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1. INTRODUCTION

Dependence models based on copula functions have been an important topic for researchers

and practitioner in the last 20 years (see Patton, 2012 and Fan and Patton, 2014 for reviews).

These models offer an elegant approach for modelling multivariate distributions that has

proven to be useful in many fields such as risk management, asset allocation or option pricing.

Multivariate GARCH models (e.g. Engle, 2002 or Bauwens, Laurent, and Rombouts, 2006)

or multivariate stochastic volatility model (Yu and Meyer, 2006) are the traditional way to

model multivariate asset prices, but these models typically come with the drawback that

they rely on the multivariate normal distribution, which contrasts stylized facts about the

distribution of asset prices, in particular regarding the dependence structure. A number

of parametric copula models exist that can capture the tail dependence and asymmetric

dependence structure present in financial time series. More recently there have been two key

advances in the literature on parametric copula modelling.

First, the need for time-varying dependence has been recognized and a number of modelling

approaches have been proposed. Patton (2006) extended Sklar’s theorem for conditional

distributions and proposed a simple observation driven model for the evolution of the copula

parameter over time. Dias and Embrechts (2004) test for structural breaks at unknown dates

using a sup LR statistic, whereas Garcia and Tsafack (2011), Stöber and Czado (2014) or

Chollete, Heinen, and Valdesogo (2009) rely on markov switching models assuming regime

dependent parameters. A model that assumes a smooth evolution over time is proposed by

Hafner and Reznikova (2010). A state space approach in which the copula parameter is driven

by a latent was advocated by Hafner and Manner (2012), whereas Creal, Koopman, and

Lucas (2013) suggest a generalized autoregressive score model for time varying dependence.

A second innovation in the copula literature has been the availability of parametric models

that are applicable in higher dimensional settings. Besides the obvious choice of elliptical

copulas, typically Gaussian and Student copulas, three main approaches can be found in the
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literature. Within the class of Archimedean copulas hierarchical models have been studied

by Savu and Trede (2010) and Okhrin, Okhrin, and Schmid (2013). However, in larger

dimensions these models are still rather restrictive. A more popular approach is the class of

vine copulas studied in Bedford and Cooke (2002), Aas, Czado, Frigessi, and Bakken (2009),

Stöber and Czado (2011), Stöber, Joe, and Czado (2013) or Brechmann and Czado (2013). A

time varying vine copula model has been proposed by Almeida, Czado, and Manner (2016).

Finally, Oh and Patton (2017a) and Krupskii and Joe (2013) introduced the class of factor

copula models. Factor copulas are the copulas implied by a latent factor model, where the

difference to traditional factor models is the fact that one is only interested in the copula

implied by the factor structure, discarding its marginal information. The advantage of these

models is that they can be used in relatively high dimensional applications and nevertheless

capture the dependence structure by a low number of parameters. However, the estimation of

this model is complicated by the fact that the factors are not observable. Several approaches

have been proposed to tackle this problem. Oh and Patton (2013) suggest a simulated method

of moments estimator, an approach that we adapt in this paper. Krupskii and Joe (2013)

propose maximum likelihood estimation by numerically integrating out the latent factor.

This approach has the drawback that it is only applicable when the number of factor is

relatively small. Murry, Dunson, Carin, and Lucas (2013) estimate a Gaussian Factor copula

model with Bayesian methods. Factor copula models that allow for time-varying parameters

have been proposed by Creal and Tsay (2015), who allow for stochastic autoregressive factor

loading estimated with a Bayesian approach. An alternative approach can be found in Oh

and Patton (2017b) where the dynamics of the factor loadings are driven by a generalized

autoregressive score model. This model is estimated using maximum likelihood using a multi

stage approach.

The aim of this paper is to propose a different approach to allow for time-variation in factor

copula models by testing for and dating breakpoints at unknown points in time. Several tests
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for constant dependencies have recently been developed, see e.g. Bücher and Ruppert (2013)

for the case of copulas or Dehling, Vogel, Wendler, and Wied (2016) for the case of Kendall’s

tau. The main motivation for such tests is that dependencies usually increase in times of

crises. Therefore, they can be applied to detect and quantify contagion between different

financial markets or to construct optimal portfolios in portfolio management.

For the estimation of the model parameters, we rely on the simulated method of moments

(SMM), which is different to standard method of moments applications, since the theoretical

moment-counterparts are not available analytically and therefore need to be simulated. This

complicates the derivation of results regarding the consistency and asymptotic distribution of

the estimators. The reason is that the objective function is not continuous and furthermore

not differentiable in the parameters and standard asymptotic approaches can not be used here.

We propose a new fluctuation test, where successively parameter estimators are compared to

the parameter estimates of the full sample and we then analyse the behaviour of the test

under the null hypothesis of no change. In contrast to formerly proposed nonparametric tests

for constant copulas by e.g. (Bücher, Kojadinovic, Rohmer, and Segers, 2014), our test is of

parametric nature. The asymptotic distribution of the test statistic is non-trivial. Due to

the non-smoothness of the objective function, we can not make use of a Taylor expansion

approach to derive the distribution under the null. To tackle this issue we propose a new

construction principle inspired by (Newey and McFadden, 1994). These new functional limit

theorems hold in general for SMM estimation and are therefore of broader interest. As the

asymptotic distribution depends on unknown quantities we propose a bootstrap to estimate

these.

We propose two possible tests, namely a fluctuation test based on parameter estimates and a

test directly based on the moment functions used to estimate the model. We analyze size and

power properties of our test in Monte Carlo simulation in various situations and compare

our tests with the test proposed by Bücher et al. (2014). While the Bücher et al. (2014) test
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has better properties for low dimensions, our test performs better in high dimensions. This

reflects the fact that the drawback of having to estimate the model with simulated methods

is more and more compensated with increasing dimensions. If the number of dimensions is

kept fixed, one simply has more data for estimating the model, while, on the other hand,

in a nonparametric copula constancy test, the complexity of the estimated objects increase.

Finally, we provide an application to a set of stock returns from the Eurostoxx50.

The rest of the paper is structured as follows. Section 2 presents the test statistic and studies

its asymptotic distribution. Results from the Monte Carlo simulations can be found in Section

3. Section 4 presents our empirical application and Section 5 concludes the paper. All proofs

are included in the appendix.

2. TESTING FOR CONSTANCY OF FACTOR COPULA MODELS

In this section we describe our theoretical results. Factor copula models and estimation by

the simulated method of moments (SMM) are reviewed in Section 2.1. Our null hypothesis

and test statistic can be found in Section 2.2, whereas in Section 2.3 the asymptotic behaviour

of the test is analysed. Our bootstrap algorithm is presented in Section 2.4

2.1. Factor copula models and their estimation

We consider the same model setup as in Oh and Patton (2013) and Oh and Patton (2017a)

with the difference that we allow underlying dependence parameter to be time-varying. The

dynamics of the marginal distributions are determined by a parameter vector φ0 and each

variable can have time varying conditional mean µt(φ0) and variance σt(φ0). The dependence

of the joint distribution of the residuals ηt, captured by the parametric copula C(., θt), de-

pends on the unknown parameters θt for t = 1, . . . , T . The data-generating process is given by
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[Y1t, . . . , YNt]′ =: YYY t = µµµt(φ0) + σσσt(φ0)ηηηt,

with conditional mean µµµt(φ0) := [µ1t(φ0), . . . , µNt(φ0)]′, conditional variance σσσt(φ0) :=

diag{σ1t(φ0), . . . , σNt(φ0)} and [η1t, . . . , ηNt] =: ηηηt iid∼ FFF η = C(F1(η1), . . . , FN(ηN); θt), with

marginal distributions Fi, where µµµt and σσσt are Ft−1-measurable and independent of ηηηt. Ft−1

is the sigma field containing information from the past {YYY t−1,YYY t−2, . . . }. Note that the r× 1

vector φ0 is
√
T consistently estimable, which is fulfilled by many time series models, e.g.

ARCH and GARCH models and the estimator is denoted as φ̂.

Using the residual information {η̂ηηt := σσσ−1
t (φ̂φφ)[YYY t−µµµt(φ̂)]}Tt=1 from the data, we are interested

in estimating the p × 1 vectors θt ∈ Θ of the copula C(., θt) for all t. The copula we are

interested in is the factor copula that is implied by the following factor structure

[X1t, . . . , XNt]′ =: Xt = βββtZZZt + qqqt, (2.1)

with Xit =
K∑
k=1

βtikZkt + qit, where qqqt := [q1t, . . . , qNt]′, qit iid∼ Fq(αt) and Zkt init∼ FZk(γkt) for

i = 1, . . . , N , t = 1, . . . , T and k = 1, . . . , K. Note that Zkt and qit are independent ∀i, k, t

and the Copula for XXX t is given by

XXX t ∼ FFFXXXt = C(G1t(x1t; θt), . . . , GNt(xNt; θt); θt),

with marginal distributions Git(., θt) and θt =
[
{{βtik}Ni=1}Kk=1, α

′
t, γ
′
1t, . . . , γ

′
Kt

]′
. Note that the

marginal distributions of the factor model Git(., θt) are not of interest and are discarded as

one is only interested in the copula implied by this model. We assume that this implied

copula governs the dependence of YYY t.

