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Abstract

This paper provides a multivariate score-type test against spurious long memory. In

particular, we prove the consistency of the test against the alternatives of random level

shifts and smooth trends. The test statistic is based on the weighted sum of the partial

derivatives of the multivariate local Whittle likelihood function. By choosing the weight-

ing scheme accordingly, one can either test the complete spectral density matrix for a

misspecification local to the origin, or one can focus on particular rows and columns.

In the first case, we obtain a pivotal limiting distribution, whereas we can use the sec-

ond weighting scheme in a subsequent step to evaluate which series of the multivariate

system might cause a possible rejection.

To apply the test to fractionally cointegrated series, the test statistic is calculated for

the linearly transformed system after estimating the cointegrating matrix. We derive

the limiting distribution and show consistency under this procedure. A Monte Carlo

analysis shows good finite sample properties of the test in terms of size and power.

To highlight the usefulness of the test in practice, we apply it to the log-absolute returns

and the log-realized volatilities of the S&P 500, the DAX, the FTSE, and the NIKKEI.

It is found that the log-absolute return of the S&P 500 is not correctly specified as a

pure long memory process. In contrast to that, there is no indication of spurious long

memory in the realized volatility series.
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1 Introduction

Distinguishing between true and spurious long memory is of major importance for the

empirical modeling of many macroeconomic and financial time series. Usually, series

with slowly decaying empirical autocorrelation functions are modeled as fractionally in-

tegrated processes. However, several authors point out that other data generating pro-

cesses such as nonlinear time varying coefficient models, random level shift processes,

STOPBREAK models, and markov switching models can generate similar autocovari-

ance features. Examples of this literature include Granger and Ding (1996), Lobato and

Savin (1998), Diebold and Inoue (2001), Granger and Hyung (2004) and Mikosch and

Stărică (2004).

Motivated by these findings, several tests have been proposed to distinguish true and

spurious long memory. Berkes et al. (2006) or Yau and Davis (2012), among others, sug-

gest tests for the null hypothesis of spurious long memory. Tests for the null hypothesis

of true long memory include Dolado et al. (2005), Shimotsu (2006), Ohanissian et al.

(2008), Haldrup and Kruse (2014) and Davidson and Rambaccussing (2015).

Perron and Qu (2010) derive the properties of the periodogram of processes with short

memory and level shifts. They find that for low frequencies the effect of the shifts

dominates the behavior of the spectral density and the implied value of d is one. For

larger frequencies, on the other hand, the short memory component is dominant and the

implied d is zero. These findings explain the sensitivity of semiparametric d-estimators

with respect to the bandwidth choice. Therefore, Perron and Qu (2010) propose a test

statistic based on the difference between memory parameters estimated with different

bandwidths. The same results on the spectral density of level shift processes are used

by Qu (2011), who derives a score-type test that is based on the derivative of the local

Whittle likelihood function. Simulation studies conducted by Qu (2011) and Leccadito

et al. (2015) show that against a wide range of alternatives the Qu test has the best

power among the tests suggested so far.

Closely related to our paper are also multivariate extensions of the local Whittle estima-

tor. In particular, Lobato (1999) and Shimotsu (2007) extend the local Whittle estimator

to a multivariate framework. Extensions of the local Whittle estimator to fractionally

cointegrated systems have been considered by Nielsen (2007), Robinson (2008b) and

Shimotsu (2012).

We contribute to this literature by generalizing the approach of Qu (2011) to test for

true long memory in multivariate processes. The test statistic is based on the weighted

sum of the partial derivatives of the multivariate local Whittle likelihood function in the

form introduced by Shimotsu (2007). In this specification the cross-spectral densities

contain information on the phase and coherence of the process. As Kechagias and

- 2 -



Pipiras (2015) show, the assumed form of the spectral density matrix local to the origin

is specific to causal filters with hyperbolically decaying coefficients. Therefore, our test

can be interpreted as a general test on the correct specification of a multivariate series

as a causal long memory process. If one is willing to assume that the process is causal,

a rejection of the test can be interpreted as evidence for low frequency contaminations.

The limiting distribution of the test statistic is derived for general weights. However, by

choosing the weighting scheme accordingly, one can obtain a pivotal distribution that

coincides with that of the univariate Qu test. Furthermore, it is also possible to choose

the weights so that one can gain further insights into which components of a multivariate

process cause a rejection.

To our knowledge, this is the first multivariate test against spurious long memory. The

idea behind the test is that under the null hypothesis the derivative of the local Whittle

likelihood function evaluated at d̂ for the first bmrc ≤m Fourier frequencies with r ∈ [ε,1]
is approximately equal to zero. Under the alternative the derivative diverges if it is

evaluated for a lower number of Fourier frequencies than used for the estimation of d,

since it is based on a wrong assumption about the shape of the spectral density.

Our test statistic is derived in a multivariate long memory framework which excludes

fractional cointegration. Nevertheless, we show that the test can easily be modified for

the situation of fractionally cointegrated data.

In the empirical example we apply our test to the log-absolute returns and log-realized

volatilities of four stock market indices: the Standard & Poor 500, the DAX, the FTSE

and the NIKKEI. Even though especially the log-absolute values of S&P 500 returns

have been studied in many of the aforementioned contributions on the possibility of

spurious long memory, the tests proposed so far often fail to reject the null hypothesis

of a true long-memory process. We therefore reconsider this example by extending it to

a multivariate framework and we can clearly reject the null hypothesis of a pure long

memory process for the S&P 500. For realized volatility series of these four stock market

indices, on the other hand, we do not find any evidence of spurious long memory.

The rest of the paper is structured as follows. After stating the model and the assump-

tions in Section 2, the test statistic is derived in Section 3. Some Monte Carlo simulations

are given in Section 4. The empirical application is presented in Section 5 and Section 6

concludes. A supplementary appendix is provided on the authors webpages. It contains

some of the more standard proofs, details on the pre-whitening procedure, a series of

additional Monte Carlo experiments and robustness checks for the empirical application.
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2 Model Specification and Assumptions

The spectral density of a multivariate long-memory process Xt, with d = (d1,d2, ...,dq)′

and −1/2 < d1, . . . ,dq < 1/2 being the memory vector, is local to the origin given by

f (λ j) ∼ Λ j(d)GΛ∗j(d), (1)

with Λ j(d) = diag(Λ ja(d)) and Λ ja(d) = λ−da
j ei(π−λ j)da/2, where λ j = 2π j/T denotes the j-th

Fourier frequency, and j = 1, . . . , bT/2c. G is a real, positive definite, symmetric and finite

matrix and the asterix A∗ denotes the conjugate transpose of the matrix A. Further, the

imaginary number is denoted by i and da is the memory parameter in dimension a.

The assumptions on G exclude fractional cointegration as they stand. We first derive

our test statistic under this assumption and consider the case of fractionally cointegrated

series afterwards in Section 3.3.

The spectral density representation in (1) accounts for phase shifts in the spectrum.

Phase shifts occur as the covariance function γ(h) of the process is no longer necessarily

time-reversible in the multivariate setting, that is γ(h) , γ(−h). Therefore, the off-

diagonal elements in row a and column b of the spectral matrix of Xt contain complex

valued elements which are not vanishing at λ = 0 and which depend on the difference

between the memory parameters da and db. These complex valued elements vanish if

and only if the matrix G in (1) is diagonal or da = d for all dimensions a.

A possible example is the multivariate q-dimensional FIVARMA model
(1−L)d1 0

. . .

0 (1−L)dq




X1t −EX1t
...

Xqt −EXqt

 =


u1t
...

uqt

 ,
with t = 1, . . . ,T . This can alternatively be written as

D(d1, ...,dq)(Xt −EXt) = ut, (2)

where Xt is a (q× 1) column vector and ut = (u1t,u2t, ...,uqt)′ is a covariance stationary

process with spectral density fu(λ) which is bounded and bounded away from zero in a

matrix sense at the zero frequency, λ= 0. The operator D(d1, ...,dq) = diag((1−L)d1 , ..., (1−
L)dq) is a (q×q) matrix polynomial with zeros on the non-diagonal elements.

