
Origins of Spurious Long Memory∗

Christian Leschinski and Philipp Sibbertsen1

Institute of Statistics, Faculty of Economics and Management,

Leibniz University Hannover, Germany

Abstract

We consider a large class of structural change processes that generate spurious long

memory. Among others, this class encompasses structural breaks as well as random

level shift processes and smooth trends. The properties of these processes are studied

based on a simple representation of their discrete Fourier transform. We find, that

under very general conditions all of the models nested in this class generate poles in the

periodogram at the zero frequency. These are of order OpT q, instead of the usual OpT 2dq

for long memory processes and OpT 2q for a random walk. This order arises whenever

both the mean changes and sample fractions at which they occur are non-degenerate,

asymptotically.
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1 Introduction

Long memory has been defined by an hyperbolic decay of the autocorrelation function

or equivalently by the order of a pole at the origin of the spectral density of a time

series. Since Künsch (1986) and Bhattacharya et al. (1983) it has been discussed that

this behavior can be artificially induced by deterministic trends such as slowly decaying

trends as in Künsch (1986) or Bhattacharya et al. (1983) or structural breaks as in

Parke (1999), Granger and Teräsvirta (1999), Gourieroux and Jasiak (2001) or Diebold

and Inoue (2001), among many others. All these processes share the property that

they mimic the autocorrelation structure of a long-memory process but none of them

is self-similar or fulfills a functional central limit theorem in the sense that the partial

sums of these processes converge to a fractional Brownian motion. Therefore, these

processes share some but not all properties with true long-memory processes. These

type of processes are well known to be called spurious long memory.

Typically, contributions on spurious long memory study either the properties of a specific

estimator under some form of structural change, or they study specific processes and

the properties of the autocorrelation functions that they generate.

For example, Bhattacharya et al. (1983) show that a slowly decaying trend biases the

rescaled range statistic as an estimator for the memory parameter. Similarly, Granger

and Teräsvirta (1999) and Granger and Hyung (2004) show that breaks in the mean

can lead to a bias of the GPH estimator towards indicating long-range dependencies.

Gourieroux and Jasiak (2001) show that breaks in the mean of a time series can also

lead to biased estimates of the covariance structure of the process again falsely indicating

long memory.

Other than the before mentioned papers Künsch (1986), Parke (1999) and Diebold and

Inoue (2001) construct diverse processes which do share the autocorrelation structure

with a long-memory time series at least in finite samples. Künsch (1986) considers

monotonic deterministic trends. Parke (1999) constructs a random level shift process

where the shift probability is derived from a heavy tailed distribution. A similar process

is considered in Mikosch et al. (2002). This process has the same autocorrelation function

as a long memory process. However, Davidson and Sibbertsen (2005) show that its

partial sums converge to a Levy motion with independent increments not exhibiting

long memory. Only cross-sectional aggregation of these processes generates long memory,

asymptotically.

Diebold and Inoue (2001) construct several types of random level shift processes all

sharing the property that the expected number of shifts grows more slowly than the

sample size. They show that these processes have a similar autocorrelation function to

a long-memory process.

In the more recent literature Qu and Perron (2007) derived the order of the pole in the

periodogram of long memory processes under ”rare shift asymptotics” which means that

the expected number of shifts is finite even though the sample size grows to infinity.

They show that the periodogram of this process is of order Opλ´2T´1q. Qu (2011) ex-
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tends this result to smooth trends, but is only able to establish the order as an upper

bound. Similar results are obtained by Iacone (2010). McCloskey and Perron (2013)

also establish this order for deterministic shifts and a class of fractional trends. These

findings are of huge practical importance, since estimators such as those of McCloskey

and Perron (2013) and Hou and Perron (2014) and test like that of Qu (2011) use them

to detect spurious long memory and to separate true and spurious memory.

However, all of these findings are based on specific data generating processes on spe-

cific estimators so that they allow only limited generalizations. Here, we contribute to

this literature by considering a versatile structural change model that nests all of the

processes discussed above. We derive a simple representation of the discrete Fourier

transform of these processes and use these to study the behavior of their periodograms.