In principle, the copula implied by (2.1) offers a lot of flexibility regarding the type and

heterogeneity of the dependence. Through the choice of appropriate distributions FZk of
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the common factors and Fq of the idiosyncratic errors one has a lot of flexibility concerning

the asymmetry and tail dependence properties of the copula; see Oh and Patton (2017a)

for details. Furthermore, by imposing the restriction of common factor loadings for specific

groups of variables, e.g. those belonging to the same industry, one can reduce the number of

parameters in higher dimensional applications.

As the notation suggests we allow θt to be time-varying, having a piecewise constant model in

mind. We directly consider the recursive estimation of the model for increasing sample sizes.

For this, we denote s ∈ (0, 1] the fraction of the sample considered and we are interested in

the recursively estimated parameter θsT,S of θbsT c = θt. Note that the full sample estimator

is recovered for s = 1. For the estimation we use the simulated method of moments (SMM)

estimator defined as

θ̂sT,S := arg min
θ∈Θ

QsT,S(θ), (2.2)

where the objective function is defined as QsT,S(θ) := gsT,S(θ)′ŴsTgsT,S(θ) with gsT,S(θ) :=

m̂sT − m̃S(θ) and ŴsT a k× k positive definite weight matrix. The k× 1 vectors m̂sT consist

of appropriately chosen dependence measures that are potentially averaged from the pairwise

measures m̂ij
sT , computed from the residuals {η̂t}bsT ct=1 . As the dependence measures implied by

the model are typically not available in closed form they have to be obtained by simulation.

Hence, m̃S(θ) is the corresponding vector of dependence measures computed from {η̃s}Ss=1,

using S simulations from FFFXXXt . For the dependence measures of the pair (ηi, ηj) we need to

consider copula based dependence measures that do not depend on the marginal distribution

of the data. Following Oh and Patton (2013) we consider Spearman’s rank correlation ρij
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and quantile dependence λijq , these are defined as

ρij :=12
∫ 1

0

∫ 1

0
Cij(ui, vj)duidvj − 3

λijq :=


P [Fi(ηi) ≤ q|Fj(ηj) ≤ q] = Cij(q,q)

q
, q ∈ (0, 0.5]

P [Fi(ηi) > q|Fj(ηj) > q] = 1−2q+Cij(q,q)
1−q , q ∈ (0.5, 1).

The sample counterparts based on recursive samples are defined as

ρ̂ij := 12
bsT c

bsT c∑
t=1

F̂ s
i (η̂it)F̂ s

j (η̂jt)− 3

λ̂ijq :=


Ĉsij(q,q)

q
, q ∈ (0, 0.5]

1−2q+Ĉsij(q,q)
1−q , q ∈ (0.5, 1)

,

where F̂ s
i (y) := 1

bsT c

bsT c∑
t=1

1{η̂it ≤ y} and Ĉs
ij(u, v) := 1

bsT c

bsT c∑
t=1

1{F̂ s
i (η̂it) ≤ u, F̂ s

j (η̂jt) ≤ v}.

The sample moments for the simulated data {η̃s}Ss=1 are defined analogically and are denoted

by ρ̃ij and λ̃ijq .

Depending on the precise model specification the pairwise dependence measures can be

averaged for pairs that are assumed to have the same factor loading as is the case in

equidependence or block equidependence models; see Oh and Patton (2017a). This reduces

the number of moment conditions accordingly.
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2.2. Null hypothesis and test statistics

The null hypothesis we are interested in is a constant copula parameter vector against the

alternative of a single breakpoint at an unknown point in time,

H0 : θ1 = θ2 = · · · = θT H1 : θt 6= θt+1 for some t = {1, . . . , T − 1}.

The test statistic we propose is based on the difference between the recursive estimates of

the parameter vector and its full sample analogue. Formally, it is defined as

P := sup
s∈[ε,1]

PsT,S := sup
s∈[ε,1]

s2T (θsT,S − θT,S)′(θsT,S − θT,S) (2.3)

' max
bεT c≤t≤T

(
t

T

)2
T (θt,S − θT,S)′(θt,S − θT,S),

where θsT,S is the recursive SMM estimator defined above that used the information up to

time t = bsT c, T the sample size of the data, S the number of simulations in the SMM and

ε > 0 a trimming parameter. Note that analytically ε has to be choosen strictly greater than

zero and thus s ∈ [ε, 1] to apply the required limit theorems for our proof of the asymptotic

distribution. In the finite sample case ε should be chosen large enough so that the model

parameters can be estimated in a reasonable way using bεT c observations.

Large values of the test statistic (2.3) indicate that the successively estimated parameter vector

fluctuates too much over time compared to the full sample estimator, indicating instability.

In principle, the test statistic could also be applied to a subset of the parameter vector θ. For

example, one may only be interested in testing the stability of the factor loadings assuming

constant shape parameters. Another possibility is to consider a block-equidependence model

and test for changing factor loadings only for a specific sector such as the financial sector

during a financial crisis.

We consider an alternative test statistic that is based on the same principle as (2.3), but is
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based directly on the moment conditions used to estimate the model.

M := sup
s∈[ε,1]

MsT,S := sup
s∈[ε,1]

s2T (m̂sT − m̂T )′(m̂sT − m̂T ) (2.4)

' max
bεT c≤t≤T

(
t

T

)2
T (m̂sT − m̂T )′(m̂sT − m̂T ).

This statistic is of nonparametric nature and has the advantage that is does not require recur-

sive estimation of the model, which is computationally quite demanding. The disadvantage is

that it does not allow testing the constancy of a subset of the parameters, but only can detect

breaks in the whole copula. One may, however, consider an appropriate subset of the moment

conditions and test for, e.g., breaks in the lower tail quantile dependence. The asymptotic

distribution of M comes as a by product when deriving the asymptotic distribution of P .

The corresponding asymptotic results can be found in the next subsection.

2.3. Asymptotic analysis

For deriving analytical results for the asymptotic distribution of our test statistic we need the

following assumptions. The first two ensure that the estimated rank correlation and quantile

dependencies converge to their respective population counterparts.

Assumption 1. i) The distribution function of the innovations Fη and the joint distribution

function of the factors FX(θ) are continuous.

ii) Every bivariate marginal copula Cij(ui, uj; θ) of C(u; θ) has continuous partial deriva-

tives with respect to ui ∈ (0, 1) and vi ∈ (0, 1).

The assumption is similar to Assumption 1 in (Oh and Patton, 2013), but the assumption

on the copula is relaxed in the sense that the restriction of ui and vi is relaxed to the open

interval (0, 1).

Assumption 2. Define γ0t := σ−1
t (φ̂) .µt(φ̂) and γ1kt := σ−1

t (φ̂) .σkt(φ̂), where .
µt(φ) := ∂µt(φ)

∂φ′ and
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.
σkt(φ) := ∂[σt(φ)]k-th column

∂φ′ for k = 1, . . . , N . Define

dt = ηt − η̂t −
(
γ0t +

N∑
k=1

ηktγ1kt

)
(φ̂− φ0),

with ηkt is the k-th row of ηt and γ0t and γ1kt are Ft−1-measurable, where Ft−1 contains

information from the past as well as possible information from exogenous variables.

i) 1
T

bsT c∑
t=1

γ0t
p−→ sΓ0 and 1

T

bsT c∑
t=1

γ1kt
p−→ sΓ1k, uniformly in s ∈ [ε, 1], ε > 0, where Γ0 and

Γ1k are deterministic for k = 1, . . . , N .

ii) 1
T

T∑
t=1

E(‖γ0t‖), 1
T

T∑
t=1

E(‖γ0t‖2), 1
T

T∑
t=1

E(‖γ1kt‖) and 1
T

T∑
t=1

E(‖γ1kt‖2) are bounded for

k = 1, . . . , N .

iii) There exists a sequence of positive terms rt > 0 with
∞∑
i=1

rt <∞, such that the sequence

max
1≤t≤T

‖dt‖
rt

is tight.

iv) max
1≤t≤T

‖γ0t‖√
T

= op(1) and max
1≤t≤T

|ηkt|‖γ1kt‖√
T

= op(1) for k = 1, . . . , N .

v) (αT (s),
√
T (φ̂−φ0)) weakly converges to a continuous Gaussian process inD([0, 1]N )×Rr,

where D is the space of all Càdlàg-functions on [0, 1]N , with

αT (s) := 1√
T

bsT c∑
t=1

{
N∏
k=1

1{Ukt ≤ uk} −C(u; θ)
}
.

vi) ∂Fη
∂ηk

and ηk ∂Fη∂ηk
are bounded and continuous on RN = [−∞,∞]N for k = 1, . . . , N .