In a univariate framework a type II fractionally integrated process (e.g., Marinucci and

Robinson, 1999) is defined by (1−L)d xt = ut1(t ≥ 0), where ut is an I(0) process having the

Wold representation ut =
∑∞

j=0 θ jεt− j with
∑∞

j=0 ‖θ j‖
2 <∞. The innovations εt are assumed

to be a martingale difference sequence satisfying E(εt|Ft−1) = 0 and E(ε2
t |Ft−1) <∞ with
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Ft =σ({εs, s ≤ t}). Furthermore, it is ut = 0 for t ≤ 0. The order of fractional integration is

given by d and (1−L)d is defined by its binomial expansion (1−L)d =
∑∞

j=0
Γ( j−d)

Γ(−d)Γ( j+1) L j,

with Γ(z) =
∫ ∞

0 tz−1e−tdt. L denotes the Backshift operator, i.e. Let = et−1. Details about

recent developments on long-memory time series can be found in Beran et al. (2013) or

Giraitis et al. (2012).

The spectral density of the process ut in (2) is assumed to fulfill the local condition

fu(λ) ∼G, as λ→ 0. This condition is fulfilled whenever ut has the Wold decomposition

ut = C(L)εt, where C(1) is finite and has full rank, and C(L) is a polynomial in the lag

operator with absolute summable weight matrices.

Furthermore, the periodogram of Xt evaluated at frequency λ is defined as I(λ) = w(λ)w∗(λ),
with w(λ) = 1√

2πT

∑T
t=1 Xteitλ and the superscript 0 denotes the true value of a parameter.

We need to state the following assumptions which follow those in Shimotsu (2007):

Assumption 1. For β ∈ (0,2] and a,b = 1, . . . ,q as λ→ 0+

fab(λ)− exp
(
i (π−λ)

(
d0

a −d0
b

)
/2

)
λ−d0

a−d0
bG0

ab = O
(
λ−d0

a−d0
b+β

)
.

Here and in the following fab and Gab are the respective elements of the matrices f (λ)
and G.

Assumption 2. It holds that

Xt −EXt = A(L)εt =

∞∑
j=0

A jεt− j,

with
∑∞

j=0 ‖A j‖
2 <∞ and ‖ ·‖ denotes the supremum norm. It is assumed that E(εt|Ft−1) =

0, E(εtε
′

t |Ft−1) = Iq a.s. for t = 0,±1,±2, . . . where Ft denotes the σ-field generated by εs

and Iq is an identity matrix, s ≤ t. Furthermore, there exists a scalar random variable ε

such that Eε2 <∞ and for all τ > 0 and some K > 0 it is P(‖εt‖
2 > τ) ≤ KP(ε2 > τ). In

addition, it holds for a,b,c,d = 1,2, t = 0,±1,±2, . . . that E(εatεbtεct|Ft−1) = µabc a.s. and

E(εatεbtεctεdt|Ft−1) = µabcd a.s., where |µabc| <∞ and |µabcd | <∞.

Assumption 3. In a neighborhood (0, δ) of the origin, A(λ) =
∑∞

j=0 A jei jλ is differentiable

and

∂

∂λ
aA(λ) = O

(
λ−1‖aA(λ)‖

)
, λ→ 0+,

where aA(λ) is the a-th row of A(λ).

Assumption 4. As T →∞ it holds for any γ > 0

1
m

+
m1+2β(logm)2

T 2β +
logT
mγ

→ 0,
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where m is the bandwidth parameter.

Assumption 5. There exists a finite real matrix Q such that

Λ j
(
d0

)−1
A(λ j) = Q + o(1), λ j→ 0.

These assumptions are multivariate versions of the assumptions in Qu (2011). They

allow for non-Gaussianity. Assumption 1 to 5 are satisfied by multivariate FIVARMA

processes. Assumption 4 is slightly stronger than the assumption used in Qu (2011)

for the univariate local Whittle estimator. It gives a sharp upper bound of m = o(T 0.8)
for the number of frequencies m which can be used for the local Whittle estimator and

thus for our test statistic. This stronger assumption is necessary for the Hessian of the

objective function of the local Whittle estimator to converge, which is needed in our

proof.

3 Testing for Spurious Long Memory

In this section we propose a multivariate test for pure long memory. Our test is spectral

based and uses the different properties of the periodogram of long-memory processes and

processes with structural breaks, trends or other forms of low frequency contaminations.

Special use will be made of the fact that the slope of the spectral density of a process

with these kind of contaminations is nearly zero for Fourier frequencies λ j with j >
√

T .

3.1 The MLWS Statistic

To be specific, we are interested in testing the hypothesis that the spectral density local

to the origin has the shape given in equation (1):

H0 : f (λ j) ∼ Λ j(d)GΛ∗j(d)

as λ j→ 0+ with da ∈ (−1/2,1/2) ∀ a = 1, . . . ,q. Thus, under the null hypothesis Xt is a

multivariate causal long-memory process with phase (da−db)(π−λ)/2. The alternative

is that the data cannot be described by this spectral density:

H1 : f (λ j) / Λ j(d)GΛ∗j(d).

To motivate the test statistic, we discuss the properties of the periodogram under the al-

ternative of low frequency contaminations for the example of random level shift processes
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and smooth trends. The multivariate random level shift model is defined by

Xt = µt + κt with (3)

µt = (Iq−φΠt)µt−1 +Πtet,

where κt, Πt = diag(π1t, . . . ,πqt) and et are mutually independent. The Bernoulli variables

πit and π jt for the different dimensions of the q-dimensional process Xt are correlated

with correlation matrix Σπ for i, j = 1, ...,q. We consider a shift probability that is defined

by p = p̃/T , where p̃ is the expected number of shifts in the sample. Furthermore, the

magnitude of the shifts is characterized by the q-dimensional column vector et, with

et ∼ N(0,Σe), and the noise process κt is an iid sequence with κt ∼ N(0,Σκ). The pairwise

correlation coefficients of πit and π jt, eit and e jt, and κit and κ jt are labeled as ρπ,i j, ρe,i j

and ρκ,i j, ∀ i, j = 1, ...,q.

The autoregressive coefficient 0≤ φ≤ 1 determines the persistence of the level shifts. This

allows us to consider stationary as well as non-stationary multivariate random level shift

processes. This formulation of our random level shift model is a multivariate version of

the autoregressive random level shift process suggested in Xu and Perron (2014).

The second example for a possible model under the alternative is the smooth trend

model:

Xt = H
( t
T

)
+ κt, (4)

where all variables are q-dimensional column vectors, H(t/T ) = (h1(t/T ), . . . ,hq(t/T ))
′

and

ha(t/T ) is a Lipschitz continuous function on [0,1], ∀ a = 1, ...,q. The noise term κt is

defined as in equation (3).

In analogy to Perron and Qu (2010), the periodogram of Xt in (3) or (4) can be decom-

posed in four components by

IX(λ j) =
1

2πT

T∑
t=1

T∑
s=1

µtµ
′

s exp
{
i(t− s)λ j

}
+

1
2πT

T∑
t=1

T∑
s=1

κtκ
′

s exp
{
i(t− s)λ j

}
+

1
2πT

T∑
t=1

T∑
s=1

κtµ
′

s exp
{
i(t− s)λ j

}
+

1
2πT

T∑
t=1

T∑
s=1

µtκ
′

s exp
{
i(t− s)λ j

}
.

By similar arguments as in Proposition 3 of Perron and Qu (2010) for λ j = o(1) the first

summand is of order OP(T−1λ−2
j ), the second is of order OP(1), and the third and fourth

term are of order OP(T−1/2λ−1
j ). Therefore, for each component in Xt the level shifts

affect the periodogram only up to j = O(T 1/2). The stochastic orders are exact in the

case of level shifts as in equation (3) and approximate for slowly varying trends as in
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(4). McCloskey and Perron (2013) show that these orders also hold for deterministic

level shifts and fractional trends.

