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Abstract

We identify structural vector autoregressive (SVAR) models by combining sign re-

strictions with information in proxy variables designed to instrument structural shocks.

Our modeling framework allows to simultaneously identify different shocks using either

sign restrictions or an external instrument approach, always ensuring that all shocks

are orthogonal. We also discuss the combination of restrictions for identifying a sin-

gle shock. In this scenario, exogeneity of the proxies is not required and the set of

models consistent with the data is further reduced by discarding all those that imply

structural shocks with no close relation to the external proxy variables. We discuss full

Bayesian inference, which accounts for both, model and estimation uncertainty. We

illustrate the usefulness of our method in SVARs analyzing the effects of oil market

and monetary policy shocks. Our results suggest that combining sign restrictions with

proxy variable information is a promising way to sharpen results from SVAR models.
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1 Introduction

Ever since Sims (1980), structural vector autoregressive (SVAR) models have become a

popular tool in applied macroeconomics.1 Starting from a reduced form vector autoregressive

(VAR) model, which summarizes the joint dynamics of a vector of time series variables,

applied researchers impose various restrictions to identify structural shocks. Conditional on

a particular identification scheme, the effects and importance of different structural shocks

are summarized by impulse responses, forecast error variance decompositions or historical

decompositions. Applications of this method include e.g. the analysis of monetary policy

shocks, demand and supply shocks, fiscal shocks, oil price shocks, and news shocks.

In this paper, we suggest to identify structural shocks in SVAR models by combining

both, sign restrictions and the information in narrative series constructed to instrument a

certain shock in the model (proxy variables). As we argue below, combining both approaches

is useful because it mitigates some drawbacks occurring when using either sign restrictions

or external instruments only.

To achieve identification different types of restrictions have been suggested in the litera-

ture. Popular traditional restrictions include short- and long-run restrictions on the effects

of structural shocks, which have the disadvantage that they are often difficult to justify and

not testable if they are just-identifying. Therefore, alternative methods for identification

have been developed including sign restrictions and the use of external instruments.2

Sign restrictions have been introduced into the literature by Faust (1998), Canova &

De Nicoló (2002) and Uhlig (2005) as an alternative to existing methods involving short

and long-run restrictions. The obvious advantage is that the researcher may directly restrict

the signs of responses to the structural shock of interest. Sign restrictions may be imposed

on the contemporaneous response or on the responses at later response horizons. In the

context of monetary policy shocks, for instance, sign restrictions have been used to avoid the

so-called ‘prize-puzzle’ by restricting the response of the price level to be non-positive for a

certain period after a contractionary monetary policy shock (see e.g. Uhlig (2005) and Arias,

Caldara & Rubio-Ramı́rez (2016)) but leaving the response of interest (e.g. the response of

output) unrestricted. Employing sign restrictions does not yield a unique model but leads

to set identification only. As pointed out by Fry & Pagan (2011), special care has to be

taken when summarizing results across multiple models. Another practical problem of sign

restrictions is that they are often rather weak, resulting in a wide range of admissible models

with impulse responses that are not very informative. Consequently, additional restrictions

are often needed to narrow down the set of models (see e.g. Kilian & Murphy (2012)).

Another method for identifying structural shocks without imposing short- or long-run

restrictions is based on external instrument variables. While the underlying economic shock

of interest is unobservable to the researcher, there may be related time series available

that act as instrumental variables (IV) for the unobserved structural shock. To achieve

identification the researcher needs to find an instrument variable that is highly correlated

1For a general overview of different structural VAR models see e.g. Kilian & Lütkepohl (2017).
2Another strand of the literature uses statistical identification and identifies structural shocks by ex-

ploiting changes in the error term variance (see e.g Lütkepohl & Netsunajev (2017) and Bertsche & Braun

(2018) for recent contributions).
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with the structural shock of interest and uncorrelated with all other structural shocks in the

system. Studies that have used external instruments include e.g. Hamilton (2003), Romer

& Romer (1989, 2004), Kilian (2008b, 2008a), Mertens & Ravn (2012, 2013, 2014), Stock &

Watson (2012), and Gertler & Karadi (2015). While conceptually appealing, the external IV

approach has also potential drawbacks. First, the exogeneity of instruments is questionable

in some applications (see e.g. the discussion in Ramey (2016) on the narrative measures of

monetary policy shocks). Furthermore, the external IV approach hinges critically on the

validity of instruments and is problematic when the instruments are weak. In this case,

inference is non-standard, complicated and still under development (see Montiel-Olea, Stock

& Watson (2015, 2016)). Finally, if the IV approach is used to identify different economic

shocks at a time as e.g. in Stock & Watson (2012), the different structural shocks are not

necessarily orthogonal.

Consequently, using either sign restrictions or external instruments alone may not be

optimal in practical work. In this paper, we therefore suggest ways to combine these two

identification strategies in order to circumvent some of the mentioned problems. Our paper

makes the following contributions. First, we suggest an econometric framework to combine

identification from sign restrictions with identification from using external proxy variables.

This is achieved by augmenting a standard SVAR system with equations for the proxy

variables to relate them with the structural shocks. Second, we discuss estimation and

inference in a full Bayesian setup, which accounts for both model and estimation uncertainty.

Our framework allows to combine identifying information from sign restrictions and ex-

ternal proxy series in two different ways. First, it can be used to identify some shocks by sign

restrictions, while other shocks are identified via instrumental variables. One set of shocks

is therefore set-identified and the others are point-identified. Our modeling framework nests

the pure sign restriction and the pure IV approach as special cases. Compared to the existing

methodology, our framework analyzes shocks identified from sign restrictions and external

instruments jointly in a system approach and leads to structural shocks that are orthogonal

by construction. In addition, our Bayesian framework can handle situations in which the

external proxy variables are only weak instruments. As long as one uses a proper prior,

the inference requires no adjustment to be valid. Second, we discuss how our framework

can be exploited to identify a single shock by simultaneously using information from sign

restrictions and external proxy series, however, without assuming exogeneity of the latter.

This case is highly relevant in empirical work where applied researchers are often in the

situation that pure sign restrictions are not enough to achieve informative results and at the

same time, no credibly exogenous instruments are available. For this scenario, we suggest

using the external variables to further tighten the set of models obtained by sign restrictions.

This combination is simple and intuitive. Essentially, we narrow down the set of admissible

models by only keeping those models that imply structural shocks that show a close relation

to the external proxy variable. As explained in the paper, this relation is measured by either

correlations or variance contributions. The resulting identification scheme is set-identifying,

and thereby could be also thought of adding additional sign restrictions based on the infor-

mation contained in the external proxies. As we will show in an empirical application, these

additional restrictions can help to avoid the wide and uninformative confidence intervals
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around impulse responses, a typical problem observed in applied sign restriction studies.