This assumption is similar to Assumption 2 in (Oh and Patton, 2013), only part (i) is more

restrictive. We need this because we consider successively estimated parameters.

The next assumption is needed for consistency of the successively estimated parameters. It

is the same as Assumption 3 in (Oh and Patton, 2013) with the difference that part (iv) is

adapted to our situation.
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Assumption 3. i) g0(θ) = 0 only for θ = θ0.

ii) The space Θ of all θ is compact.

iii) Every bivariate marginal copula Cij(ui, uj; θ) of C(u; θ) is Lipschitz-continuous

for (ui, uj) ∈ (0, 1)× (0, 1) on Θ.

iv) The sequential weighting matrix ŴsT is Op(1) and sup
s∈[ε,1]

‖ŴsT −W‖
p−→ 0 for ε > 0,

where W is probability limit of WsT .

Finally, we need an assumption for distributional results, which is the same as Assumption 4

in (Oh and Patton, 2013) with a difference in part iii).

Assumption 4. i) θ0 is an interior point of Θ.

ii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular.

iii) ∀s ∈ [ε, 1], ε > 0 : gsT,S(θsT,S)′ŴsTgsT,S(θsT,S) ≤ inf
θ∈Θ

gsT,S(θ)′ŴsTgsT,S(θ)+o∗p((s2T )−1),

where o∗p((s2T )−1) converges on the right hand side to zero and is therefore strictly

positive.

With these assumptions, we can formulate our main theorem:

Theorem 1. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT and if Assumptions 1-4 hold,

we obtain for ε > 0

s
√
T (θsT,S − θ0) d=⇒ A∗(s)

as T, S →∞ in the space of Càdlàg functions on the interval [ε, 1] and S
T
→ k ∈ (0,∞) or

S
T
→∞. Here, A∗(s) = (G′WG)−1G′W (A(s)− s√

k
A(1)), A(s) is a Gaussian process defined

in the proof of Lemma 7 in the appendix and θ0 the value of all θt under the null.

With Theorem 1 we obtain the asymptotic distribution under the null of our parameter test

statistic.
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Corollary 1. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT and if Assumptions 1-4 hold,

we obtain for our test statistic

P = sup
s∈[ε,1]

s2T (θsT,S − θT,S)′(θsT,S − θT,S) d−→ sup
s∈[ε,1]

(A∗(s)− sA∗(1))′(A∗(s)− sA∗(1))

as T, S →∞ and S
T → k ∈ (0,∞) or S

T →∞.

The estimation of the change point location is embedded in calculating the test statistic and

is given by bs̃T c, where s̃ is the maximum point of the quadratic left side of Corollary 1, i.e.

s̃ = argmax
s∈[ε,1]

s2T (θsT,S − θT,S)′(θsT,S − θT,S).

For our non parametric moment test we derive the following asymptotic distribution:

Corollary 2. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT and if Assumptions 1-2 hold,

we obtain for our test statistic

M = sup
s∈[ε,1]

s2T (m̂sT − m̂T )′(m̂sT − m̂T ) d−→ sup
s∈[ε,1]

(A(s)− sA(1))′(A(s)− sA(1))

as T, S →∞ and S
T → k ∈ (0,∞) or S

T →∞.

The location of the changepoint is estimated in the same fashion as for P

Note that the asymptotic distribution of the moment test, as well as the asymptotic distri-

bution of the parameter test, are not known in closed form and depend on the underlying

sample. For this reason we can not compute or simulate the critical values directly and need

a bootstrap procedure to overcome this issue.

2.4. Bootstrap distribution

By construction, the bootstrap distribution of the test statistic is mainly obtained by

calculating B versions of the moment process t
T

√
T
(
m̂

(b)
t − m̂

(b)
T

)
, which can be calculated

fast and directly from the data. It is therefore not necessary to solve B minimization problems

which would produce a high computational effort.
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We estimate the distribution under the null by using an i.i.d. bootstrap, with the following

steps:

i) Sample with replacement from the standardized residuals {η̂i}Ti=1 to obtain a B bootstrap

samples {η̂(b)
i }Ti=1, for b = 1, . . . , B.

ii) Use {η̂(b)
i }ti=1 to compute m̂(b)

t for b = 1, . . . , B and t = εT, . . . , T and {η̂i}Ti=1 to obtain

m̂T .

iii) Calculate the bootstrap analogue of the limiting distribution of Corrolary 1.

K(b) := max
t∈{εT,...,T}

(
A(b)
∗

(
t

T

)
− t

T
A(b)
∗ (1)

)′ (
A(b)
∗

(
t

T

)
− t

T
A(b)
∗ (1)

)
,

with A(b)
∗
(
t
T

)
:= (Ĝ′ŴT Ĝ)−1Ĝ′ŴTA

(b)( t
T

) and A(b)( t
T

) = t
T

√
T
(
m̂

(b)
t − m̂T

)
, where Ĝ

is the two sided numerical derivative estimator of G, evaluated at point θT,S, computed

with the full sample {η̂i}Ti=1. We can compute the k-th column of Ĝ by

Ĝk = gT,S(θT,S + ekεT,S)− gT,S(θT,S − ekεT,S)
2εT,S

, k ∈ {1, . . . , p},

where ek is the k-th unit vector, whose dimension ist p× 1 and εT,S has to be chosen in

a way that it fulfills εT,S → 0 and min{
√
T ,
√
S}εT,S →∞.

iv) Compute B versions of K(b) and determine the critical value K such that

1
B

B∑
b=1

1{K(b) > K} != 0.05.

Critical values of the moment based test M are obtained similarly by adapting step iii) of

the algorithm.

The intuition for the validity of the bootstrap, beside the fact that we only use the natural

estimators for the respective terms, is as follows: Under the null hypothesis, we draw with

replacement from the empirical distribution function which is close to the true distribution
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function. Due to the structure of the limit distribution of the test statistic, we can directly

generate realizations from this without having to care about a suitable centering. Under the

alternative of one fixed break at time t, the bootstrap quantiles remain bounded because the

bootstrap procedure mimicks a stationary distribution. By randomly drawing from either

the data before or after the break, we effectively draw from stationary distribution which

takes the parameters before the break with probability t/T and the ones after the break with

probability 1-t/T.

3. MONTE CARLO SIMULATIONS

In order to study the behaviour of our tests in finite samples and the quality of the bootstrap

approximations we perform a small set Monte Carlo simulations. To this end we consider the

one factor copula model

[X1t, . . . , XNt]′ =: Xt = βββtZt + qqqt, (3.1)

with βββt = (βt, . . . , βt)′ a vector of size N , Zt init∼ Skew t (ν−1, λ)1 and qt
iid∼ t (ν−1) for

t = 1, . . . , T . We fix ν−1 = 0.25 and λ = −0.5, such that our model is parametrized by the

single factor loading θt = βt.

For the estimation of the sequential parameters βt for t = εT, . . . , T in the test statistic we

use the SMM approach with S = 25 · T simulations to match the simulated dependence

measures with the dependence measures computed from the data. For this we use five

dependence measures, namely Spearman’s rank correlation and the 0.05, 0.10, 0.90, 0.95

quantile dependence measures, averaged across all pairs. Note that the burn in period bεT c

has to be chosen sufficiently large in order to obtain reasonable parameter estimates for θbεT c

in our test statistic. Unreported simulations suggested that for samples with less than 100

observations highly unreasonable estimates can occur that severely affect the behaviour of
1As in Oh and Patton (2017a) this refers to the skewed t-distribution by Hansen (1994).
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our test. While this is a limitations of our test in the sense that breaks at the beginning

of the sample cannot be identified, truncating the sample is common in tests for structural

breaks.

We consider three tests in this simulation exercise, namely the parameter based fluctuation

test (P ) given in equation (2.3), the test based on the moment condition (M) given in

(2.4) and the nonparametric test for copula constancy proposed by Bücher et al. (2014)

abbreviated as BKRS. The change point detection in the latter test is sensitive to changes

in the copula of the multivariate continuous observations and is included as a benchmark.

We do note, however, that this test is purely nonparametric in contrast to our test P that is

based explicitely on factor copula models. Critical values of our tests are computed using the

bootstrap algorithm from Section 2.4 with B = 1000 bootstrap replications. The tests are

performed at the α = 0.05 significance level and we use 301 Monte Carlo replications.2

We begin by studying the size of the test for the two parameter values θ0 = 1 and θ0 = 0.5,

sample sizes T = 500, 1000, 1500 and cross sectional dimensions N = 5, 10, 20. Results are

presented in Table 1. Overall all test have acceptable size properties except the parameter

based test for small dimensions and sample sizes in the case θ0 = 0.5. However, as N and T

increase the size clearly tends to the nominal level of 5%.3

To study the power of the test, we generate data with a break point at T
2 for all sample sizes,

where the data is simulated with θt = 1 for t ∈ {εT, . . . , T2 }, denoted by θ0, whereas after
2The computational complexity of the simulations was extremely high due to the fact that for each test

θsT,S needs to be estimated a large number of times using the computationally heavy SMM estimator and
because critical values have to be bootstrapped. This explains why we had to restrict ourselves to a limited
number of situations for a fairly simple model. Furthermore, numerical instabilities were present in more
complex models when repeatedly estimating the model parameters. Such problems can be dealt with in
empirical applications, but further restrict the potential model complexity in simulations. The computations
were implemented in Matlab, parallelized and performed using CHEOPS, a scientific High Performance
Computer at the Regional Computing Center of the University of Cologne (RRZK) funded by the DFG.