This decomposition of the periodogram can now be used to construct a multivariate local

Whittle score-type test (MLWS test). It is based on the difference between the spectral

density of a fractionally integrated process and the periodogram of a series contaminated

by mean shifts or smooth trends that is almost flat for frequencies m>
√

T . This property

also explains why the bias of the estimate d̂ of the memory parameter depends heavily

on the bandwidth choice if a local semiparametric estimator is used.

The test statistic is based on the derivative of the local Whittle likelihood function

evaluated at d̂, where d̂ is the local Whittle estimate obtained using the first m Fourier

frequencies. Qu (2011) now evaluates the derivative of the local Whittle likelihood

function at the first bmrc Fourier frequencies, where r ∈ [ε,1] with ε > 0. For r = 1 the

derivative is exactly zero and for smaller r the derivative should be close to zero as long

as the estimate of d remains stable when the bandwidth is decreased. This is the case

under the null hypothesis. If the alternative is true, the non-uniform behavior of the

spectral density leads to a divergence of the derivative. The test statistic is obtained by

taking the supremum of the derivative over all r.

Our test statistic extends this idea to the multivariate case. It is based on the weighted

sum of the partial derivatives of the multivariate local Whittle likelihood as defined in

Shimotsu (2007).

As the Gaussian log-likelihood of Xt and G are real, the local Whittle likelihood localized

to the origin can be written as

Qm(G,d) =
1
m

m∑
j=1

{
logdetΛ j(d)GΛ∗j(d) + tr

[
G−1Re

[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]]}
. (5)

The first order condition with respect to G gives Ĝ(d) = 1
m
∑m

j=1 Re
[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
.

Substituting this into Qm(G,d) and

logdetΛ j(d) + logdetΛ∗j(d) = logdetΛ j(d)Λ∗j(d) = −2
q∑

a=1

da logλ j

gives the objective function of the multivariate Gaussian semiparametric estimate (GSE)

of Shimotsu (2007):

R(d) = logdetĜ(d)−2
q∑

a=1

da
1
m

m∑
j=1

logλ j. (6)

To state our test statistic, we need to introduce an approximation of the first derivative

of the objective function R(d) that is used in Shimotsu (2007). For easier reference, we
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restate it in Lemma 1 below. Denote by η = (η1, . . . , ηq)
′

a (q×1) vector of real numbers

with at least one ηa , 0 and ν j = logλ j − 1/m
∑m

j=1 logλ j. Furthermore, set aG−1 to be

the a-th row of G−1 and set ia to be the (q×q) matrix with a one on the a-th diagonal

element and zeros elsewhere. Additionally, Ma denotes the a-th column of the matrix

M. Then, we can write:

Lemma 1. Under Assumptions 1 to 5 we have

q∑
a=1

ηa
√

m
∂R(d)
∂da

=
2
√

m

q∑
a=1

ηa

m∑
j=1

ν j
(
aG−1Re

[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
a
−1

)
+

1
√

m

q∑
a=1

ηa

m∑
j=1

λ j−π

2 aG−1Im
[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
a
+ oP(1).

The right hand side of Lemma 1 is the main ingredient of our test statistic which is

asymptotically equivalent to the weighted sum of the components of the gradient vector.

The test statistic is given by:

MLWS =
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥∥∥
2√∑m
j=1 ν

2
j

q∑
a=1

ηa

[mr]∑
j=1

ν j
(
aG−1(d̂)Re

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]
a
−1

)
(7)

+
1√∑m
j=1 ν

2
j

q∑
a=1

ηa
(
aG−1(d̂)

) [mr]∑
j=1

λ j−π

2
Im

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]
a

∥∥∥∥∥∥∥∥∥ .
Remark 1: The factor 1/2 is added in order to obtain comparability with the univariate

case.

Remark 2: As usual, a small sample correction is applied by replacing m−1/2 with

(
∑m

j=1 ν
2
j)
−1/2 which improves the size of the test and is asymptotically equivalent.

In the univariate case our test reduces exactly to that of Qu (2011). The imaginary part

in our test statistic accounts for the phase shifts in the multivariate spectrum that appear

under long memory. Kechagias and Pipiras (2015) show that the phase will be given by

(da − db)π/2 for every causal linear process with hyperbolically decaying coefficients in

their Wold representation. The MLWS test will therefore also generate power against

non-causal processes and can thus be interpreted as a general misspecification test. If one

is willing to assume that the process is causal and has the required Wold representation

(which is the case for the commonly used fractionally integrated model), than the test

will be specifically against low frequency contaminations.

By combining the results of Shimotsu (2007) with those of Qu (2011) we are able to derive

the limiting distribution of the test statistic (7). It is stated in the following theorem,
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where B(s) denotes standard one-dimensional Brownian motion, � is the Hadamard

product and ⇒ denotes weak convergence:

Theorem 1. Under Assumptions 1 to 5 we have for T →∞

MLWS ⇒
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥
∫ r

0

[
(1 + log s)

(
2η
′

η+ 2η
′
(
G0�

(
G0

)−1
)
η
)1/2

(8)

+i
[
π2

2

(
η
′
(
G0�

(
G0

)−1
)
η−η

′

η
)]1/2dB(s)

− 2η
′

B(1)
∫ r

0
(1 + log s)dsη

−

∫ 1

0

[
(1 + log s)

(
2η
′

F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)
′

η
)1/2

+i
(
π2

2
η
′

F(r)Ω−1(G0� (G0)−1− Iq)Ω−1′F(r)
′

η

)1/2dB(s)

∥∥∥∥∥∥∥ ,
where Ω = 2

[
G0� (G0)−1 + Iq + π2

4 (G0�
(
G0

)−1
− Iq)

]
and

F(r) = 2
∫ r

0

[
(1 + log s)2

(
G0�

(
G0

)−1
+ Iq

)
+
π2

4

(
G0�

(
G0

)−1
− Iq

)]
ds.

The test statistic as it stands and its limiting distribution in Theorem 1 hold for any

choice of the weight vector η. However, the test statistic is not pivotal as the limiting dis-

tribution depends on G0 and thus on the unknown memory parameter d0. Furthermore,

the limiting distribution depends on the dimension q.

To overcome this problem, we fix the weighting scheme η to ηa = 1/
√

q, ∀a = 1, . . . ,q,

to obtain a pivotal test independent of the unknown parameter d0. Furthermore, this

choice guarantees that for every dimension q the limiting distribution is exactly the same

as in Qu (2011). This is stated in the following lemma:

Lemma 2. Under Assumptions 1 to 5 and setting η1 = . . . = ηq = 1/
√

q we have for

T →∞

MLWS ⇒ sup
r∈[ε,1]

∥∥∥∥∥∫ r

0
(1 + log s)dB(s)

− B(1)
∫ r

0
(1 + log s)ds

− F(r)
∫ 1

0
(1 + log s)dB(s)

∥∥∥∥∥∥ ,
where F(r) =

∫ r
0 (1 + log s)2ds.

- 10 -



Remark 3: For ε = 0.02, the asymptotic critical values of the MLWS test with ηa =

1/
√

q ∀ a = 1, ...,q are given by 1.118, 1.252, 1.374, and 1.517 for a 10%, 5%, 2.5%, and

1% significance level respectively. The corresponding critical values for a larger trim-

ming parameter, ε = 0.05, equal 1.022, 1.155, 1.277, and 1.426, as shown by Qu (2011).

Remark 4: It is assumed that d0
a ∈ (−1/2,1/2) ∀ a = 1, . . . ,q, i.e. that the process has

stationary long memory. However, the simulation results in Table 11 in the supplemen-

tary appendix indicate that the test statistic remains valid for d < 1.