This allows us to establish conditions under which the order derived by Qu and Perron

(2007), Qu (2011) and McCloskey and Perron (2013) arises. That is whenever there are

mean changes at sample fractions that are non-degenerate asymptotically. Furthermore,

we show that the established order is exact.

The rest of the paper is organized as follows. Section 2 gives a short discussion of the

orders of poles for some typical processes. Section 3 discusses our structural change

model and gives some first results on its DFT and the properties of its components. In

Section 4 we use these results to establish the orders of the DFT and the periodogram

of our model. The relationship of these results to other findings in the literature is

discussed in Section 5. Finally, Section 6 concludes.

2 Orders of the Periodogram

We say a stochastic process exhibits long memory if the spectral density behaves near

the origin as

f pλq „Gλ´2d

for λÑ 0`, where 0 ă d ă 1{2 is the memory parameter. We are interested in the

behavior of the periodogram at the Fourier frequencies λ j “ p2π jq{T , local to the origin

as λ j Ñ 0`, or equivalently j{T Ñ 0. Therefore, for fixed j, the periodogram of a true

long memory process is

Ipλ jq “ OP

´

λ´2d
j

¯

“ OP

˜

ˆ

2π j
T

˙´2d
¸

“ OP
`

T 2d˘ .

Therefore, the periodogram at the Fourier frequency j“ tT εu for ε P r0,1q grows at rate

T 2dp1´εq as the sample size increases.
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Similarly, the periodogram of a random walk is of order

Ipλ jq “ OPpλ
´2
j q “ OPpT 2q,

for fixed j. The random level shift process of Qu and Perron (2007) and the structural

break cases in McCloskey and Perron (2013), on the other hand, are found to generate

periodograms that are of order

OPpλ
´2
j T´1q “ OPpT q, (1)

which is faster than that of a stationary long memory process, but more slowly than a

unit root process. For j“ tT εu this is OpT 1´2εq.

In general, we are interested in component models of the form

yt “ µt` xt,

where xt is a zero mean time series process that possibly has long memory and µt is a

time-varying mean that can be stochastic or deterministic and t “ 1, ...,T . Both xt and

µt are qˆ1 vector valued processes.

From the results above, it is clear to see that it depends on the position parameter

ε, whether the periodogram is dominated by the structural change component that is

OpT 1´2εq or the long memory component that is T 2dp1´εq. This is the property used by

the procedures of Qu and Perron (2007), Qu (2011), McCloskey and Perron (2013), Hou

and Perron (2014) and Sibbertsen et al. (2015). Therefore, the applicability of these

procedures depends on whether the order in (1) is specific to the DGPs considered or

whether it generalizes to other structural change processes.

3 A General Model of Structural Change and its Fourier Trans-

form

In this paper our focus is on the mean change process µt. Define µ“ T´1řT
t“1µt. Then

µt can be expressed as

µt “ µ0`

K
ÿ

k“1

∆µkIpt ě Tkq, (2)

where µ0 is the initial offset of the first mean from the sample mean µ0 “ µ1´µ. The

variable K is the number of observations for which there is a structural change in the

mean relative to the previous observation and Tk is the point in time at which the k-th

change occurs. If we set T0 “ 0, then we can also express µ as µ“
řK

k“0µkpTk`1´Tkq{T .

Consider the versatility of this representation. For deterministic structural breaks this

representation is obvious and commonly used, albeit µ0 usually represents the mean of
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the initial observations and not the offset from the time mean.

If the changes ∆µk and the breakpoints Tk are stochastic, then the process nests a random

level shift process. Even a random walk is nested in (2), if K “ T , Tk “ t for all k“ t and

the ∆µk are a martingale difference sequence.

Similarly, deterministic trends can be represented as in (2). Deterministic trends are

usually modeled as functions hpsq on r0,1s. Consider st “ t{T for t “ 1, ...,T , then

we have hpstq “ hp0q `
řt

k“1 phpk{T q´hppk´1q{T qq and obviously µt “ hpstq if ∆µk “

phpk{T q´hppk´1q{T qq, K“T , and Tk“ 1,2, ...,T . Restrictions on hpsq - such as Lipschitz-

continuity - correspond to restrictions on the ∆µk.