Methodologically, our first way to combine sign restrictions with external proxy variables

is related to recent formulation of Bayesian Proxy SVARs (Drautzburg; 2016; Caldara &

Herbst; forthcoming; Miranda-Agrippino & Rey; 2018). Among those, we are closest to

Drautzburg (2016) in that we also use a system approach to conduct inference on the reduced

form parameters before proceeding with the identification of the model. In comparison to

these papers, however, our methodology is more general in the sense that we allow for

additional shocks to be identified by pure sign restrictions. Our second way of combining

sign restrictions with external proxy variables is related to studies that exploit non-model

information for identification. For example, Kilian & Murphy (2012) use microeconomic

evidence to construct elasticity bounds with the goal to further tighten the credible set

obtained by sign restrictions. Furthermore, Antoĺın-Dı́az & Rubio-Ramı́rez (forthcoming)

suggest to narrow down the set of models by discarding all models that lead to structural

shocks with signs and historical decompositions that are at odds with narrative evidence.

Our approach is also close to Ludvigson, Ma & Ng (2017) who, similar to Antoĺın-Dı́az &

Rubio-Ramı́rez (forthcoming), suggest to include information on unusual historical events

to restrict the sign and size of structural shocks. In addition, they discard models whose

shocks are not strongly correlated with the ‘synthetic proxy’ variables and therefore, is

similar in spirit to what we suggest.3 In comparison, our paper is more general with respect

to important modeling aspects: Our setup does not require to choose a threshold for the

correlation with the proxy and can also be used to identify some shocks by instrumental

variables only. Moreover, we properly take into account all sources of model and estimation

uncertainty within our full Bayesian framework. Therefore, inference is straightforward and

error bands for impulse responses are readily available, which makes our setup particularly

useful for applied work. Finally, since we use information of external variables without

assuming strict exogeneity, our paper is also related to a branch of the microeconometric

literature that discusses (set) identification using weakly endogenous instruments (Nevo &

Rosen; 2012; Conley, Hansen & Rossi; 2012).

We illustrate the usefulness of our method in two empirical applications. We identify

structural shocks on the oil market and monetary policy shocks. In both applications, we find

that combining both, sign restrictions and external proxy series, leads to more informative

and economically more sensible impulse response patterns.

The remainder of the paper is structured as follows. Section 2 introduces the econometric

modeling framework and discusses identification and inference. Section 3 illustrates the

suggested methods in applications to oil market shocks and to US monetary policy shocks.

Section 4 summarizes and concludes.

3See also Uhrin & Herwartz (2016) for a similar idea to narrow down set identified SVAR models.
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2 Combining Sign Restrictions with External Instru-

ments

In the following, we develop a unified SVAR framework which enables us to combine infor-

mation from sign restrictions and proxy variables to identify the effect of structural shocks.

In Section 2.1 we describe a general econometric framework for this purpose, which is based

on a SVAR model augmented by equations for proxy variables. Section 2.2 discusses identi-

fying restrictions for the case where multiple shocks are identified by a combination of sign

restrictions and instrumental variables, a scenario which nests both approaches. Section 2.3

discusses how information on sign restrictions and that of proxy variables can be exploited

jointly to identify a single shock, making weaker assumptions about the relation between

the SVAR shocks and the proxy variables. This idea is similar in spirit to Ludvigson et al.

(2017) and Antoĺın-Dı́az & Rubio-Ramı́rez (forthcoming). Finally, we discuss how to coher-

ently conduct inference in SVAR models subject to these restrictions in Section 2.4. Note

that, whenever we use the term ‘proxy variable’ we mean any external series designed to be

similar to a structural shock, while we use the term ‘instrumental variable’ only if the proxy

is used for identification in the sense of classical IV moment conditions.

2.1 Proxy Augmented SVAR Model

Let yt = (y1t, . . . , ynt)
′ be a n × 1 vector of endogenous time series generated by the SVAR

model:

yt = c+

p∑
i=1

Aiyt−i + ut, ut ∼ (0,Σu), (2.1)

ut = Bεt, εt ∼ (0, In), (2.2)

where (2.1) corresponds to the reduced form VAR(p) model with c being an n× 1 vector of

intercepts and the n× n matrices Ai for i = 1, . . . , p capturing the impact of lagged vectors

of time series up to horizon p. Equation (2.2) contains the structural relations of the model,

linking the reduced form errors ut to structural shocks εt linearly by the n × n structural

impact matrix B, which implies a reduced form error covariance matrix Σu = BB′. It is

well known that the structural model (2.2) is not identified from the data alone.4 Therefore,

a set of restrictions must be imposed on B in order to uniquely pin down the coefficients

of the structural model. We propose a simple method to combine identification from sign

restrictions and proxy variables. For this purpose, let mt = (m1t, . . . ,mkt)
′ be a k × 1

vector of proxy series designed to provide identifying information about a subset of k < n

structural shocks of the SVAR model. Our approach is based on augmenting equation (2.2)

by equations for the proxies mt:(
ut

mt

)
︸ ︷︷ ︸
ũt

=

(
B 0n×k

Φ Σ
1/2
η

)
︸ ︷︷ ︸

B̃

(
εt

ηt

)
︸ ︷︷ ︸
ε̃t

,

(
εt

ηt

)
∼ (0, In+k). (2.3)

4This can be seen that by simply multiplying matrix B by any n×n orthogonal matrix Q with property

QQ′ = In. We then end up with the same reduced form covariance matrix Σu = (BQ)(BQ)′ = BQQ′B′ =

BB′.
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The augmented model has a measurement error interpretation similar to Mertens & Ravn

(2013). The k proxy variables mt are modeled as a linear function of the structural errors εt

with k×n regression coefficients Φ, plus a zero mean measurement error ηt, which is assumed

to be orthogonal to the structural shocks εt, i.e. ηt ⊥ εt. A n × k block of zeros ensures

that the measurement error ηt is also orthogonal to the reduced form errors ut and avoids

any impact on the dynamics of yt. The augmented system has the reduced form covariance

matrix

Σ = Cov

(
ut

mt

)
=

(
Σu Σmu

Σmu′ Σm

)
,

and through restrictions on Φ, identifying information can be imposed to pin down values of

B in the spirit of an IV regression. In the following we discuss possible restrictions in detail

and provide Bayesian algorithms for inference.

2.2 Identifying Multiple Shocks with a Combination of Sign Re-

strictions and Instrumental Variables

We first describe a scenario where either instrumental variables or sign restrictions are used

to identify distinct structural shocks. Without loss of generality, assume that out of n

structural shocks, the researcher wants to identify the first k ≤ n via an IV and the last

q ≤ (n−k) shocks via sign restrictions. Given the following partition of the structural shocks

εt = [ε′1t
1×k

: ε′2t
1×(n−k−q)

: ε′3t
1×q

]′ this corresponds to identifying ε1t and ε3t via the IV and sign

restrictions, respectively.

To state the sign restrictions explicitly, we follow the notation of Arias, Rubio-Ramı́rez &

Waggoner (2018). Assume that the researcher has prior information on the contemporaneous

impact of the ith structural shock on the endogenous variables yt and therefore on elements

of the ith column of the impact matrix B, denoted as B•i in the following.5 Let Sj be a

sj × n selection matrix with rank rk(Sj) = sj and let ej be the jth column of the identity

matrix In. Then, we gather all sign restrictions in the augmented SVAR system (2.3) as

SjBej > 0, j = n− q + 1, . . . , n.