After deriving the limiting distribution of the test, we have to prove its consistency

under the alternatives (3) and (4). This is done in the following theorem:

Theorem 2. Suppose that the process Xt is generated by (3) or (4). Assume that as

T →∞, we have m/T 1/2→∞, P(d̂a−d0
a ≥ 0)→ 1 for all a ∈ {1, ...,q}, where Ĝ(d̂) is positive

definite and Assumptions 1 to 5 hold. Then, MLWS
P
→∞, as T →∞, for any ||η|| > 0.

Note that (3) and (4) nest the cases, where only a subvector of Xt is subject to low

frequency contaminations. Theorem 2 therefore does not assume, that all components

of Xt are affected. Furthermore, the consistency result holds for every weight vector η

- except for the trivial case when all elements are zero. The intuition behind this is

discussed in detail in Section 3.2.

To robustify the test against the influence of short memory dynamics in finite samples,

we proceed in analogy to Qu (2011), and apply the MLWS test to the filtered series

X̃t = Â(L)−1M̂(L)(Xt − EXt), where Â(L) and M̂(L) are the estimated lag-polynomials

from a low order FIVARMA model in final equation form selected using the AIC. Details

on the implementation of the pre-whitening procedure and its performance in Monte

Carlo studies can be found in the supplementary appendix.

To prove the validity of this procedure, we sharpen Assumption 2 and replace it by

Assumption 6, which is a multivariate version of Assumption F in Qu (2011).

Assumption 6. Assume that in addition to Assumption 2 we have A j = O( j−1/2−c) with

c > 0 as j→∞.

We then obtain the following result.

Lemma 3. Assume that Xt satisfies Assumptions 1 to 6. Then, the MLWS test applied

on the filtered series X̃t has the same limiting distribution as given in Theorem 1.

Note that we do not assume that the short memory dynamics follow a VARMA-process.

We only use it as a reasonable approximation to the true short memory dynamics in
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finite samples. Asymptotically the test is unaffected by any form of short memory

dependence because we only use the periodogram ordinates at Fourier frequencies local

to the pole. The short memory dynamics have no influence on the shape of the pole.

This is also why the pre-whitening procedure leaves the limiting distribution of the test

unaffected.

3.2 Testing for Low Frequency Contaminations in a Component of

a Multivariate System

A rejection of the MLWS statistic indicates misspecifications in at least one of the

components of the process. To gain further insights into which of the components of Xt

cause the rejection, one can use the limiting distribution derived in Theorem 1 to test

the hypothesis

H0(a) : S (a)� f (λ j) ∼ S (a)�
(
Λ j(d)GΛ∗j(d)

)
, (9)

as λ j→ 0, where S (a) is a selection matrix with ones in its a-th row and a-th column

and zeros in all other elements. Such a test is obtained by setting the a-th element of η

to one and all others to zero.

In this case the limiting distribution simplifies slightly to

MLWS ⇒
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥
∫ r

0

√2(1 + log s)
(
gaa det(G0

−aa)
det(G0)

+ 1
)1/2

(10)

+i
[
π2

2

(
gaa det(G0

−aa)
det(G0)

−1
)]1/2dB(s)−2B(1)

∫ r

0
(1 + log s)ds

−

∫ 1

0

[
(1 + log s)

(
2F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)

′)1/2

aa

+i
(
π2

2
F(r)Ω−1(G0� (G0)−1− Iq)Ω−1′F(r)

′

)1/2

aa

dB(s)

∥∥∥∥∥∥∥ .
Since the distribution depends on G0, it is not pivotal and the implementation of the

test statistic requires the simulation of critical values for each Ĝ(d̂).
Under the null hypothesis the a-th row and column of the spectral density matrix cor-

respond to those of a multivariate long memory process. In case of a low frequency

contamination in component b , a, only one of the off-diagonal elements in the a-th row

and the a-th column is affected, whereas all elements in the b-th row and column differ

from the null hypothesis.

A rejection of H0(a) might therefore be due to a low frequency contamination in the b-th
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component. However, a non-rejection of H0(a) and a rejection of H0(b) can be interpreted

as evidence for a contamination in component b only. Furthermore, the ordering of the

p-values of the test statistics can be used as an indication for the relative probability of

a contamination in the respective components.

If there is indeed only a contamination in the component of the series for which the

test is applied, the test statistic for this component will have better power than the test

using equal weights. Other tests for contaminations in a subset of the components of

Xt can be constructed following the same logic, by using a suitable weighting vector.

However, an optimal choice of the weighting vector requires a priori information on the

components of Xt that may be contaminated. If contaminations are considered to be

equally likely in each component, then an equal weighting will generate the best power.

We therefore recommend (as the default procedure) to start with an equal weighting

scheme. In case of a rejection for the whole system, one can proceed with testing for

contaminations in each of the components separately.

After the components that are subject to contaminations are identified, one is left with

the task to model the time variation in the mean. A discussion of the available meth-

ods in the univariate case is provided by Qu (2011). Recently, McCloskey and Perron

(2013) and Hou and Perron (2014) proposed semiparametric estimators of the memory

parameters that are robust to spurious long memory and can be used to determine the

memory orders of the components. The estimated memory orders can in turn be used

together with the methods of Lavielle and Moulines (2000) or Beran and Feng (2002) -

depending on the assumptions about the nature of the time variation in the mean.

3.3 MLWS Test for Fractionally Cointegrated Series

So far, fractional cointegration has been ruled out by our assumptions on the matrix G,

which has reduced rank if components of Xt are cointegrated. However, our test can be

robustified against fractional cointegration. Let there be pG cointegrating relationships

between the components of Xt, where 1 ≤ pG < q, and assume without loss of generality

that these involve the first pG components of Xt. Then rank(G) = q− pG, the memory

order of the first pG components is d1 = d2 = ... = dpG , and there exists a cointegrating

matrix B, such that BXt = wt, and wt has a spectral density matrix as specified in (1),

but with G̃ = BGB′ and d̃ = (dpG − b1, ...,dpG − bpG ,dpG+1, ...,dq)′ instead of G and d, for

0 < ba ≤ da. The matrix B is such that in wt the first pG elements of Xt are replaced by

the cointegrating residual series so that G̃ has full rank. This is achieved, if the first pG

rows of B contain the cointegrating vectors, normalized so that the diagonal elements of

B equal 1 and the remaining rows contain zeros on all the off-diagonal elements. In the
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bivariate case, for example, B takes the form

B =

 1 β

0 1

 .
Consequently, the MLWS test for the hypothesis H0 : fBXt(λ j)∼Λ j(d)G̃Λ∗j(d), as λ j→ 0+

can simply be carried out on the transformed series BXt, if the cointegrating matrix B is

known. To obtain a feasible procedure for unknown B, a consistent estimator for B has to

be applied, that converges with a faster rate than
√

m, where m is the bandwidth used for

the MLWS statistic. For this purpose multivariate local Whittle estimators of B̂MLW ,

such as those of Robinson (2008b) or Shimotsu (2012) can be used for which aB̂MLW

converges to aB0 with rate
√

mλ−ba
m . This is asymptotically equivalent to constructing

the test statistic as in (7), but using the concentrated local Whittle likelihood of the

cointegrated system.1

The resulting test statistic is

M̃LWS (B) =
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥∥∥
2√∑m
j=1 ν

2
j

q∑
a=1

ηa

[mr]∑
j=1

ν j
( ˜
aG−1(d̂,B)Re

[
Λ j(d̂)−1 Ĩ(λ j,B)Λ∗j(d̂)−1

]
a
−1

)

+
1√∑m
j=1 ν

2
j

q∑
a=1

ηa
( ˜
aG−1(d̂,B)

) [mr]∑
j=1

(λ j−π)
2

Im
[
Λ j(d̂)−1 Ĩ(λ j,B)Λ∗j(d̂)−1

]
a

∥∥∥∥∥∥∥∥∥ ,
where G̃(d,B) = 1

m
∑m

j=1 Re
[
Λ j(d)−1BI(λ j)B′Λ∗j(d)−1

]
and Ĩ(λ j,B) = BI(λ j)B′. Here, we

write M̃LWS (B) as a function of B, to stress the dependence on the cointegrating matrix

that is used. We will write B0 and p0
G for the true cointegrating matrix and cointegrating

rank and B̂(p0
G) and B̂( p̂G) for estimates of B0 that are either based on the (known) true

cointegrating rank or an estimation of it. We then obtain the following result.