3Note that a larger burn in period εT leads to a slightly better size properties, in particular for small
values of T and N , which can be explained by a lower degree of variation in the numerical minimization
procedure.
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Table 1: Size

θ0 = 1 N = 5 N = 10 N = 20 θ0 = 0.5 N = 5 N = 10 N = 20
T = 500

P 0.066 0.056 0.053 P 0.102 0.079 0.056
M 0.030 0.039 0.056 M 0.029 0.036 0.046

BKRS 0.049 0.053 0.049 BKRS 0.046 0.036 0.033
T = 1000

P 0.056 0.046 0.069 P 0.089 0.049 0.049
M 0.049 0.043 0.076 M 0.046 0.033 0.056

BKRS 0.066 0.056 0.076 BKRS 0.043 0.046 0.056
T = 1500

P 0.056 0.069 0.066 P 0.073 0.059 0.043
M 0.049 0.063 0.066 M 0.056 0.056 0.049

BKRS 0.053 0.069 0.066 BKRS 0.046 0.056 0.069

Note: Table 1 reports the rejection rate for θ0 = 1.0 and θ0 = 0.5 in the model (3.1) for the
parameter Test (P ) with ε = 0.2, the moment function test (M) and the nonparametric test
of Bücher et al. (BKRS).

the break we increase the parameter to θt = {1.2, 1.4, 1.6, 1.8, 2.0} for t ∈ {T2 + 1, . . . , T},

denoted by θ1. Due to computational limitations the number of cross sections is restricted to

N = 5 for T = 500, 1000, 1500 and we consider the case N = 40 for T = 500. The results

can be found in Table 2. We observe that all test have good power that increase with θ1

and sample size T . The parameter test P and the moment test M have increasing power

as N increases from 5 to 40, whereas the power of the BKRS test decreases for the higher

dimensional case. For N = 5 the BKRS test has the highest power followed by the parameter

test. For N = 40, however, the P test performs better and even the M test has better power

than the nonparametric BKRS test. This indicates that the tests based on the factor copula

model are preferable for higher dimensional situations. This can be explained by the fact

that more available data improves the SMM estimation, while in a nonparametric copula

constancy test the complexity of the estimated objects increase.
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Table 2: Power

θ0 = 1 θ1 = 1.2 θ1 = 1.4 θ1 = 1.6 θ1 = 1.8 θ1 = 2.0
N = 5,T = 500

P 0.066 0.272 0.551 0.833 0.963 0.993
M 0.030 0.173 0.452 0.771 0.940 0.987

BKRS 0.049 0.272 0.727 0.946 0.996 1.000
N = 5,T = 1000

P 0.056 0.352 0.781 0.980 1.000 1.000
M 0.049 0.285 0.717 0.966 1.000 1.000

BKRS 0.066 0.481 0.946 1.000 1.000 1.000
N = 5,T = 1500

P 0.056 0.488 0.950 1.000 1.000 1.000
M 0.049 0.382 0.923 0.996 1.000 1.000

BKRS 0.053 0.667 0.996 1.000 1.000 1.000
N = 40, T = 500

P 0.043 0.302 0.691 0.910 0.996 1.000
M 0.059 0.282 0.635 0.920 0.993 1.000

BKRS 0.059 0.225 0.588 0.903 0.996 1.000

Note: Table 2 reports the rejection rate for θ0 = 1.0 and θ1 = 1.2, 1.4, 1.6, 1.8, 2 in the
model (3.1) for the parameter Test (P ) with ε = 0.2, the moment function test (M) and the
nonparametric test of Bücher et al. (BKRS).

4. EMPIRICAL APPLICATION

In this section we apply our test to a financial dataset. We use daily stock return data

over a time span ranging from July 2005 to May 2009 from the EURO STOXX 50 of the

four largest industry sectors Finance, Energy, Telecom and Media and Consumer Retail and

we choose the subdevision in Table 3, implying T = 1000 and N = 32, with group sizes

k1 = 13, k2 = 8, k3 = 5 and k4 = 6.

To model the conditional mean and variance we estimate an AR(1)-GARCH(1,1) model for
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Table 3: Included stocks by industry
Finance Allianz, Axa, Banco Bilbao, Banco Santander,

BNP Paribas, Deutsche Bank, Deutsche Börse, Generali,
ING Groep, Intesa, Münchener Rück, Société Générale, Unicredit

Energy E.ON, ENEL, ENI, SUEZ, Iberdrola, Repsol, RWE, Total
Telecom and media Deutsche Telekom, France Telecom, Telecom Italia, Telefonica, Vivendi
Consumer retail Anheuser Busch, Carrefour, Danone, L’Oreal, LVMH, Unilever

each return series and compute the standardized residuals,

ri,t = αi + βiri,t−1 + σi,tηit,

σ2
it = γi0 + γi1σ

2
i,t−1 + γi2σ

2
i,t−1η

2
i,t−1,

for t = 1, . . . , 1000. The marginal distribution of the residuals are estimated using the empirical

CDF. Following Oh and Patton (2017a) we specify the following block-equidependence five

factor copula model:

[X1t, . . . , XNt]′ =: Xt =



βββ1t

βββ2t

βββ3t

βββ4t


Z0t +



βββ5tZ1t

βββ6tZ2t

βββ7tZ3t

βββ8tZ4t


+ qqqt, (4.1)

with βββit = (βit, . . . , βit)′ of size ki for i = 1, 2, 3, 4, where Zit init∼ Skew t (ν−1, λ) for i =

0, 1, 2, 3, 4 and qqqt iid∼ t (ν−1) for t = 1, . . . , T . Thus, we have have one common factor with

industry specific factor loadings βββit for i = 1, . . . , 4 and four industry specific factors with

corresponding loadings βββit for i = 5, . . . , 8. We assume common degrees of freedom for the

common factors and the idiosyncratic errors implying a model with tail dependence strictly

between zero and one.

For the estimation of the model we use the SMM approach described above with S = 25 · T

simulations with sample size T . The moment conditions are based on five dependence measures,

19



namely Spearman’s rank correlation and the 0.05, 0.10, 0.90, 0.95 quantile dependence. In

the block eqidependence model with four groups and five dependence measures this gives us

a total number of 4× 5 = 20 dependence measures.

The full sample estimates can be found in Table 4. For studying the time-variation we fix λ

and ν at their full sample estimates to avoid numerical problems as these parameters are

difficult to estimate for small samples. Next, we estimate the model over a rolling window of

200 days. Figure 4.1 shows that there is some variation over time in the factor loading with

an apparent increase in most parameters towards the end of the sample.

The results of the tests for a structural break in the factor copula parameters can be found in

Table 5. The moment based test M finds a significant breakpoint on August 20, 2008. The

parameter test P applied to all factor loadings indicates a break slightly later on September

17, 2008. This is in line with the peak of the financial crisis with Lehman Brothers filing

bankruptcy on September 15. The estimated parameters after the break are all larger than

before the break indicating an increase in dependence and a diversification breakdown. We

return to the implied dependence of the model before and after the break below.

As the dataset contains companies from different sectors we applied the P test to a number

of subvectors of the factor loadings. To be precise, we tested for a break in the loading of

the market factor alone and of the loadings on the market and group specific factors for

each respective sector, while fixing the remaining model parameters at their full sample

estimates. For all subsets except those corresponding to the energy sector and the consumer

retail sector we find evidence of a structural break at a similar date as for the full set of

loadings. However, comparing the estimated parameters before and after the break the

picture is less clear as some of the loadings decrease after the estimated breakpoint. Part of

the apparent discrepancies between the results for the full loading vector and the analysis on

20



Figure 4.1: Rolling window parameter estimation for θfactor for a window of size 200 in a
data set of size T = 1000 and dimension N = 32.
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Table 4: Full sample Parameter estimates of the model (4.1)
ν̂ λ̂ β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

θT,S 11.313 -0.219 1.271 0.880 1.210 0.849 1.198 0.940 0.841 0.990
std 0.612 0.132 0.259 0.098 0.104 0.089 0.596 0.370 0.632 0.281

the subsets can be explained by the differences in estimated break dates coupled with the

fact that the estimation uncertainty for the relatively small post-break period is quite large,

due to the fact that factor copulas are difficult to estimate on such small samples. A direct

interpretation of the change in the factor loadings is difficult due to the complex interactive

effect the different factors have on the overall dependence structure. Therefore, we computed

the implied rank correlations implied by the different break models. The result can be found

in Table 6. As we have a block-equidependence model the implied dependence for assets

within each sector is the same, as is the dependence between assets from two sectors. The

within sector dependence is given on the main diagonal of the presented matrices, while the

between sector dependences are given by the off-diagonal elements. The results based on the

break in all factor loadings indicates a notable increase in all within sector rank correlations,

but both increasing and decreasing rank correlations between the sectors. The break for the

market factor loadings implies a smaller increase of the within sector dependence, but an

increase in the dependence between the sectors. For the sector specific breaks we note that

the results for the finance sector indicate a slight decrease within the finance sector, but

increased dependence with the other sectors, which can be interpreted as an indication of

contagion from the finance sector to the other sectors. The case of the telecommunication

sector indicates a negligible increase within the sector, but an increase of the dependence

with the other sectors. Overall, we conclude from this that dependence has indeed increase

after the break but we are a little sceptical about the results for a break in the full loadings

vector. In particular, we remark that it is difficult to estimate eight loading parameters for
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the 9-month post-break period and that the uncertainty of these estimates is high.