With respect to the first k shocks (ε1t), which are to be identified via instrumental vari-

ables, assume that a set of k instrumental variables are available for this purpose, implying

the following restrictions:

E(mit, εi,t) 6= 0, i = 1, . . . , k, (2.4)

E(mit, εj,t) = 0, i 6= j. (2.5)

Equations (2.4) and (2.5) are known as relevance and exogeneity conditions, respectively.

For local identification of the structural shock εi,t, it is thus required that the corresponding

5More generally, prior information can be available for any function F (B,Ai) of the structural coefficients

B and lag matrices Ai, i = 1, . . . , p, including for example restrictions on higher horizons of the impulse

responses.
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proxy variable mit is correlated with this shock and uncorrelated with all other shocks of the

SVAR system.

As discussed by Mertens & Ravn (2013) and Stock & Watson (2012), these conditions

imply linear restrictions that identify the respective column of the structural impact matrix

B•i up to sign and scale. To be more specific about the exact form of the restriction,

we follow Mertens & Ravn (2013) by partitioning B = [ β1
n×k

: β2
n×n−k−q

: β3
n×q

] as well as

Φ = [ φ1
k×k

: φ2
k×n−k−q

: φ3
k×q

]. Equations (2.4) and (2.5) imply that

Σmu′ = E(mtu
′
t) = E(mtε

′
tB
′) = φ1β

′
1.

Further partitioning of Σmu′ and β1 yields

[Σmu′1
k×n−k

: Σmu′2
k×k

] = φ1[ β′11
k×n−k

: β′12
k×k

].

This, in turn, translates into the following linear restrictions for the matrix β1:

β11 = (Σ−1
mu′2

Σmu′1
)′β12. (2.6)

For k = 1, equation (2.6) identifies β1 up to sign and scale, while the additional restric-

tion β′1Σ−1
u β1 = 1 normalizes the shock to one standard deviation. For k > 1, additional

restrictions must be specified to achieve identification, see e.g. Mertens & Ravn (2013) and

Angelini & Fanelli (2018).

Note that an alternative representation of these restriction can be obtained by simply

setting zero restrictions in the augmented impact matrix B̃ as stated in equation (2.3). In

particular, equations (2.4) and (2.5) imply that in addition to the zero block already men-

tioned in B̃, also φ2 = 0 and φ3 = 0. See also Angelini & Fanelli (2018) for a more extensive

discussion. The described combination of sign restrictions with external instruments can

therefore be also thought of combining zero and sign restrictions.

Example 1 Consider a simple three variable macro model as in Fry & Pagan (2011), in-

volving the output gap zt, prices πt and an interest rate it. Assume that the system is driven

by a monetary policy shock εmpt identified via an external instrument mt, as well as cost push

(εct) and demand shocks (εdt ) identified with standard sign restrictions. Specifically, the cost

push shock is assumed to decrease output and increase prices and interests on impact, while

the demand shock is assumed to increase all variables. These identifying assumptions can be

stated as follows:uztuπt
uit

 =

b11 − +

b21 + +

b31 + +


ε

mp
t

εct
εdt

 ,

ε
mp
t

εct
εdt

 ∼ (0, I3),

b11 =
Cov(u1t,mt)

Cov(u3t,mt)
b31, b21 =

Cov(u2t,mt)

Cov(u3t,mt)
b31, 1 = β1Σ−1

u β′1.

2.3 Identifying a Single Shock Using Information from Sign Re-

strictions and an External Proxy

In our second scenario, we describe how sign restrictions and identifying information from

external proxy variables are combined to trace down the effects of a single shock. This
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idea is also proposed by Ludvigson et al. (2017) who start their SVAR analysis with a set

identified model based on sign restrictions. To further narrow down the set of admissible

models and thereby reduce the model uncertainty, they discard all those models where the

corresponding structural shock exhibits a correlation with the external proxy less than a

certain threshold value c̄. Only relevance of the external proxy (equation (2.4)) is assumed,

but not its exogeneity (equation (2.5)). The assumptions needed are therefore weaker than

in a pure instrumental variables approach.

Without loss of generality, assume that the goal is to identify the first structural shock

ε1t by a combination of the two identifying sources, that is sign restrictions and information

from a proxy variable. Let us first gather the inequality restrictions and assume that some

information on the sign of elements in B•1 is available. As in Section 2.2, we can make the

restriction explicit with the help of the selection matrix S1 defined previously:

S1Be1 > 0. (2.7)

Besides the sign restrictions of equation (2.7), assume that a set of k external proxy variables

mt is available containing information on the structural shock, that is:

E(mitε1t) 6= 0, i = 1, . . . , k.

We propose the following restrictions that exploit different degrees of identifying information

from the external proxy variable without imposing its exogeneity:

1. The correlation between the ith proxy and the structural shock is positive:

Corr(mit, ε1t) =
E(mitε1t)√

Var(mit)
> 0.

From an economic point of view, this means that we are confident that the proxy

variable is at least positively correlated with the structural shock it has been designed

for. Note that this restriction does little harm if the proxy is only loosely associated

with the structural shock and might be interesting for variables, which are assumed to

be weak instruments.

2. The correlation between the ith proxy and the structural shock exceeds c̄i:

Corr(mit, ε1t) =
E(mitε1t)√

Var(mit)
> c̄i.

This restriction has been applied by Ludvigson et al. (2017). Of course, it is more

restrictive than only a sign restriction on the correlation in that it rules out more

models from the set of admissible SVARs. However, choosing c̄i is difficult and hard

to justify in practice.

To circumvent the problem of choosing a threshold c̄i, we discuss two other possibilities:

3. First, among all structural shocks of the SVAR model (εjt, j = 1, . . . , n), the shock to

be identified ε1t has the largest correlation with the ith proxy variable.

Corr(mit, ε1t) > Corr(mit, εjt), j = 2, . . . , n. (2.8)

This restriction imposes that among all shocks in the SVAR, the shock to be identified

shows the highest correlation with the external variables.
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4. Second, among all structural shocks of the SVAR model (εjt, j = 1, . . . , n), the shock

to be identified ε1t explains most of the variation of the ith proxy variable mit. To

trace down the restriction, recall the regression equation for mt:

mt = Φεt + Σ
1
2
η ηt, ηt ∼ (0, Ik).

Since the regressors εt are orthogonal by assumption, the contribution of the jth struc-

tural shock to the variance of the ith proxy mit is ψij = φ2
ij/Var(mit). Therefore, the

restriction is given as:

ψi1 > ψij j = 2, . . . , n. (2.9)

In words, imposing this restrictions rules out all SVAR models where other shocks

explain more variation of the ith proxy mit than the one to be identified (ε1t).

Note that in order to implement the last two restriction, the other shocks εjt, j = 2, . . . , n

have to be identified. If they are not identified by economic reasoning, it is still possible to

use a statistical identification, e.g. by orthogonal rotations of arbitrarily identified shocks.

In that case, the prior implicitly used to statistically identify these shocks is of particular

relevance must be chosen carefully. We further discuss this possibility in the empirical

application.

Note that similar to the observation made in Section 2.2, the just described restrictions

relating the external proxy and the structural model can be reinterpreted as imposing addi-

tional sign restrictions on the augmented SVAR model given in equation (2.3).