Theorem 3. Let Assumption 1 to 5 hold, and let aB̂(p0
G) = aB0 + OP

(√
mλ−ba

m

)
. Then,

for known p0
G, the test statistic M̃LWS (B̂(p0

G)) has the null limiting distribution of the

MLWS statistic in Theorem 1, but with G0 replaced by G̃0 = B0G0B0′.

Consequently, if fractional cointegration is present, the cointegrated variables can be

removed from Xt and replaced by an estimate of the cointegration residuals. Since the

consistency of B̂ depends on the assumed cointegrating rank, Theorem 3 assumes that

the true cointegrating rank p0
G is known. However, we can extend the M̃LWS (B) statistic

to the case when p0
G is unknown but can be estimated consistently.

1It should be noted that Robinson (2008b) and Shimotsu (2012) derive their results for bivariate
processes. However, Robinson (2008b) states that this restriction is mainly for expositional purposes
and the results can be extended straightforward (cf. Remark 12 in Robinson (2008b)).
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Theorem 4. Let Assumption 1 to 5 hold, let aB̂(p0
G) = aB0 + OP

(√
mλ−ba

m

)
, and let

limT→∞P( p̂G = p0) = 1. Then M̃LWS (B̂( p̂G))
d
→ M̃LWS (B̂(p0

G)).

Note that multivariate local Whittle estimators and narrow band estimators of the

cointegrating vectors are usually derived under the assumption of a known cointegrating

rank (mostly pG = 1). Estimates of the cointegrating rank p̂G (as required in Theorem 4)

are proposed in Robinson and Yajima (2002) and Robinson (2008a), but the effect of an

estimated pG on subsequent estimators or tests is usually not considered. By allowing

for an estimated cointegrating rank, we therefore improve the theoretical justification

for the empirical application of the M̃LWS (B) test relative to other procedures.

There is a close relationship between Theorems 3 and 4. Theorem 3 considers the

distribution of the test statistic conditional on the use of the correct cointegrating rank.

Here B̂ is required to converge to B0 with a rate faster than
√

m in Theorem 3. This is

due to the appearance of the partial sum in the test statistic.

Theorem 4, on the other hand, applies to the test statistic without conditioning. It

shows that the distribution of the test statistic based on an estimate of the cointegrating

rank converges uniformly to the distribution of the test statistic conditional on the

true cointegrating rank p0
G for any consistent estimator p̂G. Therefore, the methods of

Robinson and Yajima (2002) and Robinson (2008a) can be used in this context.

The consistency of the test statistic under fractional cointegration is established in the

following theorem. Note that we do not require p0
G to be known or estimated consistently

under the alternative.

Theorem 5. Suppose that the process BXt is generated by (3) or (4) and B̂ has full rank.

Assume that as T →∞, we have m/T 1/2 →∞, P( ˆ̃da − d̃0
a ≥ 0)→ 1 for all a ∈ {1, ...,q},

G̃( ˆ̃d, B̂) is positive definite and Assumptions 1 to 5 hold. Then, M̃LWS (B̂( p̂G))
p
→∞, as

T →∞.

4 Monte Carlo Study

To analyze the finite sample properties of the MLWS test, we conduct a Monte Carlo

analysis that consists of four parts. In the first part, we consider a bivariate setup and

conduct experiments to determine the influence of the bandwidth choice, m = bT δc, and

the choice of the trimming parameter ε on the size and the power of the test. Then, we

turn to higher dimensional applications to analyze how the size and power depend on

the dimension q of the multivariate process. Afterwards, we consider the finite sample

performance of the test under fractional cointegration. Finally, in the fourth part, we

study the properties of the test for breaks in components that was proposed in Section

3.2.
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ρv = −0.8 ρv = 0 ρv = 0.4 ρv = 0.8
d2 0 0.4 0 0.4 0 0.4 0 0.4

T d1 δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0

0.60 0.006 0.007 0.007 0.012 0.005 0.010 0.006 0.009 0.005 0.008 0.007 0.008 0.004 0.008 0.007 0.007

0.65 0.009 0.014 0.011 0.013 0.008 0.015 0.010 0.015 0.009 0.014 0.007 0.013 0.011 0.015 0.012 0.012

0.70 0.012 0.017 0.012 0.015 0.011 0.016 0.014 0.018 0.013 0.017 0.011 0.016 0.010 0.021 0.011 0.019

0.75 0.013 0.015 0.016 0.023 0.014 0.019 0.014 0.019 0.016 0.023 0.012 0.018 0.015 0.021 0.013 0.021

0.4

0.60 0.007 0.010 0.008 0.008 0.007 0.009 0.007 0.010 0.005 0.008 0.006 0.009 0.008 0.008 0.006 0.009

0.65 0.011 0.016 0.007 0.013 0.009 0.016 0.011 0.015 0.010 0.015 0.011 0.014 0.009 0.018 0.011 0.013

0.70 0.013 0.014 0.017 0.021 0.014 0.018 0.011 0.017 0.012 0.016 0.014 0.019 0.015 0.017 0.012 0.018

0.75 0.015 0.025 0.017 0.023 0.016 0.024 0.019 0.019 0.014 0.022 0.021 0.022 0.021 0.019 0.016 0.022

2000

0

0.60 0.022 0.031 0.023 0.027 0.022 0.025 0.021 0.028 0.021 0.033 0.016 0.027 0.028 0.030 0.023 0.028

0.65 0.028 0.035 0.025 0.035 0.026 0.029 0.022 0.035 0.023 0.037 0.024 0.033 0.020 0.029 0.026 0.032

0.70 0.029 0.029 0.031 0.038 0.025 0.034 0.026 0.031 0.026 0.035 0.024 0.035 0.028 0.033 0.030 0.034

0.75 0.031 0.041 0.043 0.042 0.036 0.040 0.034 0.040 0.032 0.040 0.031 0.038 0.033 0.039 0.042 0.039

0.4

0.60 0.021 0.034 0.022 0.027 0.018 0.025 0.021 0.026 0.020 0.032 0.018 0.028 0.021 0.028 0.018 0.029

0.65 0.024 0.028 0.026 0.038 0.024 0.035 0.023 0.034 0.028 0.031 0.028 0.032 0.023 0.035 0.026 0.032

0.70 0.035 0.033 0.028 0.033 0.028 0.033 0.030 0.033 0.028 0.034 0.027 0.034 0.026 0.034 0.031 0.028

0.75 0.036 0.044 0.035 0.042 0.032 0.036 0.033 0.043 0.034 0.043 0.038 0.039 0.037 0.046 0.038 0.043

Table 1: Size of MLWS test for FIVARMA (0,d,0): D(d1,d2)Xt = vt with vt ∼ N(0,Σv) and
σ2

v = 1. The bandwidth m is determined by m = bT δc.

The simulation studies of Qu (2011) and Leccadito et al. (2015) show that the Qu test

has good power against a wide range of different alternatives, such as random level

shifts, smooth trends, markov switching models, or the STOPBREAK proces of Engle

and Smith (1999). Therefore, we focus on analyzing the properties that are specific to

the multivariate case and use a random level shift process for all power DGPs. Further

simulation studies are discussed briefly in Section 4.5 and included in full length in

a supplementary appendix, available online. All results presented hereafter are based

on M = 5000 Monte Carlo replications and all tests are carried out with a nominal

significance level of α = 0.05.

4.1 Size and Power Comparison in a Bivariate Setup

The size study for the bivariate case is based on the multivariate fractionally integrated

process from equation (2), where the short memory component ut = vt with vt ∼ N(0,Σv)
and Σv = ((1,ρv), (ρv,1))′ is specified to be a bivariate white noise D(d1,d2)Xt = vt.