Table 5: Breakpoint tests

P CVα=0.05 p-val Break date θ̂pre θ̂post

M 8.79 6.12 0.011 20.08.2008

θfactor



β1
β2
β3
β4
β5
β6
β7
β8


1877.02 593.48 0.000 17.09.2008



1.13
0.71
1.07
0.79
0.70
0.57
0.57
0.33





1.38
1.61
1.47
1.01
1.52
1.43
1.93
1.43



θmarket


β1
β2
β3
β4

 26.67 15.82 0.002 18.08.2008


1.28
0.74
1.13
0.83




1.22
1.27
1.46
0.90


θfinance

(
β1
β5

)
202.39 186.43 0.038 02.09.2008

(
1.24
1.57

) (
1.54
0.84

)

θenergy

(
β2
β6

)
174.52 294.51 0.227

θtele

(
β3
β7

)
371.68 107.72 0.000 19.08.2008

(
1.10
1.14

) (
1.64
0.39

)

θconsum

(
β4
β8

)
242.92 268.21 0.064

Note: Table 5 reports tests for a structural break in the factor copula model (4.1). The
first row gives the results of the moment based test M . The other rows show the results of
the parameter based test P for the given subsets of the parameter vector while fixing the
remaining parameter values at the full sample estimates. θ̂pre and θ̂post denote the parameter
estimates before and after the estimated break dates, respectively. CVα=0.05 denotes the
bootstrap critical value for α = 0.05 based on 1000 bootstrap replications.

In order to get a clearer picture of the evolution of the size and structure of the dependence

with respect to the breakpoint we computed the 20 (average) dependence measures that were

used for estimation before and after the breakpoint indicated by the M test. The results
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Table 6: Implied rank correlations

Pre-break Post-break
Fin En Tele Cons Fin En Tele Cons

Break all factors loadings
Fin 0.62 0.34 0.44 0.39 0.79 0.39 0.32 0.29
En 0.44 0.34 0.30 0.80 0.37 0.32
Tele 0.57 0.39 0.84 0.27
Cons 0.41 0.73

Break market factor loadings
Fin 0.73 0.29 0.39 0.30 0.73 0.40 0.43 0.31
En 0.57 0.30 0.23 0.69 0.48 0.35
Tele 0.64 0.32 0.72 0.38
Cons 0.61 0.62

Break financial sector loadings
Fin 0.78 0.29 0.36 0.27 0.73 0.39 0.49 0.37
En 0.60 0.35 0.26 0.60 0.35 0.26
Tele 0.66 0.34 0.66 0.34
Cons 0.61 0.61

Break telecommunication sector loadings
Fin 0.73 0.33 0.35 0.31 0.73 0.33 0.50 0.31
En 0.60 0.30 0.26 0.60 0.43 0.26
Tele 0.69 0.29 0.71 0.41
Cons 0.61 0.61

Note: Table 6 shows the model implied rank correlations before and after the estimated
breakpoint corresponding to the subsets of factor loading allowed to break in Table 5 and using
the corresponding break date and parameter estimates. The entries on the main diagonal
are implied rank correlations between assets within the respective sector, the off-diagonal
elements are the implied rank correlations between the sectors.
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Table 7: Average dependence measures

Full sample Pre-break Post-break
ρ1 0.46 0.45 0.52
ρ2 0.39 0.36 0.52
ρ3 0.45 0.43 0.52
ρ4 0.39 0.37 0.46
λ1

0.05 0.27 0.27 0.23
λ2

0.05 0.24 0.21 0.24
λ3

0.05 0.26 0.24 0.27
λ4

0.05 0.24 0.24 0.19
λ1

0.1 0.36 0.36 0.32
λ2

0.1 0.32 0.29 0.34
λ3

0.1 0.35 0.34 0.33
λ4

0.1 0.32 0.31 0.30
λ1

0.9 0.32 0.30 0.38
λ2

0.9 0.26 0.23 0.35
λ3

0.9 0.29 0.27 0.34
λ4

0.9 0.27 0.25 0.31
λ1

0.95 0.22 0.18 0.28
λ2

0.95 0.18 0.13 0.28
λ3

0.95 0.19 0.16 0.30
λ4

0.95 0.17 0.14 0.23

Note: Table 7 contains the (average) empirical moments used for the model estimator for
the full sample and the subsamples implied by a structural break on Aug. 20, 2008 that was
detected by the moment based structural break test. ρi denotes rank correlations, whereas
λiq is the quantile q dependence measure for i = 1, . . . , 4.
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indicate that the overall dependence measured by the rank correlation ρ increases. Similarly,

the upper quantile dependence measures λ0.9 and λ0.95 increase after the break. Surprisingly,

the lower quantile dependence stays approximately constant indicating that the tail risk for

the data at hand has not increased after the peak of the financial crisis while overall the

diversification benefits have decreased.

5. CONCLUSION

We propose a new fluctuation tests for detecting structural breaks in factor copula models and

analyse the behaviour under the null hypothesis of no change. Due to the discontinuity of the

SMM objective function this requires additional effort to derive a functional limit theorem for

the model parameters. The presence of nuisance parameters in the asymptotic distribution of

the two proposed test statistics requires a bootstrap approximation for parts of the asymptotic

distribution. The proposed tests show good size and power properties in finite samples. An

empirical application to a set of 32 stock returns indicates the presence of a breakpoint

around September 2008, the time of the Lehman Brothers bankruptcy. Dependence has

increased after this break providing evidence of a diversification breakdown and contagion

among different stock.

In future research, our work could be extended in several interesting directions. First, one

could derive a monitoring procedure for detecting parameter changes in an online-setup.

Second, it would be interesting to explore the usefulness of our test in risk management

applications like the forecast of value at risk (VaR) and expected shortfall (ES). Finally, it

would be worthwhile, but also mathematically demanding to derive appropriate tests in the

case of time-varying marginal distributions.
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A. ADDITIONAL RESULTS AND PROOFS

Theorem 1 is proved in different steps. First, we provide a consistency result in Lemma 2.

Then, Theorem 4, which is based on Theorem 3, yields a general convergence result for SMM

estimators. Lemma 6, which is based on Lemma 5 provides stochastic equicontinuity for the

objective function in a general SMM setting. Finally, Lemma 7 yields distribution results for

the empirical moments in our specific problem. All these results are then used for proving

Theorem 1.

Lemma 2. If θ̂T,S a.s.−→ θ0, T, S →∞, then

sup
s∈[ε,1]

‖θ̂sT,S − θ0‖
p−→ 0, ∀ε > 0, T, S →∞.

Proof. Let δ > 0 , θ̂T,S a.s.−→ θ0 and choose any ε > 0

⇒ ∀γ > 0 there exists T ∗0 , S∗0 ∈ N+, such that for all T ≥ T ∗0 , S ≥ S∗0 , ‖θ̂T,S − θ0‖ < γ

⇒ there exists T0, S0 ∈ N+ such that for all T ≥ T0, S ≥ S0, ‖θ̂T,S − θ0‖ < δ

Choose T, S with εT ≥ T0 ⇔ T ≥ T0
ε
, S ≥ S0, ∀ε > 0 (in all cases T ≥ T0)

⇒ ∀s ∈ [ε, 1] : ‖θ̂sT,S − θ0‖ < δ, for all T ≥ T0
ε
, S ≥ S0, ∀ε > 0

⇒ sup
s∈[ε,1]

‖θ̂sT,S − θ0‖ < δ, for all T ≥ T0
ε
, S ≥ S0, ∀ε > 0

⇒ sup
s∈[ε,1]

‖θ̂sT,S − θ0‖
p−→ 0, ∀ε > 0, T, S →∞.