Example 2 Reconsider Example 1 with the three variable macro model involving the output

gap zt, prices πt and an interest rate it. Assume that we are particularly interested in

identifying the monetary policy shock εmpt but that no credible instrument is available in

terms of exogeneity. However, information about the sign of the impact of the shock is readily

available, as well as an imperfect external variable mt designed to proxy the policy shock. To

state specific restrictions, assume that a monetary policy shock has an immediate positive

effect on the interest rate it and decreases prices πt and output zt on impact. Moreover,

among all three structural shocks, εmpt explains most of the variation of the proxy variable

mt. This can be stated as follows in the SVAR framework:uztuπt
uit

 =

− b11 b12

− b12 b22

+ b13 b23


ε

mp
1t

ε2t

ε3t

 ,

ε
mp
1t

ε2t

ε3t

 ∼ (0, I3),

φ2
1

Var(mit)
>

φ2
j

Var(mit)
, j = 2, 3.

2.4 Bayesian Estimation and Inference

In the following we outline how to conduct Bayesian inference in our framework to coherently

summarize both, modeling and sampling uncertainty. As in Drautzburg (2016), we specify

priors on the reduced form proxy augmented VAR model which allows usage of an efficient
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textbook style Gibbs sampler on these parameters. In a second step, we identify the model

by generating orthogonal matrices that relate the reduced form parameters to the structural

representation of the model and satisfy the parameter restrictions discussed previously.

Given our Bayesian setup, we assume a standard Gaussian likelihood function for the

proxy augmented SVAR:

yt = Axt + ut,

(
ut

mt

)
∼ N

(
0,Σ =

(
Σu Σmu

Σmu′ Σm

))
,

where A = [c, A1, . . . , Ap] and xt = [1, y′t−1, . . . , y
′
t−p]

′. We link the reduced form to the

structural form through the contemporaneous impact matrix:

B = PQ, (2.10)

where P is the Cholesky decomposition of the VAR block reduced form error variance such

that PP ′ = Σu. The matrix Q is orthogonal, that is Q′Q = In, and links the reduced

form model to the structural representation as in equation (2.10). We assume conditionally

conjugate prior distributions for the reduced form coefficients Σ−1 and A, which take the

form of Normal and Wishart distributions respectively:

Σ−1 ∼ W(d,Ψ), (2.11)

vec(A) ∼ N (α0, V0). (2.12)

Before discussing the prior distribution for the orthogonal matrix Q, we first characterize

the posterior of the reduced form model. Unfortunately, this density is of no known form.

However, random draws of the posterior can be efficiently generated by a standard Gibbs

sampler iterating between the conditional posteriors p(Σ|Y,M,A) and p(A|Y,M,Σ). To find

these distributions, it is instructive to rewrite the model in a Seemingly Unrelated Regression

(SUR) representation (Drautzburg; 2016). Conditional on presample values, the model can

be written as:

ỹ = Zα + ũ, ũ ∼ N (0,Σ⊗ IT ),

where α = vec(A), X = [x′1, . . . , x
′
T ]′, Z = [(In ⊗ X)′ : 0n(np+1)×Tk]

′, Y = [y′1, . . . , y
′
T ]′,

M = [m′1, . . . ,m
′
T ]′, ỹ = [vec(Y )′, vec(M)′]′, U = [u′1, . . . , u

′
T ]′, Ũ = [U ′,M ′]′ and ũ = vec(Ũ).

The density function of the observables ỹ is then given as:

p(ỹ|α,Σ) ∝ |Σ|−
1
2 exp

(
−1

2
tr(SΣ−1)

)
,

where S = Ũ ′Ũ . Based on Geweke (2005, Chapter 5), the conditional posterior distributions

of SUR models with priors (2.11) and (2.12) are of the following convenient form:

α|ỹ,Σ ∼N (ᾱ, V̄ ), (2.13)

Σ−1|ỹ, α ∼W((Ψ + S)−1, d+ T ), (2.14)

where V̄ = (V −1
0 + Z ′(Σ−1 ⊗ IT )Z)−1 and ᾱ = V̄

(
V −1

0 α0 + Z ′(Σ−1 ⊗ IT )ỹ
)
. Based on these

conditionals, it is straightforward to implement a Gibbs sampler to numerically characterize

the posterior distribution of the reduced form parameters.
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In the remainder of the section, we discuss the prior and posterior of the orthogonal

matrix Q, which according to equation (2.10), will provide a mapping to the structural

parameters of the model. Furthermore, we will discuss algorithms to generate draws from

its posterior distribution. The details will depend on whether we are identifying the model

as in Section 2.2 or 2.3. We start with the case described in Section 2.2 where a subset

of shocks (q ≤ (n − k)) are set identified via sign restrictions and that, for simplicity, just

one additional shock (k = 1) is point identified via instrumental variables. Given a (prior

or posterior) draw of the reduced form covariance matrix Σ, the linear restrictions from

equation (2.6) along with the normalization β′1Σ−1
u β1 = 1 enables us to point identify β1, the

first column of the structural impact matrix B.6 Given this observation, it is convenient to

decouple the orthogonal matrix Q into a fixed (Q̃) and a stochastic (orthogonal) component

(Q̄):

Q = Q̃Q̄.

Given a value of the augmented reduced form matrix Σ, Q̃ will provide the rotation of P

such that the first columns of B are β1. To get an explicit expression, let q̃k = P−1β1. Then,

we define Q̃ = [N⊥, q̃k] where N⊥ is any orthonormal basis for the null space of q̃′k such that

N ′⊥q̃k = 0 and N ′⊥N⊥ = I. With respect to the stochastic matrix Q̄, we define it as follows:

Q̄ =

(
Ik 0

0 Q∗n−k

)
.

where Q∗n−k is random and given the structure of Q̄, will not affect β1 but only relate the

reduced form parameters to those structural parameters that are set-identified. We specify

a uniform prior distribution (Haar prior) π(Q∗n−k|Σ,A) over the space of n− k dimensional

orthogonal matrices subject to the sign restrictions.7 This enables us to easily draw from

the (conditional) posterior distribution of Q as follows (Algorithm 1).

1. Given a draw of the reduced form parameters Σ, solve for β1 using equation (2.6) along

with the normalization β′1Σ−1
u β1 = Ik described in Section 2.2. Furthermore, compute

P such that PP ′ = Σu.

2. Compute q̃k = P−1β1 and define the n × n matrix Q̃ = [N⊥, q̃k] where N⊥ is an

orthonormal basis for the null space of q̃′k such that N ′⊥q̃k = 0 and N ′⊥N⊥ = I.

3. Draw Q∗n−k from the uniform distribution over the space of all (n − k) × (n − k)

dimensional orthogonal matrices with an algorithm of your choice and define Q̄ =(
Ik 0

0 Q∗n−k

)
.

4. Compute Q = Q̃Q̄ and its associated candidate structural impact matrix B = PQ.

Accept the draw of Q if all sign restrictions are satisfied.