In this setup we want to investigate two aspects. First, we evaluate whether the size

depends on the correlation ρv between the components of the innovation vector vt, or

whether it depends on the (possibly different) degrees of memory d1 and d2 in the two

series. Second, we want to determine the effect of the bandwidth m and the trimming

parameter ε. Since the trimming parameter ε can be chosen discretionary, we follow Qu

(2011) and conduct our simulations for ε ∈ {0.02,0.05}.
Table 1 shows the results. We find that the test is generally conservative in finite samples
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Stationary (φ = 1) Non-Stationary (φ = 0)

ρπ = ρe 0 0.5 1 0 0.5 1

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.114 0.120 0.110 0.128 0.199 0.196 0.184 0.209 0.192 0.218 0.296 0.302

0.65 0.264 0.308 0.259 0.299 0.350 0.377 0.395 0.441 0.407 0.465 0.485 0.502

0.70 0.447 0.475 0.445 0.463 0.494 0.509 0.598 0.610 0.613 0.623 0.641 0.634

0.75 0.632 0.640 0.638 0.645 0.634 0.633 0.766 0.764 0.764 0.768 0.743 0.730

2000

0.60 0.918 0.922 0.910 0.921 0.912 0.908 0.957 0.963 0.954 0.961 0.936 0.944

0.65 0.984 0.984 0.982 0.982 0.959 0.958 0.991 0.993 0.988 0.986 0.963 0.964

0.70 0.995 0.996 0.994 0.993 0.970 0.969 0.996 0.997 0.996 0.994 0.977 0.970

0.75 0.998 0.996 0.995 0.994 0.976 0.974 0.999 0.998 0.995 0.994 0.979 0.977

Table 2: Power of MLWS test against stationary random level shifts: Yt = µt + vt with vt ∼

N(0,Σv) and µt = (Iq−φΠt)µt−1 +Πtet. The bandwidth m is determined by m = bT δc.

- a feature which it shares with its univariate version. For all parameter constellations,

the size is better with ε = 0.05 than with ε = 0.02 and it is increasing in m. The results

also improve as the sample size increases. With a sample size of T = 2000, m = bT 0.75c

and ε = 0.05 for example, we find that the size is between 3.6 and 4.6 percent for all

combinations of ρv, d1, and d2. Thus, in larger samples the MLWS test achieves good

size properties with the right choice of m and ε.

With regard to the correlation ρv between the innovations, the size tends to improve as

the correlation increases, since the MLWS test makes use of the coherence information.

Overall, even though the test is quite conservative in small samples, the size is good in

larger samples and it is stable for different degrees of memory in the components of the

series and correlations among the innovation sequences.

We will now turn to the effect of m and ε on the power of the test. In contrast to the

true long-memory processes under the null hypothesis, that we denote by Xt, the DGP

in the power study will be denoted by Yt. Here, Yt is the sum of the white noise sequence

vt and the multivariate random level shift process µt from equation (3):

Yt = µt + vt (11)

µt = (Iq−φΠt)µt−1 +Πtet.

For φ= 1 the process is stationary and for φ= 0 it is non-stationary. The shift probability

is always kept at p = 5/T , so that in expectation there are five shifts in every sample

and the standard deviation of the shifts is σe = 1. Since a different behavior of the

breaks could imply different coherence information, we consider different values for the

correlation between the occurrence of shifts ρπ and the correlation of the shift sizes ρe.

For simplicity, we always set ρπ = ρe. If ρπ = ρe = 0 shifts occur independently in each

- 17 -



Size Power

MLWS Qu MLWS Qu

T q/ρv 0 0.4 0.8 0 0.4 0.8 q/ρπ, ρe 0 0.5 1 0 0.5 1

100

1 0.011 0.010 0.011 0.014 0.013 0.012 1 0.098 0.093 0.095 0.093 0.098 0.094

2 0.011 0.013 0.015 0.008 0.010 0.010 2 0.173 0.172 0.205 0.121 0.125 0.105

3 0.013 0.015 0.011 0.007 0.007 0.007 3 0.243 0.243 0.296 0.125 0.118 0.111

4 0.013 0.014 0.009 0.007 0.010 0.008 4 0.295 0.309 0.328 0.128 0.126 0.120

5 0.011 0.010 0.011 0.006 0.006 0.007 5 0.356 0.357 0.366 0.135 0.133 0.118

500

1 0.027 0.026 0.025 0.027 0.027 0.026 1 0.751 0.742 0.752 0.742 0.743 0.747

2 0.028 0.029 0.026 0.025 0.021 0.026 2 0.922 0.919 0.865 0.911 0.890 0.813

3 0.026 0.028 0.029 0.018 0.021 0.021 3 0.979 0.973 0.906 0.963 0.951 0.834

4 0.029 0.029 0.029 0.025 0.026 0.021 4 0.996 0.987 0.917 0.983 0.974 0.849

5 0.026 0.031 0.028 0.021 0.023 0.022 5 0.999 0.994 0.923 0.994 0.987 0.857

Table 3: Size and power of MLWS test and repeated Qu test with Simes correction for
increasing dimensions q. Left panel: Size for FIVARMA (0,d,0): D(d1, . . . ,dq)Xt = vt. Right
panel: Power for Yt = µt + vt with vt ∼ N(0,Σv).

of the components of the series, whereas shifts always coincide in timing and size if

ρπ = ρe = 1.2

The results of this experiment are shown in Table 2. We find that the power is always

increasing in the bandwidth and it is higher against non-stationary level shifts. For

small sample sizes with weakly correlated shifts the test has better power with ε = 0.05,

but in larger samples ε = 0.02 leads to a higher power if m is also relatively large. With

regard to the correlation of the shifts, we find that the power of the test increases in

small samples if shifts show a stronger correlation. In large samples the power slightly

decreases if shifts are perfectly correlated.

Overall, the test shows good size and power properties and for an increasing bandwidth

both size and power improve. Note however that a larger bandwidth also makes the test

more prone to errors if short memory dynamics are present. In view of these results the

rule of thumb to choose ε = 0.05 for T ≤ 500, that is suggested by Qu (2011), still works

well. The same holds true for using m = bT 0.7c as the bandwidth.

4.2 The Effect of Increasing Dimensionality

Since the proposed MLWS test is multivariate and its limiting distribution is independent

of the dimension q of the process, we now consider how its finite sample properties depend

on the dimension q.

2Since the presence of spurious long memory depends on the location of the shifts in the sample, we
discard all samples for which a test, for H0 : d = 0 based on the local Whittle estimate d̂LW , is not
rejected for all components.
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As before, our size DGP, D(d1, ...,dq)Xt = vt, is a fractionally integrated white noise.

Motivated by our previous findings, we set m = bT 0.75c and ε = 0.05 and consider only

the effect of increasing the dimension q.

Since there is no other multivariate test against spurious long memory available in the

literature, a practitioner has no other choice but to apply the Qu test to each of the

q components of the process separately. We will use this approach as a benchmark

procedure. To avoid Bonferroni errors, some kind of size correction has to be employed.

Since a standard Bonferroni correction is based on the assumption of independence

between the test statistics, there is a considerable power loss. We therefore employ the

correction of Simes (1986) that consists in ordering the p-values in ascending order and

then comparing them with α/q, 2α/q, ..., α. The null hypothesis is rejected, if any

of the ordered p-values exceeds its respective threshold. As Sarkar (1998) shows, this

approach is valid for processes Xt that are multivariate totally positive of order two,

which is fulfilled in the Monte Carlo study, where the process is multivariate Gaussian.

Note that for q = 1 the MLWS test and the Qu test are identical. The left panel of

Table 3 contains the results. We can observe that the MLWS test is quite conservative

in small samples, but the size improves if the sample size increases. It also maintains

approximately the same size independent of the dimension q and independent of the

correlation among the components of vt. For the repeated application of the Qu test

we find that similar to the MLWS test it is conservative in small samples. In addition,

the size tends to further decrease with increasing q and with increasing correlation ρv

between the noise components, which is an effect of the Simes correction.