Theorem 3. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT , suppose that

∀s ∈ [ε, 1], ε > 0 QsT,S(θsT,S) ≥ sup
θ∈Θ

QsT,S(θ)− o∗p((s2T )−1), sup
s∈[ε,1)

‖θ̂sT,S − θ0‖
p−→ 0,

T, S →∞ and:

i) Q0(θ) is maximized on θ0(= θ1 = · · · = θT )

ii) θ0(= θ1 = · · · = θT ) are interior points of Θ

iii) Q0(θ) is twice differentiable at θ0 with non singular second derivative H = ∇θθQ0(θ0)

iv) s
√
TD̂sT (θ0) d−→ A(s)
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v) ∀δ → 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣ R̂sT (θ)
1+s
√
T‖θ−θ0‖

∣∣∣∣ p−→ 0

with R̂sT = s
√
T [QsT,S(θ)−QsT,S(θ0)−D̂sT (θ−θ0)−(Q0(θ)−Q0(θ0))]

‖θ−θ0‖

⇒ s
√
T (θsT,S − θ0) d−→ A∗(s) ∀s ∈ [ε, 1], ε > 0 and A∗(s) = H−1A(s),

where A(s) is a continuous Gaussian process.

Proof. For simplification set Q := Q0 and Q̂ := QsT,S. We first show the limitation

s
√
T‖θsT,S−θ0‖ = Op(1). With a Taylor-expansion of Q(θ) around θ0 and knowing∇θQ(θ0) =

0, due to condition i), we receive Q(θ) = Q(θ0) + 1
2(θ− θ0)′H(θ− θ0) + o(‖θ− θ0‖3). We also

know from condition i) and iii), that ∃C > 0 : (θ−θ0)′H(θ−θ0)+o(‖θ−θ0‖3) ≤ −C‖θ−θ0‖2

⇒ Q(θsT,S) ≤ Q(θ0)− C‖θsT,S − θ0‖2 and we obtain

0 ≤ Q̂(θsT,S)− Q̂(θ0) + o∗p((s2T )−1)

= Q(θsT,S)−Q(θ0) + D̂′sT (θsT,S − θ0) + 1
s
√
T
‖θsT,S − θ0‖R̂sT (θsT,S) + o∗p((s2T )−1)

c.s.
≤ −C‖θsT,S − θ0‖2 + ‖D̂′sT‖‖θsT,S − θ0‖

+ ‖θsT,S − θ0‖(1 + s
√
T‖θsT,S − θ0‖)op(s−1T−

1
2 ) + o∗p((s2T )−1)

= −(C + op(1))‖θsT,S − θ0‖2 + ‖θsT,S − θ0‖(‖D̂′sT‖+ op(s−1T−
1
2 )) + o∗p((s2T )−1)

≤ −(C + op(1))‖θsT,S − θ0‖2 + ‖θsT,S − θ0‖Op(s−1T−
1
2 ) + o∗p((s2T )−1)

⇒ ‖θsT,S − θ0‖2 ≤ ‖θsT,S − θ0‖Op(s−1T−
1
2 ) + o∗p((s2T )−1), ∀s ∈ [ε, 1]. (?)

Consider

(
‖θsT,S − θ0‖+Op(s−1T−

1
2 )
)2

= ‖θsT,S − θ0‖2 + ‖θsT,S − θ0‖Op(s−1T−
1
2 ) +Op(s−2T−1)

(?)
≤ ‖θsT,S − θ0‖Op(s−1T−

1
2 ) + o∗p((s2T )−1) +Op(s−2T−1)

≤ Op(s−2T−1)
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⇒
∣∣∣‖θsT,S − θ0‖+Op(s−1T−

1
2 )
∣∣∣ ≤ Op(s−1T−

1
2 ), ∀s ∈ [ε, 1] (??)

and we get

‖θsT,S − θ0‖ = |‖θsT,S − θ0‖+Op(s−1T−
1
2 )−Op(s−1T−

1
2 )|

c.s.
≤ |‖θsT,S − θ0‖+Op(s−1T−

1
2 )|+ | −Op(s−1T−

1
2 )|

(??)
≤ Op(s−1T−

1
2 )

⇒ s
√
T‖θsT,S − θ0‖ = Op(1), ∀s ∈ [ε, 1]. (+)

Note that for the counter of the remainder Term R̂sT , without the factor s
√
T , we get with

condition v) the scale

op(1)(1 + s
√
T‖θsT,S − θ0‖)‖θsT,S − θ0‖

1
s
√
T

=op
(
‖θsT,S − θ0‖

s
√
T

+ ‖θsT,S − θ0‖2
)

(+)= op
(
Op((s2T )−1 +Op((s2T )−1)

)
=op((s2T )−1). (++)

Now we can show the asymptotic behavior of s
√
T (θ̂sT,S−θ0). First let θ̃sT,S = θ0−H−1D̂sT ⇒

D̂sT = −H(θ̃sT,S − θ0) (*) be the maximum of the approximation

Q̂(θ) ≈Q̂(θ0) + D̂′sT (θ − θ0) +Q(θ)−Q(θ0)

≈Q̂(θ0) + D̂′sT (θ − θ0)′ + 1
2(θ − θ0)H(θ − θ0) (+ + +)

and by construction s
√
T -consistent.

From the previous result (++), we know the convergence ordering of the remainder term of
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the approximation in (+++). So we receive

2[Q̂(θsT,S)− Q̂(θ0)] = 2D̂′sT (θsT,S − θ0) + (θsT,S − θ0)′H(θsT,S − θ0) + op((s2T )−1)
(∗)= (θsT,S − θ0)′H(θsT,S − θ0)− 2(θ̃sT,S − θ0)′H(θsT,S − θ0) + op((s2T )−1)

and analogously for θ̃sT,S

2[Q̂(θ̃sT,S)− Q̂(θ0)] = 2D̂′sT (θ̃sT,S − θ0) + (θ̃sT,S − θ0)′H(θ̃sT,S − θ0) + op((s2T )−1)
(∗)= −(θ̃sT,S − θ0)′H(θ̃sT,S − θ0) + op((s2T )−1).

Because θsT,S, θ̃sT,S ∈ Θ, the convergence ordering of the remainder terms are known and
H = H(θ0) is negatively definite and non singular

⇒ op((s2T )−1) ≤2[Q̂(θsT,S)− Q̂(θ0)]− 2[Q̂(θ̃sT,S)− Q̂(θ0)]

=(θsT,S − θ0)′H(θsT,S − θ0)− 2(θ̃sT,S − θ0)′H(θsT,S − θ0)− (θ̃sT,S − θ0)′H(θ̃sT,S − θ0)

=(θsT,S − θ̃sT,S)′H(θsT,S − θ̃sT,S) ≤ −C‖θsT,S − θ̃sT,S‖2

⇒s
√
T‖θsT,S − θ̃sT,S‖ = op(1). (∗∗)

So we have ∀s ∈ [ε, 1], ε > 0

‖s
√
T (θsT,S − θ0)− (−s

√
TH−1D̂sT )‖

(∗)=‖s
√
T (θsT,S − θ0)− s

√
T (θ̃sT,S − θ0)‖

=‖s
√
T (θsT,S − θ̃sT,S)‖

=s
√
T‖(θsT,S − θ̃sT,S)‖ (∗∗)= op(1)

⇒ s
√
T (θsT,S − θ0) p−→ −H−1s

√
TD̂sT

d−→
iv)
−H−1A(s) = A∗(s).

Theorem 4. Under the null hypothesis H0 : θ1 = θ2 = · · · = θT , suppose that

∀s ∈ [ε, 1], ε > 0 : gsT,S(θsT,S)′ŴsTgsT,S(θsT,S) ≤ inf
θ∈Θ

gsT,S(θ)′ŴsTgsT,S(θ) + o∗p((s2T )−1),
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sup
s∈[ε,1]

‖θ̂sT,S − θ0‖
p−→ 0, sup

s∈[ε,1]
‖ŴsT −W‖

p−→ 0, T, S →∞ and:

i) There is a θ0(= θ1 = · · · = θT ) such that g0(θ0) = 0

ii) θ0(= θ1 = · · · = θT ) are interior points of Θ

iii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular

iv) s
√
TgsT,S(θ0) d−→ A(s)

v) ∀δ → 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
‖gsT,S(θ)−gsT,S(θ0)−g0(θ)‖

1+s
√
T‖θ−θ0‖

p−→ 0

⇒ s
√
T (θsT,S − θ0) d−→ A∗(s) ∀s ∈ [ε, 1], ε > 0

and A∗(s) = (G′WG)−1G′WA(s),

where A(s) is a continuous Gaussian process.