To study the spectral behavior of (2), denote the discrete Fourier transform of zt by

wzpλq “
1?
2πT

řT
t“1 zteiλt. Then we have the following result for µt.

Lemma 1. The discrete Fourier transform of the process in (2) can be represented as

wµpλ jq “ ´
1

?
2πT

K
ÿ

k“1

∆µkDTkpλ jq,

where DTkpλq “
řTk

t“1 eiλt is a version of the Dirichlet kernel.

Proof.

wµpλq “
1

?
2πT

T
ÿ

t“1

µteiλt

“
1

?
2πT

T
ÿ

t“1

#

µ0`

K
ÿ

k“1

Ipt ě Tkq∆µk

+

eiλt

“
1

?
2πT

#

µ0

T
ÿ

t“1

eiλt`

T
ÿ

t“1

K
ÿ

k“1

Ipt ě Tkq∆µkeiλt

+

“
1

?
2πT

#

µ0

T
ÿ

t“1

eiλt`

K
ÿ

k“1

∆µk

T
ÿ

t“1

Ipt ě Tkqeiλt

+

.

Here,

T
ÿ

t“1

Ipt ě Tkqeiλt “

T
ÿ

t“Tk

eiλt

“

T
ÿ

t“1

eiλt´

Tk
ÿ

t“1

eiλt

“ DT pλq´DTkpλq.
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Therefore,

wµpλq “
1

?
2πT

#

DT pλqµ0`

K
ÿ

k“1

∆µk rDT pλq´DTkpλqs

+

“
1

?
2πT

#

DT pλqµ0`

K
ÿ

k“1

∆µkDT pλq´
K
ÿ

k“1

∆µkDTkpλq

+

“
1

?
2πT

#«

µ0`

K
ÿ

k“1

∆µk

ff

DT pλq´
K
ÿ

k“1

∆µkDTkpλq

+

.

Furthermore, we have

DT pλq “
eipT`1qλ´ eiλ

eiλ´1
“ eipT´1qλ{2 sinpTλ{2q

sinpλ{2q
. (3)

Note that λ jT “ 2π j, eipT`1qλ“ eiλT eiλ and ei2π j“ cosp2π jq` isinp2π jq“ cosp2πq` isinp2πq“

1. Therefore,

DT pλ jq “
eiλ´ eiλ

eiλ´1
“ 0.

�

Lemma 1 shows that the DFT of a structural change process can be represented as the

sum of changes of the mean - each weighted by a Dirichlet kernel that depends on the

location of the mean change.

It is well known that the DFT of a constant is zero at the Fourier frequencies λ j. This is

the mechanism behind the self-centering property of the periodogram and the last step

in the proof of Lemma 1. However, the DFT of an indicator function is non-zero at the

Fourier frequencies.

We now derive the order of the Dirichlet kernel.

Lemma 2. As T Ñ8, we have for TkpT q{T Ñ δk and 0ă δkă 1, DTkpλ jq“ T p1` iδkπ jqδk.

Proof. From the second expression in (3) we can write:

DTkpλ jq “
exppipTk´1qλ j{2qsinpTkλ j{2q

sinpλ j{2q
“

exppi Tk´1
T π jqsinpTk

T π jq

sinpπ j
T q

“
exppiδkπ jqsinpδkπ jq

sinpπ j
T q

`oPp1q

“
p1` iδkπ jqsinpδkπ jq

sinpπ j
T q

`oPp1q

“ T p1` iδkπ jqδk,

where the third line is obtained from the Laurent series of the exponential function at

- 6 -



zero and the fourth line is from the Laurent series of the sine functions. �

Clearly, from Lemma 2, both the real and the imaginary parts of the Dirichlet kernel have

order OpT q and the order is exact. The lemma covers the typical case of a structural

change after some fixed proportion of the sample. This includes random level shift

processes with a rare shift asymptotic where the expected number of shifts is finite as

well as deterministic shifts.