6In case of k > 1, recall that additional restrictions will be necessary to identify β1 (Mertens & Ravn;

2013).
7A candidate draw from this prior can be easily obtained, e.g. via a Householder based algorithm (Rubio-

Ramı́rez, Waggoner & Zha; 2010) or a sequence of random Givens matrices (Uhlig; 2005; Fry & Pagan; 2011).

10



If the task is to identify a single shock combining sign restrictions with the identifying

information of a set of k non-exogenous proxies as in Section 2.3, all elements in B are

set-identified. In this case, we can directly specify the uniform prior distribution π(Q|Σ, A)

on the n dimensional orthogonal matrix Q as usually done in the literature. Then, given a

posterior draw of the reduced form parameters, a draw of the (conditional) posterior of Q

can be obtained in a standard fashion (Algorithm 2):

1. Given a draw of the reduced form parameters Σ, draw a candidate matrix Q from the

uniform distribution over the space of n× n dimensional orthogonal matrices with an

algorithm of your choice. Furthermore, compute P such that PP ′ = Σu.

2. Compute the following quantities: E(mtε
′
t) = Q′P−1Σmu′ as well as

• Corr(mit, ε1t) = E(mit, ε1t)/σi for i = 1, . . . , k where σ2
i = Σm,ii.

• φij = E(mit, ε1t) for i = 1, . . . , k as well as the associated contributions to the

variance of mit, ψij = φ2
ij/σ

2
i .

3. Compute the candidate structural impact matrix B = PQ and accept the draw if all

sign and proxy induced moment restrictions (computed in step 2) are satisfied.

To sum up, inference can be decoupled into drawing reduced form parameters and gener-

ating draws of rotation matrix that satisfy the proposed restrictions and therefore, we take

proper account of both sampling and model uncertainty. On a high level, the Gibbs sampler

algorithm can be summarized as follows:

1. (Sampling uncertainty) Iteratively draw a set of reduced form parameters from their

conditional posterior distribution as in equations (2.13) and (2.14).

2. (Model uncertainty) Draw Q subject to the sign restrictions and the proxy induced

moment restrictions by either Algorithm 1 or 2.8

Note that both approaches can also be combined to identify a subset of shocks with IV and

sign restrictions, and further shocks with a combination of both approaches.

Given the recent critique by Baumeister & Hamilton (2015) on the implications of using

the Haar prior in SVAR models, we highlight that one might also use different priors for

π(Q∗n−k|Σ,A) and π(Q|Σ, A). However, this complicates efficient drawing of Q as discussed

in Arias et al. (2018). Alternatively, one might also apply the Robust Bayes approach by

Giacomini & Kitagawa (2015) to conduct inference on the identified set that is robust to the

choice of prior for Q∗n−k and Q.

Another highly relevant point for the practitioner is that many instruments are available

only for a rather short sample period. For example, the shock series used in Gertler &

Karadi (2015) are only available starting in the late 80s and early 90s. If the sample of all

macroeconomic data in the VAR is not adjusted to the same length, a missing data problem

arises. More generally, it might occur that the external variable is not observed in every

period of time. Missing data can be handled in a straightforward way within a Bayesian

8Note that the conditional posteriors of the reduced form parameters do not depend on Q. Therefore, if

desired, step one can be also run in isolation before draws of Q are generated in step two.
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setting. It involves a simple imputation of the missing observations through an additional

step in the Gibbs sampler. We refer to Appendix A for the details.

3 Empirical Applications

We demonstrate the usefulness of our methodological framework in two empirical applica-

tions. In Section 3.1, we use instrumental variables and sign restrictions separately to identify

multiple shocks in an SVAR model for the international oil market. This corresponds to the

type of restrictions described in Section 2.2. In our second application in Section 3.2, we

identify a single shock by combining information from sign restrictions and an external proxy

variable. More specifically, we use the restrictions introduced in Section 2.3 to identify a

monetary policy shock and investigate its effects on key macroeconomic variables, in partic-

ular on the US credit market. Note that for both applications, we specify an uninformative

prior with little influence on the posterior of the reduced form parameters.9

3.1 The Effects of Oil Price Shocks

In this section, we illustrate how the external instrument approach and sign restrictions

can be combined to simultaneously identify a set of different oil market specific shocks.

In particular, we illustrate how an oil supply shock may be identified from using a proxy

variable related to exogenous disruptive oil supply shortages, while at the same time the

demand shocks may be identified from a set of sign restrictions.

In recent years, structural VAR models have been popular tools in investigating and un-

derstanding the dynamics of oil price shocks and their effect on macroeconomic variables.

Different identifying assumptions have been used to disentangle oil supply demand shocks.

While some studies rely only on short-run exclusion restrictions (e.g. Kilian (2009), Stock

& Watson (2016)), there are also a number of studies using sign restrictions on either con-

temporaneous impacts (see Kilian & Murphy (2012) and Baumeister & Hamilton (2015)) or

on multiple horizons (see e.g. Peersman & Van Robays (2012)). As pointed out by Kilian

& Murphy (2012), the use of sign restrictions alone may not be enough to properly identify

the oil market shocks.

An alternative way to identify an oil supply shock has been suggested by Hamilton (2003)

and Kilian (2008b). Both papers construct an ‘exogenous’ time series based on disruptive

events, which are typically related to wars in oil producing countries. Kilian (2008b), for

instance, computes a measure of an oil supply shock based on a counter-factual evolution of

oil production. If this measures is truly exogenous, the series from Kilian (2008b) may also

serve as an external instrument for an oil supply shock. The external instrument approach in

the context of oil prices shocks approach has been used in e.g. Stock & Watson (2012) using

quarterly US data. Their results suggest that both measures, Hamilton’s and Kilian’s series,

may only be weak instruments for the underlying structural oil price shock and consequently

using standard IV inference is potentially problematic.

9We use α0 = 0, V0 = 10 · I, Ψ = I and d = n+ k + 1.
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Instead of relying on either sign restrictions or external instruments alone, we combine

both approaches within our modeling framework. We identify an oil supply shock using a

Kilian (2008b) type proxy variable as an instrument. At the same time, we identify the

aggregate demand and the oil-specific demand shock using the sign restrictions suggested by

Kilian & Murphy (2012). Handling all three shocks simultaneously has the advantage that

all shocks are mutually orthogonal by construction. Moreover, the information in the proxy

variable allows us to be agnostic on the signs of the responses to an oil supply shock and

may also help to narrow down the set of admissible impulse responses.

We use the 3-variable oil-market VAR of Kilian & Murphy (2012) and start with a re-

duced form VAR for yt = (∆prodt, raet, rpot)
′, where ∆prodt is the change in the log of oil

production), raet is a measure of (world) real economic activity, and rpot is the real price of

oil. The data for these three series have been taken from Kilian & Murphy (2012). We fit

a reduced form VAR with p = 12 lags over the sample period 1973M02 to 2008M09 as in

Kilian & Murphy (2012).10

We identify three structural shocks: An adverse oil supply shock εst , an aggregate demand

shock εdt and an oil-specific demand shock εodt . The oil supply shock εst will be identified

by an external instrument mt. As an instrument we use a monthly series of exogenous oil

price shocks constructed as in Kilian (2008b). Since the monthly series from Kilian (2008b)

was not available to us, we have constructed the proxy series for the oil supply shock using

our own calculations based on the US Energy Information Administration (EIA) production

data and following the description in Kilian (2008b). We show the corresponding time series

plot of the instrument in the lower right hand panel of Figure B.1.11 Following e.g. Stock &

Watson (2012), we measure the strength of this instrument by regressing the instrument mt

on the reduced form VAR(12) residuals ût and by computing the corresponding F -statistic.

