j=1Wij B̃vj1 . . .

∫
B̃vik

∑n
j=1Wij B̃vjqρ

∫
BvikB̃vi1 . . .

∫
B̃vikB̃vik



.

When we consider (71) we observe that for any fixed t the row v is a linear combination of Z′it,1:dz
with

the element
[
Zit,1:dz

]
v
. This also translates to the limit (72), where we observe that in each row each

element includes a term arising from
[
Zit,1:dz

]
v
. E.g.

∑n
i=1WijB̃vj1 for the first row,

∑n
i=1WijB̃vjqρ

for row qρ, B̃vi1 for row qρ + 1, . . . and B̃vik for row dz = qρ + k. These ”factors” are independent for
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t = 1, . . . , T for Zit,1:dz
. The same property is carried over to the Brownian motions where we have∑n

i=1WijB̃vjq1(r), . . . B̃vik(r) with r ∈ [0, 1]. (Note that B̃viλ(r) and B̃vjι(r) are independent (for all λ 6= ι

for i = j and all λ, ι if i 6= j) by assumption. In addition for each B̃viλ(r1)− B̃viλ(r2) is independent from

B̃viλ(r2) − B̃viλ(r3), with 0 ≤ r1 < r2 < r3 ≤ 1 by the independent increment property of the Brownian

motion.) Therefore, each row of the matrix MZZ,ni arises from a mixture with the independent ”mixture

weights”
∑n

i=1WijB̃vj1, . . . , B̃vik for row 1, . . . , qρ+k, respectively. Each of these row vectors has dimension

qρ + k. We consider qρ + k such mixtures. Therefore, the matrix (72) has rank qρ + k almost surely.

Remark 8. Note that MZZ,nT i, MZZ,nT , MZZ,ni are MZZ,n symmetric matrices.

Next we show that 1
n

∑n
i=1

1
T 2

∑T
t=1 Zit,1:dzZ

′
it,1:dz

still has rank qρ + k. To do this we jump back to

(71) and take sums over the index i. This yields

n∑
i=1

T∑
t=1

Zit,1:dzZ
′
it,1:dz

= (73)



∑n
i=1

∑n
j=1

∑T
t=1

∑n
l=1WijWilxjt1xlt1 . . .

∑n
i=1

∑T
t=1

∑n
j=1

∑n
l=1WijWilxltqρxlt1

∑n
i=1

∑T
t=1

∑n
j=1Wijxjt1xit1 . . .

∑n
i=1

∑T
t=1

∑n
j=1Wijxjt1xitk

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.∑n
i=1

∑T
t=1

∑n
j=1

∑n
l=1WijWilxjtqρxlt1 . . .

∑n
i=1

∑T
t=1

∑n
j=1

∑n
l=1WijWilxltqρxltqρ

∑n
i=1

∑T
t=1

∑n
j=1Wijxjtqρxit1 . . .

∑n
i=1

∑T
t=1

∑n
j=1Wijxjtqρxitk∑n

i=1

∑T
t=1 xit1

∑n
j=1Wijxjt1 . . .

∑n
i=1

∑T
t=1 xit1

∑n
j=1Wijxjtqρ

∑n
i=1

∑T
t=1 xit1xit1 . . .

∑n
i=1

∑T
t=1 xit1xitk

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.∑n
i=1

∑T
t=1 xitk

∑n
j=1Wijxjt1 . . .

∑n
i=1

∑T
t=1 xitk

∑n
j=1

∑T
t=1Wijxjtqρ

∑n
i=1

∑T
t=1 xitkxit1 . . .

∑n
i=1

∑T
t=1 xitkxitk


.

Note that row v of (73) is a linear combination of
∑n

i=1

∑T
t=1 Z′it,1:dz

with the element
[
Zit,1:dz

]
v
. As in

the case of (71) this carries over to the limit such that the rank of the qρ + k × qρ + k matrix MZZ,n =

1
n

∑n
i=1

1
T 2

∑T
t=1 Zit,1:dzZ

′
it,1:dz

is qρ + k almost surely.