As in the bivariate setup, the power DGP, Yt = µt + vt, is the sum of the q-dimensional

white noise vt and the q-dimensional multivariate random level shift model from equation

(11). Similar to the size DGP, we restrict the correlations of shifts in the components

as well as the correlation of the shift sizes to be the same among all components such

that ρπ,ab = ρe,ab = ρπ = ρe for all a , b.

If we consider the results on the right hand side in Table 3, we find that there are indeed

large power gains compared to the repeated application of the Qu test. For T = 100 these

can be more than 24 percentage points. We find that the power is increasing in q and

T . While correlated shifts increase the power in smaller samples, the power reduction

observed in the bivariate simulations for correlated shifts in large samples increases with

increasing q.

4.3 Testing Against Breaks in Fractionally Cointegrated Systems

In Section 3.3, we derived the limiting distribution of the M̃LWS (B) statistic calculated

for a consistent estimate B̂(p0
G) of the cointegrating matrix B0, so that the test can be
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Size Power

ρv 0 0.4 0.8 0 0.4 0.8

d2 T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

0.1

250

0.60 0.005 0.007 0.005 0.008 0.006 0.007 0.076 0.088 0.075 0.091 0.077 0.102

0.65 0.008 0.016 0.010 0.010 0.009 0.013 0.179 0.223 0.178 0.198 0.187 0.227

0.70 0.010 0.014 0.012 0.014 0.009 0.014 0.321 0.327 0.303 0.322 0.337 0.355

0.75 0.012 0.021 0.011 0.019 0.011 0.016 0.471 0.465 0.459 0.455 0.509 0.517

2000

0.60 0.018 0.025 0.015 0.026 0.021 0.026 0.854 0.862 0.864 0.861 0.862 0.872

0.65 0.026 0.035 0.021 0.030 0.021 0.032 0.942 0.949 0.945 0.952 0.962 0.963

0.70 0.028 0.037 0.028 0.036 0.028 0.031 0.972 0.972 0.974 0.966 0.979 0.979

0.75 0.033 0.039 0.031 0.039 0.039 0.042 0.980 0.978 0.982 0.976 0.984 0.984

0.4

250

0.60 0.006 0.009 0.004 0.009 0.004 0.007 0.034 0.041 0.034 0.039 0.060 0.065

0.65 0.008 0.013 0.007 0.013 0.008 0.012 0.075 0.091 0.077 0.102 0.145 0.156

0.70 0.013 0.016 0.011 0.017 0.009 0.015 0.140 0.139 0.163 0.168 0.257 0.255

0.75 0.018 0.022 0.014 0.021 0.015 0.022 0.235 0.227 0.262 0.262 0.401 0.400

2000

0.60 0.020 0.031 0.016 0.032 0.020 0.029 0.582 0.605 0.665 0.667 0.745 0.766

0.65 0.021 0.029 0.024 0.035 0.021 0.030 0.811 0.821 0.856 0.864 0.911 0.919

0.70 0.026 0.034 0.022 0.038 0.026 0.033 0.912 0.902 0.932 0.933 0.966 0.964

0.75 0.031 0.042 0.032 0.036 0.031 0.043 0.942 0.934 0.958 0.946 0.977 0.970

Table 4: Size and power of the MLWS test in a bivariate fractionally cointegrated system,
where D(0,d2)BXt = vt with B = ((1,0)′, (−1,1)′), vt ∼ N(0,Σv) and Σv = ((1,ρv), (ρv,1))′. The band-
width m is determined by m = bT δc.

applied to the linearly transformed system B̂Xt. To explore the finite sample performance

of this approach, we conduct a simulation study where the DGP is

D(0,d2)

 1 −1

0 1

Xt = vt.

Here the components of Xt are fractionally cointegrated with cointegrating vector (1,−1)′.
The parameter d2 determines the memory of both components in Xt and since d1 = 0, the

memory in the linear combination is reduced to zero. By increasing d2 the cointegration

strength is increased. The correlation between the innovations to the linear combination

and the common fractional trend is determined by ρv.

The results of this experiment are shown in Table 4. First, the size remains conservative

for all parameter constellations. The power, on the other hand, is higher the higher

the correlation ρv. Furthermore, one can observe that the power is decreasing with

increasing strength of the cointegrating relationship. Since the convergence rate of the

local Whittle estimator for the B matrix is faster if the cointegrating relationship is

stronger, this effect cannot be attributed to the effect of the estimation error. Instead,

- 20 -



the MLWS test has lower power to detect contaminations if the memory is stronger. For

the Qu test this was pointed out by Kruse (2015), who advocates to apply the test to

the fractionally differenced process. This is also visible in the results of Table 11 in the

supplementary appendix.

4.4 Testing for Breaks in Components of a Multivariate System

In Section 3.2 we introduced a variation of the MLWS test where all components of the

weight vector η are set to zero and only one takes the value 1. This allows to test for

misspecifications in components of the spectral density matrix and can be used to gain

further insights about the components of Xt that cause a rejection of the MLWS test

with equal weights.

η = 1
√

2
(1,1)′ η = (1,0)′ η = (0,1)′

ξ 0 1 0 1 0 1

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.006 0.008 0.036 0.044 0.018 0.019 0.208 0.204 0.020 0.019 0.013 0.024

0.65 0.010 0.017 0.089 0.100 0.023 0.025 0.351 0.367 0.021 0.024 0.019 0.032

0.70 0.013 0.018 0.158 0.166 0.024 0.026 0.495 0.512 0.025 0.022 0.027 0.038

0.75 0.016 0.021 0.273 0.268 0.024 0.023 0.633 0.629 0.024 0.032 0.030 0.042

2000

0.60 0.018 0.029 0.553 0.578 0.040 0.046 0.892 0.907 0.037 0.040 0.123 0.164

0.65 0.025 0.034 0.826 0.827 0.045 0.052 0.959 0.962 0.044 0.052 0.184 0.239

0.70 0.031 0.035 0.928 0.930 0.046 0.051 0.973 0.973 0.046 0.058 0.253 0.322

0.75 0.033 0.039 0.959 0.952 0.051 0.055 0.976 0.976 0.054 0.052 0.279 0.340

Table 5: MLWS test for breaks in components using different weight vectors η for the DGP
Yt = (ξ,0)′µt + vt, with vt ∼ N(0,Σv) and Σv = ((1,0.4), (0.4,1))′. The bandwidth m is determined
by m = bT δc.

The performance of the MLWS test using the proposed weighting scheme is evaluated

in Table 5. Here the DGP is a bivariate fractionally integrated process with stationary

random level shifts only in its first component. It is given by

Yt =

 ξ0
µt + vt,

with vt ∼ N(0,Σv), Σv = ((1,0.4), (0.4,1))′ and a shift variance of one. The parameter

ξ controls the magnitude of the breaks. To determine the critical values based on an

estimate Ĝ(d̂), we approximate the integrals in (10) by sums over 500 increments and

we draw 1000 values. One can observe for ξ = 0 that the size is similar to the size of the

global test. Also, as one would expect, the test generates better power if we specifically
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test for a contamination in the first component, compared to the baseline case with

equal weights. Furthermore, if one specifically tests for a contamination in the second

component, the test does not generate much power due to the misspecification of the

off-diagonal components alone. A rejection therefore gives a good indication for a low

frequency contamination in the respective component.

4.5 Further Simulations

A number of further simulations are provided in a supplementary appendix. First, we an-

alyze the performance of the test if short memory dynamics exist. Without pre-whitening

the size is no longer controlled for larger bandwidths m = bT δc. With pre-whitening, on

the other hand, the test remains conservative and the power loss is reasonable.