4 The Order of Discrete Fourier Transforms and Periodograms

Based on the representation result from Lemma 1 and the results on the order of the

Dirichlet kernel in Lemma 2, we can now derive the order of the DFT.

Theorem 1. For T Ñ8, we have if ErKs ă8, 1ą Tk{T “ δk ą 0, and D ∆µk such that

limTÑ8∆µk ą 0, then Repwµpλ jqq “ OPp
?

T q and Impwµpλ jqq “ OPp
?

T q.

Proof. From Lemma 1,

wµpλ jq “ ´
1

?
2πT

K
ÿ

k“1

∆µkDTkpλ jq,

and from Lemma 2, we have DTk “ OPpT q, such that

wµpλ jq “ OpT´1{2q

K
ÿ

k“1

OPpT q “ OPpT 1{2q,

for both the real and imaginary part. �

The condition ErKs ă 8, as T Ñ8, in Theorem 1 implies that µt is not ergodic. If

K Ñ 8 and Tk{T is vanishing asymptotically and not fixed, then the summands in
řK

k“1∆µkDTkpλ jq might cancel out asymptotically. This would for example be the case

for a standard Markov-switching autoregressive model with fixed transition probabilities.

Since the orders in Lemma 2 are exact, so are those in Theorem 1. Obviously, the

stochastic rate becomes deterministic, if µt is deterministic.

For finite K it is obvious from Lemma 1 that the DFT will have the order of the Dirichlet

kernel when there is a ∆µk ą 0. However, in the case of a Lipschitz continuous trend, we

have |hprq´hpsq| ď K̃|r´ s|. Therefore, at successive observations, t and t´1, we have

∆µt ď K̃{T Ñ8. Therefore, the behavior of the DFT is not obvious. This situation is

covered in the following Theorem.

Theorem 2. Let hpsq be (piecewise) Lipschitz-continuous on r0,1s. Furthermore, let

hpsq ‰ hprq for some s‰ r, where both s,r P p0,1q. Then wµpλq “ Op
?

T q.

Proof. Assume without loss of generality, that są r, and let Ts “ sT and Tr “ rT . Then,
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by summation-by-parts,

S pr, s,T,λ jq “

Ts
ÿ

t“Tr

∆µtDtpλ jq “ µTs DTspλ jq´µTr DTrpλ jq´

Ts
ÿ

t“Tr`1

`

Dtpλ jq´Dt´1pλ jq
˘

. (4)

Defining δ“ µTs ´µTr , we have

“ µTrpDTspλ jq´DTrpλ jqq`δDTspλ jq´

Ts
ÿ

t“Tr`1

`

Dtpλ jq´Dt´1pλ jq
˘

. (5)

From Lemma 2, we have DNpλ jq “ N` iπ jpN{T q2T . Therefore,

Dtpλ jq´Dt´1pλ jq “ t` ipt{T q2π jT ´ppt´1q` ippt´1q{T q2π jT q

“ 1`
iπ j
T
pt2´pt´1q2q

“ 1`
2iπ j

T
pt`1{2q.

and DTspλ jq´DTrpλ jq “ sT ´ rT ` iπ jT ps2´ r2q.

Using this, we can rewrite

RepS pr, s,T,λ jqq “ TµTsps´ rq`δsT ´
Ts
ÿ

t“Tr`1

µt´1. (6)

Obviously, each term in (6) is OpT q, unless µt “ µ for all t “ 1, ...,T . In this case δ “ 0

and
řTs

t“Tr`1µt´1 “ µT ps´ rq, such that RepS pr, s,T,λ jqq “ 0. If µt is not constant, the

sum can no further be simplified and RepS pr, s,T,λ jqq “ OpT q is exact.