In the next step we investigate the rank of 1
T 2

∑T
t=1 Xit,1:dxZ

′
it,1:dz

. We have to show that the rank of

this term is k+ 1 (a.s.). For the just identified case we meet 1
n

∑n
i=1

1
T 2

∑T
t=1 Xit,1:dxZ

′
it,1:dz

, we show that

also the limit of this term has rank k + 1 (a.s.). Consider

T∑
t=1

Xit,1:dzZ
′
it,1:dz

= (74)

T∑
t=1



∑n
j=1Wijyjt

∑n
j=1Wijxjt1 . . .

∑n
j=1Wijyjt

∑n
j=1Wijxjtqρ

∑n
j=1Wijyjtxit1 . . .

∑n
j=1Wijyjtxitk

xit1
∑n
j=1Wijxjt1 . . . xit1

∑n
j=1Wijxjtqρ xit1xit1 . . . xit1xitk

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

xitk
∑n
j=1Wijxjt1 . . . xitk

∑n
j=1Wijxjtqρ xitkxit1 . . . xitkxitk


.
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Since
∑n

j=1Wijyjt
∑n

j=1Wijxjtw =
∑n

j=1

∑n
l=1WijWilyjtxltw the matrix (74) can be written as:

T∑
t=1

Xit,1:dzZ
′
it,1:dz

= (75)

T∑
t=1



∑n
j=1

∑n
l=1WijWilyjtxlt1 . . .

∑n
j=1

∑n
l=1WijWilyjtxltqρ

∑n
j=1Wijxjtxit1 . . .

∑n
j=1Wijyjtxitk

xit1
∑n
j=1Wijxjt1 . . . xit1

∑n
j=1Wijxjt,qρ xit1xit1 . . . xit1xitk

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

xitk
∑n
j=1Wijxjt1 . . . xitk

∑n
j=1Wijxjt,qρ xitkxit1 . . . xitkxitk


.

The limit of the sum of (75) divided by T 2 provides us with MXZ,ni. To derive this limit we meet the
terms discussed in (44). Therefore by the functional central limit theorem the expression (75) converges
in distribution to

MXZ,ni = lim
t→∞

1

T2

T∑
t=1

Xit,1:dxZ
′
it,1:dz

= (76)



∫ ∑n
j=1

∑n
l=1KijWilβ

′B̃vj B̃vl1 . . .
∫ ∑n

j=1

∑n
l=1KijWilβ

′B̃vj B̃vlqρ
∫ ∑n

j=1Kijβ
′Bvj B̃vi1 . . .

∫ ∑n
j=1Kijβ

′B̃vj B̃vik∫
B̃vi1

∑n
j=1Wij B̃vj1 . . .

∫
B̃vi1

∑n
j=1Wij B̃vjqρ

∫
Bvi1B̃vi1 . . .

∫
B̃vi1B̃vik

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.∫
B̃vjk

∑n
j=1Wij B̃vj1 . . .

∫
B̃vik

∑n
j=1Wij B̃vjqρ

∫
BvikB̃vi1 . . .

∫
B̃vikB̃vik


.

When we consider (75) we observe that row v is a linear combination of Z′it,1:dz
with the element[

Xit,1:dx

]
v
. This property also translates to the limit (76). Each row of the matrix MXZ,ni =

limt→∞
1
T 2

∑T
t=1 Xit,1:dxZ

′
it,1:dz

is a vector of dimension qρ + k. Each row is mixed with a different and

independent element, e.g.
∑n

i=1Wijβ
′B̃vj in the first row, B̃vi1 in the second row, . . . and B̃vik in row

k + 1. Therefore, the matrix (76) has rank k + 1 almost surely.

Last but not least we show that 1
n

∑n
i=1

1
T 2

∑T
t=1 Xit,1:dzZ

′
it,1:dz

has rank k + 1 (a.s.). This is done by

using (75) and taking sums over the index i. Then each row v is a linear combination of
∑n

i=1

∑T
i=1 Z′it,1:dz

with the element
[
Xit,1:dx

]
v
. As already observed with MZZ,n when taking limits each row is an indepen-

dent mixture, such that the rank of MXZ,n is k + 1 almost surely.