Proof. The Theorem follows by verifying the conditions of Theorem 3. Set Q̂(θ) := QsT (θ) :=

−1
2 ĝ(θ)

′ŴsT ĝ(θ) + ∆̂sT (θ) with ĝ(θ) := gsT,S(θ) and Q(θ) := Q0(θ) := −1
2g(θ)

′Wg(θ) with

g(θ) := g0(θ). With a Taylor-expansion of g(θ) around θ0

g(θ) = g(θ0) +G(θ − θ0) + o(‖θ − θ0‖2) = G(θ − θ0) + o(‖θ − θ0‖2) (?),

we obtain

Q(θ) = g(θ)′Wg(θ) (?)= [G(θ − θ0) + o(‖θ − θ0‖2)]′W [G(θ − θ0) + o(‖θ − θ0‖2)]

and comparing this with a Taylor-expansion of Q(θ) around θ0

Q(θ) = Q(θ0) + 1
2(θ − θ0)′H(θ − θ0) + o(‖θ − θ0‖3),

noting that Q(θ) is maximized at θ0, it follows H(θ0) = −G′WG, where H is a non singular

negative definite matrix. Because H is by construction a nonsingular negative definite matrix,

∃ neighborhood of θ0, where Q(θ) has a unique maximum at θ0 with Q(θ0) = 0.
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⇒ Conditions i), ii) and iii) of Theorem 3 are satisfied. By choosing D̂sT = −G′ŴsTgsT,S(θ0)

it follows, ∀s ∈ [ε, 1],

s
√
TD̂sT = −s

√
TG′ŴsTgsT,S(θ0) d−→

iv)
−G′WA(s),

thus condition iv) of Theorem 3 is fulfilled. Now we define

ε̂(θ) := ĝ(θ)− ĝ(θ0)− g(θ)
1 + s

√
T‖θ − θ0‖

⇔ ĝ(θ) = [1 + s
√
T‖θ − θ0‖]ε̂(θ) + ĝ(θ0) + g(θ) (??)

and we get

ĝ(θ)′ŴsT ĝ(θ) (??)= [1 + 2s
√
T‖θ − θ0‖+ s2T‖θ − θ0‖2]ε̂(θ)′ŴsT ε̂(θ)

+g(θ)′ŴsTg(θ) + ĝ(θ0)′ŴsT ĝ(θ0) + 2g(θ)′ŴsT ĝ(θ0)

+2[g(θ) + ĝ(θ0)]′ŴsT ε̂(θ)[1 + s
√
T‖θ − θ0‖] (+)

Next we define the remainder term of Q̂(θ)

Q̂(θ) = −1
2 ĝ(θ)′ŴsT ĝ(θ) + ∆̂sT (θ) = −1

2 ĝ(θ)′ŴsT ĝ(θ) + 1
2 ε̂(θ)

′ŴsT ε̂(θ) + ĝ(θ0)′ŴsT ε̂(θ).

The remainder term is just chosen in this way, that Q̂(θ) is consistent with −1
2 ĝ(θ)′ŴsT ĝ(θ),

which is shown in the next window and that we get the right convergence ordering, when check-

ing condition v) of Theorem 3. First notice that by condition v) ∀δ > 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

‖ε̂(θ)‖ =

op(s−1T−
1
2 ), furthermore

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

‖ĝ(θ0)‖ = op(s−1T−
1
2 ) , sup

s∈[ε,1]
sup

‖θ−θ0‖<δ
‖ŴsT‖ = Op(1) and ‖g(θ)−g(θ0)‖

‖θ−θ0‖ =
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Op(1) (++).

⇒∀δ > 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣Q̂(θ)− (−1
2 ĝ(θ)′ŴsT ĝ(θ))

∣∣∣∣
= sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣12 ε̂(θ)′ŴsT ε̂(θ) + ĝ(θ0)′ŴsT ε̂(θ)
∣∣∣∣

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

1
2‖ε̂(θ)‖‖ŴsT‖‖ε̂(θ)‖+ ‖ĝ(θ0)‖‖ŴsT‖‖ε̂(θ)‖

(++)= Op(1)(op(s−2T−1) + op(s−2T−1)) = op(s−2T−1). (∗)

With the consistency of Q̂(θ) we can show the initial condition of Theorem 3

∀s ∈ [ε, 1], ε > 0 ĝ(θsT,S)′ŴsT ĝ(θsT,S) ≤ inf
θ∈Θ

ĝ(θ)′ŴsT ĝ(θ) + o∗p((s2T )−1)

⇔∀s ∈ [ε, 1], ε > 0 − 1
2 ĝ(θsT,S)′ŴsT ĝ(θsT,S) ≥ − inf

θ∈Θ

1
2 ĝ(θ)′ŴsT ĝ(θ)− o∗p((s2T )−1)

⇔∀s ∈ [ε, 1], ε > 0 − 1
2 ĝ(θsT,S)′ŴsT ĝ(θsT,S) ≥ −

(
− inf
θ∈Θ
− 1

2 ĝ(θ)′ŴsT ĝ(θ)
)
− o∗p((s2T )−1)

(∗)⇔∀s ∈ [ε, 1], ε > 0 Q̂(θsT,S) ≥ sup
θ∈Θ

Q̂(θ)− o∗p((s2T )−1).

Finally we have to check condition v) of Theorem 3, for that we calculate∣∣∣∣∣ R̂sT (θ)
1 + s

√
T‖θ − θ0‖

∣∣∣∣∣
=s
√
T

∣∣∣∣∣Q̂(θ)− Q̂(θ0)− D̂sT (θ − θ0)− (Q(θ)−Q(θ0))
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

∣∣∣∣∣
=s
√
T

∣∣∣∣∣∣−
1
2 ĝ(θ)′ŴsT ĝ(θ) + 1

2 ε̂(θ)
′ŴsT ε̂(θ) + ĝ(θ0)′ŴsT ε̂(θ) + 1

2 ĝ(θ0)′ŴsT ĝ(θ0)
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

+ −D̂sT (θ − θ0)− (Q(θ)−Q(θ0))
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

∣∣∣∣∣ (ε̂(θ0) = 0),

inserting (+) and Q(θ) = −1
2g(θ)′Wg(θ), sorting, triangle inequality,
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choosing D̂sT = −G′ŴsT ĝ(θ0) and size up the resulting terms, leads to

≤
s
√
T [2s
√
T‖θ − θ0‖+ s2T‖θ − θ0‖2]

∣∣∣ε̂(θ)′ŴsT ε̂(θ)
∣∣∣

‖θ − θ0‖(1 + s
√
T‖θ − θ0‖)

(=: r1(θ))

+
s
√
T
∣∣∣(−g(θ) +G(θ − θ0))′ŴsT ĝ(θ0)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

(=: r2(θ))

+
s2T

∣∣∣(g(θ) + ĝ(θ0))′ŴsT ε̂(θ)
∣∣∣

1 + s
√
T‖θ − θ0‖

(=: r3(θ))

+
s
√
T
∣∣∣g(θ)′ŴsT

ˆε(θ)
∣∣∣

‖θ − θ0‖
(=: r4(θ))

+
s
√
T
∣∣∣g(θ)′[W − ŴsT ]g(θ)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

. (=: r5(θ))

Now we have

∀δ → 0 sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

∣∣∣∣∣ R̂sT (θ)
1 + s

√
T‖θ − θ0‖

∣∣∣∣∣
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

5∑
i=1

ri(θ) != op(1)

and we just have to check the convergence of the ri(θ) terms for i ∈ {1, 2, 3, 4, 5}. For r1, we

have

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r1(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T [2s
√
T‖θ − θ0‖+ s2T‖θ − θ0‖2]

∣∣∣ε̂(θ)′ŴsT ε̂(θ)
∣∣∣

‖θ − θ0‖(1 + s
√
T‖θ − θ0‖)

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T (s
√
T‖θ − θ0‖(2 + s

√
T‖θ − θ0‖))‖ε̂(θ)‖2‖ŴsT‖

‖θ − θ0‖(1 + s
√
T‖θ − θ0‖)

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

cs2T‖ε̂(θ)‖2‖ŴsT‖ (c sufficient tall)

(++)= op(1)
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For r2, we obtain

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r2(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
∣∣∣(−g(θ) +G(θ − θ0))′ŴsT ĝ(θ0)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
To(‖θ − θ0‖2)‖ŴsT‖‖ĝ(θ0)‖

‖θ − θ0‖

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
To(‖θ − θ0‖)‖ŴsT‖‖ĝ(θ0)‖

(++)= op(1)

Considering r3 yields

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r3(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s2T
∣∣∣(g(θ) + ĝ(θ0))′ŴsT ε̂(θ)

∣∣∣
1 + s

√
T‖θ − θ0‖

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

(
s2T‖ĝ(θ0)‖+ sT

1
2
‖g(θ)‖
‖θ − θ0‖

)
‖ŴsT‖‖ε̂(θ)‖

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

(
s2Top(s−1T−

1
2 ) + sT

1
2Op(1)

)
‖ŴsT‖‖ε̂(θ)‖

≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

sT
1
2Op(1)‖ŴsT‖‖ε̂(θ)‖

(++)= op(1)

For r4, it holds

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r4(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
∣∣∣g(θ)′ŴsT

ˆε(θ)
∣∣∣

‖θ − θ0‖
c.s.
≤s
√
TOp(1)‖ŴsT‖‖ε̂(θ)‖

(++)= op(1)
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Finally, for r5,

sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

r5(θ) = sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
∣∣∣g(θ)′[W − ŴsT ]g(θ)

∣∣∣
‖θ − θ0‖(1 + s

√
T‖θ − θ0‖)

c.s.
≤ sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T‖g(θ)‖2‖W − ŴsT‖
s
√
T‖θ − θ0‖2

= sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

(
‖g(θ)‖
‖θ − θ0‖

)2

op(1)

=op(1).