Similarly, we have for the imaginary part,

ImpS pr, s,T,λ jqq “ µTsπ jT ps2´ r2q`δs2π jT ´
2π j
T

#

Ts
ÿ

t“Tr`1

tµt´1`1{2
Ts
ÿ

t“Tr`1

µt´1

+

. (7)

Again, for constant µt, we have δ“ 0 and

Ts
ÿ

t“Tr`1

t “
psT q2´ sT

2
´
prT `1q2´prT `1q

2

as well as

Ts
ÿ

t“Tr`1

1“ sT ´prT `1q.

So that the imaginary part is Op1q, asymptotically. For non-constant µt, (7) can not be

simplified any further and again, the order OpT q for S pr, s,T,λ jq is exact.
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Finally, the order of the DFT follows from

wµpλ jq “ ´
S p0,r,T,λ jq`S pr, s,T,λ jq`S ps,1,T,λ jq

?
2πT

,

where the first and last summand converge to zero, if the mean in these segments remains

constant. In case of mean changes in other segments then rr, ss, the same arguments

apply for each additional segment.

To deal with jumps between segments, we can express the DFT as the sum of the

segments that can be treated as in (4) and the sum of the jumps between the segments

for which Theorem 1 applies. �

Theorem 2 gives the exact order of the periodogram of Lipschitz continuous functions.

Previous results such as that of Qu (2011) only established Op
?

T q as an upper bound.

We therefore find that trends in fact have the same effect on the order of the pole as

deterministic or stochastic structural breaks, if the condition is fulfilled that the function

is non-constant between two non-degenerate sample fractions.

From Theorems 1 and 2, it is straightforward to establish the order of the periodogram

of the mean change model in (2).

Corollary 1. For every random process that can be represented as in (2) with an asymp-

totically finite number of shifts at non-degenerate sample fractions and for every piece-

wise Lipschitz-continuous process with change between non-degenerate sample fractions

s and r the periodogram is of order OPpT q.

Proof. From Iµpλ jq “ wµpλ jqw˚µpλ jq, the order follows directly from Theorems 1 and 2,

as the square of the order of the DFT. �

If the structural change processes considered in Corollary 1 are deterministic, then the

order is deterministic as well.

5 Relationship to other Results

In this section we discuss some of the processes considered in the literature as spurious

long memory which are covered by our findings. In our Theorem 1 we cover the random

level shift process with rare shifts asymptotics as considered by Qu and Perron (2007),

Qu (2011) and McCloskey and Perron (2013). Obviously the periodogram of these

processes has a pole at the origin with a divergence rate of OPpT q. Remembering that

long memory processes have a divergence rate of OPpλ
´2dq “ OPpT 2dq, this would imply

a memory parameter of d “ 1{2. A fractionally integrated process with d “ 0.5 would

be degenerate with asymptotic autocorrelation function equal to 1 for all lags.

Theorem 2 covers the case of smooth trends as well as deterministic structural breaks.

Deterministic structural breaks are the null model in the tests of Berkes et al. (2006)
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and Yau and Davis (2012) against spurious long memory. Our Theorem shows that

deterministic structural breaks have the same rate of divergence at the pole of the

periodogram.

Note that Theorem 1 does not impose any condition on the nature of the shift process

except that it generates an asymptotically finite number of shifts at non-degenerate

sample fractions and the size of the shifts is non-negligible, asymptotically. The shift

sizes can be serially correlated, break probabilities can be non-constant and depend on

exogenous variables and so on. Therefore, this is a considerable generalization relative

to previous results that were specifically based on non-stationary random level shift

processes.

An example that is covered by Theorem 1 is the Markov switching autoregressive pro-

cesses in which the probabilities to switch from one regime to any of the others are

OpT´1q.

6 Conclusion

In this note we derive simple representations for the discrete Fourier transform of struc-

tural change models as well as deterministic trends and study their properties.

While many of the contributions on spurious long memory that are discussed in Section

1 present processes that have periodograms of order OpT 2dq, our results show that struc-

tural change at non-degenerate break fractions always implies poles in the periodogram

that are of order OpT q.

Therefore, methods such as those of Qu and Perron (2007), Qu (2011), McCloskey and

Perron (2013), Hou and Perron (2014) and Sibbertsen et al. (2015) that rely on this

order are widely applicable.
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