Using the monthly series, we find an F -statistic of 8.13. This value is much larger than

what Stock & Watson (2012) have found for the corresponding quarterly series indicating

that the monthly instrument series may be not a weak instrument.12 Note that we only use

observations on the proxy for a sample between 1973M02 to 2004M09, which corresponds to

the sample used in Kilian (2008b). Consequently, the instrument and the VAR time series

are observed over different sample periods. As explained in Section 2.4, our method can

easily handle ‘missing data’ on the proxy variable.

The aggregate demand εdt and oil-specific demand shock εodt are identified by a set of

sign restrictions on their contemporaneous impact. Here we simply use the sign restrictions

suggested in Table 1 of Kilian & Murphy (2012). Consequently, in the 3-variable oil market

10We have also tried a lag length of p = 24 as in Kilian & Murphy (2012) and p = 3 as suggested by the

Akaike information criterion. The results are very similar to those reported for p = 12.
11Visual inspection of the series shows a close resemblance to Figure 7 of Kilian (2008b).
12We have rerun this regression using quarterly oil market data and quarterly versions of our exogenous

shock series as well as Kilian’s quarterly series. The corresponding F -statistics are 1.1 and 0.05. Thus it

seems that the weak instrument problem is a consequence of loosing information by converting the external

instrument series to quarterly frequency.
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system our identification scheme can be represented by u∆prod
t

urea
t

urpo
t

 = B

 εst
εdt
εodt

 ,

where the impact matrix is given as

B =

 IV + +

IV + −
IV + +

 . (3.1)

The ‘IV’ in the first column of (3.1) indicates that the supply shock is identified from using

mt as an instrumental variable only, while the signs in column 2 and 3 show the impact

sign restrictions for identifying the two demand shocks. No further restrictions have been

imposed on the model.

[ – insert Figure 1 about here – ]

Figure 1 compares the impulse responses up to horizon h = 36 obtained from combining IV

and sign restriction identification to results obtained from using sign restrictions alone.13 The

solid line is the posterior median and the shaded area correspond to 68% posterior credibility

sets of impulse responses obtained from the combined IV and sign restriction identification.

The dotted lines are obtained from using sign identification only and correspond to the model

of Kilian & Murphy (2012).14

A number of interesting results emerge. First, we observe that identifying the oil supply

shock by the instrumental variable approach changes the magnitude of oil price responses

to oil supply and oil-specific demand shocks. Compared to the sign restriction only model,

we find a smaller increase of the oil price after an adverse oil supply shock εst and a more

pronounced increase following an oil-specific demand shock εodt . This change of impulse

response pattern is reasonable according to Kilian & Murphy (2012). In fact, they find similar

changes in responses once they impose their elasticity bounds. Second, it is interesting to

see that identifying the oil supply shock by the proxy variable has also substantial impact

on the oil-specific demand shock. In particular, compared to the sign restriction only model,

the demand shock εodt also leads to a much less pronounced increase in oil production. Taken

together with the larger price response, this implies a much smaller impact elasticity of oil

supply with respect to the real price of oil (b13/b33).15 Given the consensus of a small short-

run oil supply elasticity, we find that the IV identification for the oil supply shock shifts the

SVAR results to a much more reasonable region even without imposing elasticity bounds.

We also find that replacing the sign restrictions for the supply shock with IV identification

leads to a response in economic activity which is no longer significantly different from zero.

13The panels in the first row show accumulated responses on ∆prodt and consequently show the effects

on the log-level of production.
14In the sign restriction only identification, we follow Kilian & Murphy (2012) and use (−,−,+)′ for the

first column of B in equation (3.1). Also note that we only use sign restrictions, i.e. no additional restrictions

in the form elasticity bounds are imposed. The results shown in Figure 1 are based on a VAR with 12 lags.
15As summary statistics of the posterior distribution of this elasticity we report the 16th and 84th quantile.

For the sign only model we find [0.22; 3.14], while for the IV/sign restriction model we find [0.028; 0.42].
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In other words, using the IV method we do not find support for the sign restriction on real

economic activity imposed by Kilian & Murphy (2012). Compared to the sign restriction

only model, the adverse supply shock identified by the IV approach also leads to a somewhat

sharper drop in oil production. Together with the less pronounced increase in the real price

of oil, this implies a somewhat larger demand elasticity (b11/b31).16 We point out, however,

that the implied values are still around the lower bound of −0.8 discussed for quarterly data

in Baumeister & Peersman (2013). Finally, we note that the aggregate demand shock εdt is

virtually unaffected by using an IV approach for the supply shock.

The oil market example illustrates the usefulness of combining the external instrumental

approach for identification with sign restrictions in SVAR analysis. Exploiting the informa-

tion from an instrument allows to relax some of the sign restrictions while at the same time

leading to response patterns that are more in line with evidence on oil price elasticities.

3.2 The Effects of Monetary Policy Shocks

Since the seminal paper of Sims (1980), the effects of monetary policy shocks on economic

activity have been extensively studied using SVAR models (see Ramey (2016) for a recent

review of the literature). In the early literature, surprises to monetary policy have been

identified by using a Cholesky decomposition of the reduced form VAR covariance matrix,

with the policy instrument ordered below the real variables, see e.g. Christiano, Eichenbaum

& Evans (1999) or Bernanke, Boivin & Eliasz (2005). This identifying assumption implies

that the central bank can respond instantaneously to movements in the real sector of the

economy, while the real variables may only respond with one lag to the policy shock. Such an

identification is in line with macroeconomic models subject to nominal rigidities (Christiano,

Eichenbaum & Evans; 2005). However, it is not yet clear how the effects of monetary policy

shocks can be identified under the presence of fast moving financial variables such as credit

costs or equity prices. A simple recursiveness assumption is unrealistic no matter of the

ordering, since it can be assumed that both, monetary policy and financial markets respond

immediately to any innovation in the system. Therefore, alternative identification schemes

have emerged in recent years that avoid the recursiveness assumption. One strand of the lit-

erature draws on sign restrictions on the impulse responses with respect to the policy shock

(Uhlig; 2005; Faust; 1998). These restrictions are derived from conventional wisdom, such

that a monetary policy tightening should be associated with an increase in the interest rates

but not in consumer prices nor liquidity. Unfortunately, because of the implied set identifi-

cation, this identification procedure often leads to wide confidence intervals around impulse

responses such that results are often not informative enough to allow for policy conclusions.