Lemma 5. Under Assumption 1, 2, 3.ii) and 3.iii)

i) gsT,S(θ) is stochastically Lipschitz-continuous ∀s ∈ [ε, 1], ε > 0, i.e.,

∃B = Op(1) such that ∀θ1, θ2 ∈ Θ : ‖gsT,S(θ1)− gsT,S(θ2)‖ ≤ B‖θ1 − θ2‖

ii) ∃δ > 0 such that

lim sup
T,S→∞

E
(
B2+δ

)
<∞.

Proof. Without loss of generality suppose gsT,S(θ) is a one-dimensional function, otherwise

show the Lipschitz-continuity for every entry of the vector gsT,S(θ).

i) We know m̃S(θ) = m0(θ) + op(1) (?), and from Assumption 3.iii), m0(θ) is Lipschitz-

continuous, due to combination of Lipschitz-continuous bivariate copulas Cij(θ),

∃K : |m0(θ1)−m0(θ2)| ≤ K‖θ1 − θ2‖. (??)
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Now consider

|gsT,S(θ1)− gsT,S(θ2)| =|m̂sT − m̃S(θ1)− m̂sT + m̃S(θ2)|

=|m̃S(θ2)− m̃S(θ1)| = |m̃S(θ1)− m̃S(θ2)|
(?)
≤
c.s.
|m0(θ1)−m0(θ2)|+ |op(1)|

(??)
≤K‖θ1 − θ2‖+ |op(1)|

=
(
K + |op(1)|

‖θ1 − θ2‖

)
‖θ1 − θ2‖

=:B‖θ1 − θ2‖.

ii) For some δ > 0

⇒ lim sup
T,S→∞

E
(
B2+δ

)
= lim sup

T,S→∞
E

(K + |op(1)|
‖θ1 − θ2‖

)2+δ
 <∞.

Lemma 6. Under Assumption 1, 2, 3.ii) and 3.iii), for S
T
→∞ or S

T
→ k ∈ (0,∞),

vsT,S(θ) =
√
sT [gsT,S(θ)− g0(θ)] is stochastically equicontinuous ∀s ∈ [ε, 1], ε > 0

Proof. By Lemma 5)i) {gsT,S(θ) : θ ∈ Θ} is Lipschitz-continuous ∀s ∈ [ε, 1], ε > 0 and so a

Type II class of functions in Andrews (1994). By Theorem 2 of Andrews {gsT,S(θ) : θ ∈ Θ}

satisfies Pollard’s entropy condition with envelope

max{1, sup
θ∈Θ
‖gsT,S(θ)‖, B}, ∀s ∈ [ε, 1], ε > 0.

⇒ Assumption A of Andrews (1994) is satisfied.

Furthermore gsT,S(θ) is bounded and by Lemma 5)ii) it holds

lim sup
T,S→∞

E
(
B2+δ

)
<∞.
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⇒ Assumption B of Andrews (1994) is satisfied. Then with Theorem 1 of Andrews (1994)

and noting, that Assumption C is fulfilled by construction

vsT,S(θ) =
√
sT [gsT,S(θ)− g0(θ)] is stochastically equicontinuous ∀s ∈ [ε, 1], ε > 0.

Lemma 7. We consider the dependence measures Spearman’s rho and quantile dependence

measures, which are functions only depending on bivariate copulas.

Under the null and Assumption 1 and 2,

s
√
T (m̂sT −m0(θ0)) d−→ A(s), T →∞, ∀s ∈ [ε, 1], ε > 0

where A(s) is defined in the proof and θ0 the value of all θt under the null.

Proof. The proof follows the idea of Bücher et al. (2014) and we only consider the limit

process for T →∞.

By Proposition 3.3 in (Bücher et al., 2014) (+) the sequential empirical copula of the

N -dimensional random vectors fulfills

CsT :=s
√
T
[
Ĉs(u)− C(u)

]
= 1√

T

bsT c∑
t=1

1{F̂
s(η̂t) ≤ u} − C(u)


d−→

(+)
B(s,u)−

N∑
j=1

∂jC(u)B(s,u(j)) =: A∗(s,u), T →∞, ∀s ∈ [ε, 1], ε > 0,

where u ∈ [0, 1]N , u(j) ∈ [0, 1]N defined by u(j)
i = uj, if i = j and 1 otherwise and

F̂
s(η̂t) = (F̂ s

1 (η̂1t), . . . , F̂ s
N(η̂Nt)). Here, F̂ s

j denotes the marginal empirical distribution

function of the j-th component calculated from data up to time point [sT ]. Moreover B(s,u)
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is a tight centered continuous Gaussian process with B(0,u) = 0 and

Cov(B(s,u),B(t,v)) = min(s, t)Cov(1(F(η) ≤ u),1(F(η) ≤ v)).

Note that Spearman’s rho between the i-th and j-th component is given by

12
∫ 1

0

∫ 1

0
C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)duiduj − 3

and that the quantile dependencies are projections of the N -dimensional copula onto one

specific point divided by some prespecified constant. Define the function mij(C) as the

function which generates a vector of all considered dependence measures (Spearman’s rho

and/or quantile dependencies for different levels) between the i-th and j-th component out

of the copula C. Without loss of generality consider the equidependence case (in the same

way the argumentation holds for the block equidependence case, only that we average all

intra- and inter-group dependence measures), then the function

m(C) : D[0, 1]N → Rk

C → m(C) = 2
N(N − 1)

N−1∑
i=1

N∑
j=i+1

mij∗(C)

is continuous and we directly obtain

s
√
T (m̂sT −m0(θ)) = s

√
T [m(Cs)−m(C)] d−→ 2

N(N − 1)

∑
i,j

mij(A∗(s,u))
 =: A(s)

as T → ∞ with s ∈ [ε, 1], ε > 0. Here, mij(·) is the same function as mij∗(·) with the

only difference that the formula for Spearman’s rho between the i-th and j-th component is

replaced by

12
∫ 1

0

∫ 1

0
C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)duiduj.
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Proof of Theorem 1

The proof follows by checking the conditions of Theorem 4. The initial conditions of Theorem

4 follow by Assumption 4.iii) and Lemma 2.

i) g0(θ0) = 0 follows direct by construction, because g0(θ) = m0(θ0)−m0(θ).

ii) θ0(= θ1 = · · · = θT ) are interior points of Θ given by Assumption 4.i).

iii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular, given by

Assumption 4.ii).

iv) 1) If S
T
→∞ as T, S →∞,

s
√
TgsT,S(θ0) =s

√
T (m̂sT − m̃S(θ0))

=s
√
T (m̂sT −m0(θ0)) + s

√
T (m0(θ0)− m̃S(θ0))

=s
√
T (m̂sT −m0(θ0))−

√
T√
S
s
√
S(m̃S(θ0)−m0(θ0))

d−→
Lemma 7

A(s)

2)If S
T
→ k ∈ (0,∞) as T, S →∞,

s
√
TgsT,S(θ0) =s

√
T (m̂sT − m̃S(θ0))

=s
√
T (m̂sT −m0(θ0)) + s

√
T (m0(θ0)− m̃S(θ0))

=s
√
T (m̂sT −m0(θ0))−

√
T√
S
s
√
S(m̃S(θ0)−m0(θ0))

d−→
Lemma 7

A(s)− s√
k
A(1),

combined we get

s
√
TgsT,S(θ0) d−→A(s)− s√

k
A(1), T, S →∞, ∀s ∈ [ε, 1], ε > 0.
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v) We know by Lemma 6, that for S
T
→∞ or S

T
→ k ∈ (0,∞)

vsT,S(θ) =
√
sT [gsT,S(θ)− g0(θ)] is stochastically equicontinuous ∀s ∈ [ε, 1], ε > 0.

⇒ ∀ε > 0, η > 0, ∃δ > 0 : lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

‖vsT,S(θ)− vsT,S(θ0)‖ > η

]

=lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

√
sT‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖ > η

]
< ε.(?)

Furthermore the inequality

s
√
T
‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖

1 + s
√
T‖θ − θ0‖

≤ s
√
T‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖ (??)

is valid ∀s ∈ [ε, 1].

Finally we obtain

lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

s
√
T
‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖

1 + s
√
T‖θ − θ0‖

> η

]

≤lim sup
T→∞

P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

√
sT
‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖

1 + s
√
T‖θ − θ0‖

> η

]
(??)
≤ lim sup

T→∞
P

[
sup
s∈[ε,1]

sup
‖θ−θ0‖<δ

√
sT‖gsT,S(θ)− gsT,S(θ0)− g0(θ)‖ > η

]
(?)
< ε.

Note that, for the first inequality sign, we use that 0 < s ≤
√
s ∀s ∈ [ε, 1], ε > 0.

This completes the proof. �
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