Remark 9. Note that MZX,nT i = M′
XZ,nT i, MZX,ni = M′

XZ,ni, MZX,nT = M′
XZ,nT and MZX,n =

M′
XZ,n.
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C Data

CDS Data: We use the CDS dataset already used in Schneider et al. (2010), which was obtained from

the Markit Group. After concentrating on the US market only and by excluding firms with a too large

percentage of missing values, 278 firms had been used. The data set also includes the beginning of the

financial crises.

Firm specific and industry data: To estimate a structural model, where the default probabilities are

driven by firm and industry factors, the following data has been downloaded from Thomson Datastream

and Compustat : (i) Share prices pit (in US$) and the number of shares NumStThe Value of preferred

stock PSit, where quarterly records are available. To get weekly data we follow literature and perform

linear interpolations. 34 of 176 companies issued preferred stock. In this article we assign preferred stock

to equity. Since PSt is small compared to debt and the remaining equity, the impact of the assignment to

equity is of minor importance, with both the debt to value ratio and the distance to default, respectively.

(ii) Short term (SDt) and long term debt (LDt), quarterly records. To get weekly data we follow literature

and perform linear interpolations. As mentioned in Section 5.1, matching data form these different data

sources provides us with 176 firms.

In addition the following data was collected: (iii) US treasury yields for the maturities m =

1,2,3,5,7,10 and 30 years (in percentage terms). (iv) Data of the VIX index which is a volatility in-

dex obtained from implied Black-Scholes volatilities from the US stock market (for a description see

http://www.cboe.com/micro/VIX/vixintro.aspx). (v) NAICs industry classification codes. (vi) Stan-

dard and Poors (S&P) ratings. (vii) Input-Output data from BLS Employment Projection Program

(http://www.bls.gov/emp/ep data input output matrix.htm). We excluded firms where we either de-

tected problems in data (e.g. extreme spikes, missing values, unclear industry), such that N = 148 firms

were still remaining.

From the above balance sheet and stock market data we calculate the debt to value ratio measured in

percentage terms:

DV Rit =

[
Dit

Sit +Dit

]
· 100 , (77)
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where Sit = pitNumSit + PSit is the market capitalization and Dit = SDit + LDit is the market value of

a firm’s debt. As usual in industry and applied academic research we assume that the market value of a

firm’s debt is equal to the corresponding book value available in the firm’s balance sheets.

In Merton type models and in the financial industry the distance to default is frequently used to

forecast the conditional probability of default. Intuitively, the distance to default is the number of standard

deviations of the annual asset growth by which the firm’s expected assets at a given maturity exceed a

measure of book liabilities. The distance to default is usually derived by an calibration procedure that

matches both market value of equity and equity volatility to the figures that can be observed in the market

(for details see Crosbie and Bohn (2003)). In this paper the distance to default is derived from

DDit =
V Ait −DPit
V AitσAit

. (78)

V Ait is the firm value. The default point DPit is the sum of short-term liabilities +1/2 long-term liabilities,

i.e. DPit = SDit+1/2LDit. σAit is the standard deviation of the firm value; σE is a measure of the equity

volatility. Based on Crosbie and Bohn (2003)

V Ait = V EitN (d1i) + exp(−ytmM)(SDit + LDit)N (d2i)

σAit = σEi
V Eit
V Ait

d1i =
log (V Ait/(SDit + LDit)) +

(
ytm + 1

2σ
2
Ait

)
M√

σ2
AitM

d2i = d1i −
√
σ2
AitM . (79)

Following applied literature, the standard deviation of the firm value, σAit, is derived by an implicit

estimation from the Black/Scholes formula. Following industry praxis and finance literature we derived

estimates of V Ait and σAit by minimizing a weighted sum of the squared distances between the model

implied value of equity V Eit and the market capitalization Sit, and the terms σAitV Ait and σEiV Eit,

respectively. Following industry praxis we set M = 1 and ytm equal to the one year treasury yield r1t.
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We have to point out that the minimization strongly depends on how all these values are scaled. σ2
Ei

is estimated from log asset returns. Here e.g. the sample variance σ̂2
iE (resulting in a constant equity

volatility) can be used. In this article we follow Ericsson et al. (2009) and approximate the equity volatility

by means of exponential smoothing:

σ2
E,it = λσ2

E,it−1 + (1− λ)(∆ log pit)
2 (80)

with λ = 0.94. σ2
E,it has been used in the calculation of the distance to default.
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