An alternative branch of the literature uses narrative measures of monetary policy shocks

for identification. Among the most prominent measures are shock series based on readings of

Federal Open Market Committee (FOMC) minutes (Romer & Romer; 2004; Coibion; 2012;

Miranda-Agrippino & Rey; 2018) and factors based on changes in high frequency future

prices around FOMC meetings (Faust, Swanson & Wright; 2004; Gertler & Karadi; 2015;

16The 16th and 84th quantile of the posterior distribution of this elasticity is −1.34 and −0.41 in our

IV/sign restriction model.
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Barakchian & Crowe; 2013; Nakamura & Steinsson; 2013). However, it is a very difficult task

to construct convincing exogenous instruments for monetary policy shocks. With respect

to Romer & Romer (2004), the authors themselves claim that their series is only ‘relatively

free of endogenous and anticipatory movement’. To ensure against remaining endogeneity

they exclude the possibility of a contemporaneous response of the macroeconomic variables

to the narrative series. The exogeneity of instruments based on high frequency future data

is also questionable. Ramey (2016), for example, finds that the main instrument of Gertler

& Karadi (2015) suffers from a nonzero mean, significant autocorrelation and predictability

by Greenbook forecasts.17

Our methodology provides a simple framework to combine identification from sign restric-

tions and such proxy variables. We illustrate that problems arising if either of the methods

is used individually are mitigated to some extent. We start with an identification scheme

based on sign restrictions similar in spirit to Uhlig (2005). To further narrow down the set

of models we restrict the covariance of the implied structural shock and a narrative proxy

series, thereby discarding all models that imply only a loose relation between the SVAR

shock and the narrative series. This sharpens inference of the set identified model, while at

the same time avoiding the potentially wrong assumption of exogeneity of the proxy series.

For our explorations, we use a monthly VAR for key US macroeconomic variables, i.e. we

use a VAR for yt = (ipt, cpit, nbrt,EBPt,R
s
t)
′, where ipt is the log of industrial production,

cpit the log of the consumer price index, nbrt the log of non-borrowed reserves, EBPt the

‘Excess Bond Premium’, a measure of credit market tightness developed by Gilchrist &

Zakrajek (2012), and Rs
t the federal funds rate. Given the availability of the Excess Bond

Premium series and the recent period at the zero lower bound of interest rates, we use a

sample period from 1973M07 until 2007M12.18 We include p = 6 lags to account for sufficient

dynamics of the time series vector. With respect to the narrative series, we use mt = rrt,

the Romer and Romer (R&R) narrative shock series updated by Wieland & Yang (2016).

We focus specifically on the effects of monetary policy shocks on credit markets, which is an

aspect difficult to analyze within a recursive identification scheme. Consider the following

set of identifying restrictions in our structural analysis, where εmpt is the monetary policy

shock:

• R1: Sign restrictions on the contemporaneous impulse responses.

∂E(ipt|Ωt)

∂εmpt
≤ 0,

∂E(cpit|Ωt)

∂εmpt
≤ 0,

∂E(nbrt|Ωt)

∂εmpt
≤ 0,

∂E(Rs
t |Ωt)

∂εmpt
≥ 0.

R1 imposes that a contractionary monetary policy shock does not have (contempora-

neous) positive effects on output, prices and non-borrowed reserves, and no negative

effect on the federal funds rate.

• R2: Corr(εmpt , rrt) > 0, imposing that εmpt is positively correlated with rrt.

• R3: Corr(εmpt , rrt) > Corr(εjt, rrt) for all j 6= mp, imposing that the correlation between

εmpt and rrt is the largest among all shocks in the SVAR.

17Greenbook forecasts are those published by the central bank in their FOMC minutes and therefore

assumed to be in the information set of the central bank.
18An exact description of data sources and corresponding time series plots are provided in Appendix B.2
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• R4: Corr(εmpt , rrt)
2 > Corr(εjt, rrt)

2 for all j 6= mp, imposing that εmpt contributes most

to the variance of rrt among all shocks in the SVAR. Note that if εmpt = ε1t, this is

equivalent to imposing that ψi1 > ψij, j = 2, . . . , n as denoted in Section 2.3.

• R5: E(εjt, rrt) = 0 for all j 6= mp, which corresponds to identification via instrumental

variables.

[ – insert Figure 2 about here – ]

Restrictions R1 and R5 correspond to identification via sign restrictions and instrumental

variables, respectively. Restrictions R2 to R4 will be used in combination with the sign re-

strictions in order to narrow down the set of admissible models without imposing exogeneity.

Note that R4 is typically more restrictive than R3, while R3 is more restrictive than R2.

Note that in order to implement R3 and R4, εjt for j 6= mp need to be identified. Since we

do not attempt to identify these shocks economically, we do this in a statistical sense and

let them be randomly identified through the rotations generated under the uniform prior on

Q.

Figure 2 provides the impulse responses obtained from using five different identification

schemes for a horizon up to four years. The first row corresponds to scheme R1, that is

identifying the policy shock solely with sign restrictions. In line with the prior about the

impulse response function, unexpected tightening is associated with a decrease in industrial

production, prices, liquidity and an increase in the federal funds rate. However, with excep-

tion of output, these effects are almost never significant. With respect to the effects of εmpt
on the credit market (EBPt), nothing can be said since the zero line is contained in the 68%

posterior credibility set at any point of time. The last row of Figure 2 shows the responses

from identification scheme R5, which corresponds to a Bayesian proxy SVAR based on pure

instrumental variable identification. Some puzzling results emerge in the impulse response

functions. First, output increases significantly for about 6 months in response to a policy

tightening, which is certainly at odds with macroeconomic theory. Furthermore, consumer

prices rise sharply and remain significant for up to 3 years. Such a ‘price puzzle’ is frequently

found in recursively identified VARs and often attributed to an omitted variable bias (Chris-

tiano et al.; 1999). Sometimes, including commodity prices in the VAR can mitigate the

puzzle but unfortunately this is not the case for our specification. Ramey (2016) finds simi-

lar responses based on a proxy SVAR with the R&R shocks as instruments. She finds that

including more information in the VAR does not solve the puzzles and argues that they are

likely to be caused by endogeneity of the instrument. This would certainly invalidate the

use of the R&R shock as an instrumental variable, however, does not pose a problem in our

framework.

Rows two, three and four correspond to combining sign restrictions with information of

the R&R series, however, without the need of its exogeneity. Each model adds an additional

restriction and therefore is based on tighter constraints by construction, always narrowing

down the set of admissible models to a somewhat larger extent. We find that adding a

simple sign restriction on the correlation (R2) does not change the impulse response func-

tions substantially. Minor effects are found in the persistence of the interest rates and the

significance of the response of industrial production. Unfortunately, still nothing can be
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said on the effects on credit market tightness, which remains insignificant. This implies that

the set of monetary policy shocks of the sign restriction only model are already positively

correlated with the R&R shock which is why adding R2 does not sharpen inference. How-

ever, additionally including restriction R3 makes a considerable difference (row 3 of Figure

2). The effects on industrial production and the interest rate are more pronounced, while

for prices and liquidity no significant effects are found. With respect to credit markets, the

response is positive and a significant tightening is found after six months. As expected,

adding restrictions R4 (in addition to R2 and R3) further discards some models, retaining

only those where the monetary policy shock additionally contributes most to the variance

of the R&R series. The impulse responses in row 4 of Figure 2 indicate that the effects on

industrial production and interest rates have similar magnitudes as in the point identified

proxy SVAR (R5), with the main difference that the former variable is not subject to the

increase in the first months. Also the prize puzzle is found to be less pronounced and the

increase is insignificant in most of the periods. Interestingly, the response of the excess bond

premium shows a significant tightening of the credit market similar in magnitude to the

proxy SVAR.

In Figure C.3 of Appendix C, we provide additional plots of impulse response functions

that arise if only R2, R2-R3 and R2-R4 are used to identify the model. We find that R2

and R2-R3 in isolation yield too little information to draw meaningful economic conclusions.

Further including R4 tightens the identified set by a large extent, however, the same puzzling

positive short run response on output as well as a pronounced price puzzle arise as in point-

identification by IV (R5). Therefore, we believe that the combination with sign restrictions

(R1) might be more sensible in this scenario since economic theory allows to exclude this

patterns a priori.

Summarizing our results, we illustrate that combining sign restrictions with restrictions

based on external narrative series can sharpen inference substantially and lead to economi-

cally meaningful results. In this context, we also propose a set of restrictions which differ in

their strength but are all automatic in a sense that no threshold value (on e.g. correlations)

has to be chosen by the researcher. From an empirical point of view, we find that based on

our identification scheme, there is evidence for a significant tightening of credit markets in

response to a monetary policy shock. This highlights the importance of a credit channel in

the transmission mechanism. Such evidence supports the finding of Gertler & Karadi (2015)

and implies that theoretical models should pay special attention to this feature.

4 Conclusion

For the identification of structural shocks within SVAR models, we suggest to combine

sign restrictions with the information in time series that act as proxy variables for the

underlying structural shocks. We propose an econometric framework that incorporates the

information on the proxy variables by augmenting the SVAR with equations that relate the

proxy variables to the structural shocks.

Our econometric framework is fairly general in the following sense: First, the frame-

work allows to simultaneously identify different shocks using either sign restrictions (set-
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identification) or an external instrument approach (point-identification), always ensuring

that all structural shocks are orthogonal. Second, the setup also allows to (set) identify

a single shock by combining sign restrictions and the information of external proxy vari-

ables, without assuming their exogeneity. Compared to a pure sign restriction approach,

the additional information from the external proxy series may help to narrow down the set

of admissible models and leads to sharper results, in e.g. impulse response analysis. We

essentially discard models that imply structural shocks that have no close relation to the

external proxy time series. We measure this relation e.g. by the variance contribution of

the shock. Third, the setup also nests the pure sign restriction approach and the pure ex-

ternal instrument variable case. Estimation and inference is done in a full Bayesian setup,

which accounts for both, model and estimation uncertainty. An additional advantage of the

Bayesian setup is that the inference framework requires no modifications to handle the case

of weak instruments and allows for straightforward handling of missing data.

We illustrate the usefulness of our method in two empirical applications. In the first appli-

cation, we use a standard oil market model from the literature and identify simultaneously

an oil supply shock using an external proxy variable as an instrument, and two demand

shocks by using sign restrictions. Employing this identification leads to impulse responses

that imply much more reasonable oil supply elasticities than a pure sign restriction model.

In the second application, we analyze the effects of monetary policy shocks focusing on the

credit market. We find that using sign restrictions alone is not informative enough with

wide error bands around the response of the excess bond premium. Once we combine the

sign restrictions with external information coming from a proxy variable of monetary policy

shocks, we find a significant tightening of credit markets.

Overall, our paper suggests that combining sign restrictions and external proxy variables

for structural shock identification is a promising way to sharpen results from SVAR models.
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Figure 1: Impulse responses in oil market SVAR. Dotted lines: Identification with sign

restrictions only. Solid lines and shaded areas: Identification by IV for oil supply shock εst
and sign restrictions for shocks to aggregate demand εdt and oil specific demand εodt . Sample

period: 1973M02–2008M09.
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Figure 2: Impulse responses in the monetary policy SVAR obtained by using different iden-

tifying restrictions. Posterior median (solid line) and 68% posterior credibility sets (dotted

lines). Sample period: 1973M07-2007M12
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A Gibbs Sampler for Missing Data

Assume that some of the observationsms are missing at random where s denotes the period of

missing data. Instead of simply discarding all values of ys, we advocate to add an additional

step in the Gibbs sampler which imputes the missing values. For this purpose, we need to

derive the conditional distribution p(ms|Y,M,Σ, A). Recall the joint likelihood of {yt,mt}:

yt = Axt + ut,

(
ut

mt

)
∼ N

(
0,

(
Σu Σmu

Σmu′ Σm

))
.

Using standard results of multivariate statistics, the conditional distribution of mt is given

as p(mt|Y,M,Σ, A) ∼ N (m̄t, V̄t) where

m̄t =Σmu′Σ
−1
u (yt − Axt),

V̄t =Σm − Σmu′Σ
−1
u Σmu.

Therefore, a modified Gibbs sampler involves drawing iteratively from the following blocks

to generate draws of the reduced form parameters:

1. Draw the autoregressive coefficients from α|ỹ,Σ ∼ N (ᾱ, V̄ ) as in Section 2.4.

2. Draw the inverse of the covariance matrix Σ−1|ỹ, α ∼ W((Ψ+S)−1, d+T ) as in Section

2.4.

3. Impute all the missing values ms of the proxy variables by drawing each of them from

a normal distribution ms|ỹ,Σ, A ∼ N (m̄s, V̄s) where

m̄s =Σmu′Σ
−1
u (ys − Axs),

V̄s =Σm − Σmu′Σ
−1
u Σmu.
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B Data

B.1 Data in Oil Price Shock Example

The data for the oil market VAR have been taken from the web appendix S2 in Kilian &

Murphy (2012). A quarterly time series for the ‘exogenous’ oil price shock is available on

Lutz Kilian’s homepage. Since a corresponding time series on the monthly frequency is

not readily available, we have constructed it from oil production data of the EIA following

exactly the approach described in Kilian (2008b). A time series plot of the variables is shown

in Figure B.1.
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Figure B.1: Time series plots of oil market variables. Sample: 1973M01-2008M09.

B.2 Data in Monetary Policy Shock Example

The time series of the monetary policy VAR were obtained from the following sources.

Industrial production, the consumer price index and the federal funds rate were obtained

from FRED with series id INDPRO, CPIAUCSL and FEDFUNDS, respectively. The data of the

Excess Bond Premium and the Romer and Romer shock were obtained from Valerie Ramey’s

homepage and are part of the replication files of her recent chapter in the Handbook of

Macroeconomics (Ramey; 2016). A time series plot for each of the series is given in Figure

B.2.
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Figure B.2: Time series plots of monetary policy VAR variables. Sample: 1973M07-2007M12.
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C Additional Figures
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Figure C.3: Impulse responses in the monetary policy SVAR obtained by using different

identifying restrictions. The rows (top to bottom) of the figure show results from using

the restriction sets R1, R2, R2+R3, R2+R3+R4, and R5, respectively (see Section 3.2

for details). Posterior median (solid line) and 68% posterior credibility sets (dotted lines).

Sample period: 1973M07-2007M12.
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