We also explore the impact of non-stationary long memory, perturbations, heteroscedas-

ticity, breaks in the variance-covariance matrix of the innovations, the power against

other alternative processes and the performance of the test, if the pre-whitening is con-

ducted using univariate estimators. It is found, that the MLWS test is stable under all

these complications. However, power against non-causal alternatives is only developed

very slowly.

5 Empirical Example

Log-absolute returns of stock market indices are a typical example in the spurious long

memory literature - in particular that of the Standard & Poor’s 500 (hereafter S&P

500). The series is examined by Granger and Ding (1996) who find that it seems to

follow a long-memory process. Nevertheless, they argue that long memory properties

can be generated by other models than the standard I(d) process. Granger and Hyung

(2004) obtain a reduction of the estimated memory parameter by considering structural

breaks in the series. Similarly, Varneskov and Perron (2011) consider a model allowing

for both random level shifts and ARFIMA effects. Lu and Perron (2010) and Xu and

Perron (2014) analyze the forecast performance of random level shift processes for the

log-absolute returns of the S&P 500. In most cases, random level shift processes clearly

outperform GARCH, FIGARCH and HAR models.

All these findings indicate spurious long memory in log-absolute return series. However,

univariate tests are often not able to reject the null hypothesis of true long memory.

Dolado et al. (2005), for example, apply their test to absolute and squared returns of

the S&P 500, without being able to indicate spurious long memory.

Due to the increased availability of high frequency data, the focus in the more recent

literature has shifted to the modelling of realized volatility. Especially the heterogenous
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Figure 1: The log-absolute return and the log-realized volatility of the S&P 500.

autoregressive model of Corsi (2009) and its extensions have become very popular. As

for the log-absolute return series existing tests against spurious long memory tend not

to reject their null hypothesis if applied to these realized volatility series. An example

is the application in Qu (2011), who finds no evidence for low frequency contaminations

in the realized volatility of the exchange rate between Japanese Yen and US Dollar.

In view of the power gains of the multivariate procedure demonstrated in Section 4.2,

we revisit these variation series of the S&P 500 and additionally consider those of the

DAX, FTSE and NIKKEI in a multivariate setup to test for spurious long memory using

the MLWS test. The analysis is conducted for both - the log-absolute return and the

log-realized volatility.

We analyze the period from 2005/01/03 to 2014/12/31 (T=2608 observations). Data on

daily stock price indices is obtained from Thomson Reuters Datastream. The log-returns

are computed by first differencing the logarithm of the price index, rt = ln(Pt)− ln(Pt−1).
Subsequently, the log-absolute returns are calculated as ln(|rt|+0.001).3 Realized volatil-

3The constant 0.001 is added to avoid infinite values for zero returns, which is customary in the literature
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δ DAX NIKKEI S&P 500 FTSE partitions coint.rank β̂ d̂w

0.60 0.379 0.295 0.472 0.393 (1,1,1,1) 1 (0.155, 0.066, -1.446) 0.260

0.65 0.338 0.290 0.411 0.362 (1,1,1,1) 1 (-0.119, 0.079, -1.014) 0.236

0.70 0.328 0.285 0.359 0.303 (1,1,1,1) 1 (-0.043, -0.144, -1.153) 0.194

0.75 0.264 0.252 0.300 0.290 (1,1,1,1) 1 (-0.074, -0.037, -0.954) 0.139

Table 6: Fractional cointegration analysis for the log-absolute return series based on local
Whittle estimates of d with different bandwidths m = bT δc.

ities calculated from 5 minute returns are obtained from the Oxford-Man Realized Li-

brary.

As an example, Figure 1 depicts the log-absolute return and log-realized volatility of the

S&P 500 series. Both series show the typical features of long memory time series, with

local trends and cycles. This is also confirmed by the autocorrelation functions and the

periodograms given in Figures 2 and 3 in the supplementary appendix. Since the series

of the DAX, FTSE and NIKKEI are highly correlated with that of the S&P 500, we

omit plots of these series. Descriptive statistics for the dataset are given in Table 20 (in

the supplementary appendix). It can be seen that all four series have similar locations

and standard deviations if the same variation measure is used. With the exception of

the S&P 500, the distributions of the log-absolute return series are slightly negatively

skewed and all log-absolute return series have lighter tails than the normal distribution.

The realized volatility series on the other hand are positively skewed and have excess

kurtosis.

Since the specification of the MLWS test depends on whether or not the series are

fractionally cointegrated, we proceed by applying the semiparametric cointegrating rank

estimation method of Robinson and Yajima (2002). The method consists of two steps.

First, the vector series Xt is partitioned into subvectors with equal memory parameters

using sequential tests for the equality of the da in each subvector. In the second step,

the cointegrating rank of the relevant subvectors is estimated.

All results of this procedure are given in Tables 6 and 7. The analysis is carried out

for different bandwidths m = bT δc using the local Whittle estimator. For both variation

measures it can be observed that the estimates tend to decrease as the bandwidth

increases, which indicates that the series indeed might be contaminated by level shifts.

Since the log-absolute return series is considered to be a noisy estimate of the underlying

variation process and perturbations cause a downward bias in the local Whittle estima-

tor, we include further results using different specifications of the LPWN estimator of

(cf. for example Lu and Perron (2010) and Xu and Perron (2014)).
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δ DAX NIKKEI S&P 500 FTSE partitions coint.rank β̂13 β̂23 d̂w13 d̂w23

0.60 0.642 0.631 0.635 0.637 (1,1,1,1) 2 -0.931 -1.084 0.464 0.596

0.65 0.605 0.612 0.642 0.570 (1,1,1,1) 2 -0.728 -0.978 0.463 0.514

0.70 0.594 0.611 0.633 0.568 (1,1,1,1) 2 -0.868 -1.068 0.400 0.483

0.75 0.563 0.573 0.588 0.540 (1,1,1,1) 2 -0.910 -1.172 0.368 0.447

Table 7: Fractional cointegration analysis for the log-realized volatility series based on local
Whittle estimates of d with different bandwidths m = bT δc.

Frederiksen et al. (2012) and the robust estimator of Hou and Perron (2014) in Table

21 in the supplementary appendix. It can be observed that there is a downward bias for

the log-absolute return series. Nevertheless, as discussed in Section 4, the MLWS test is

fairly robust to perturbations. Also the Hou-Perron estimator is lower for the S&P 500,

which is a further indication of spurious long memory. Apart from that, all estimates

turn out to be very stable.

It should be noted that the estimated memory parameters of the log-realized volatility

series are in the lower non-stationary region, which is not covered by the assumptions

under which the test statistic is derived. However, our simulation results indicate that

the test statistic remains valid for non-stationary long memory processes. We therefore

proceed with the analysis and provide an additional robustness check with the test

carried out on the fractionally differenced series in the supplementary appendix.

Using the T̂0 statistic of Robinson and Yajima (2002) to test for the equality of the

memory parameters, the null hypothesis cannot be rejected for any of the bandwidths,

so that no further partitioning of Xt is necessary. Subsequently, the cointegrating rank

of Xt is estimated. Again, the results are stable for different bandwidth choices. We find

that there is one cointegrating relationship between the four log-absolute return series

and there are two relationships between the realized volatility series.

As described in Section 3.3, the analysis than proceeds by estimating the cointegrating

matrix B using the multivariate local Whittle estimator of Robinson (2008b) with the

phase set to (da−db)(π−λ)/2.

In the case of the log-absolute return series the DAX series is specified to be the variable

that is replaced by the linear combination. For the log-realized volatility series we assume

pairwise relationships of the DAX and the NIKKEI with the S&P 500. Subsequently,

the transformed series B̂Xt are obtained. Additionally, we report the estimate d̂w of the

noise term in the last column of Table 6 and the last two columns of Table 7 to show

that the memory in the linear combination is reduced. When the cointegrating rank

analysis is repeated on the transformed series there is no evidence for a cointegrating
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Qu test Components MLWS

δ DAX NIKKEI S&P 500 FTSE DAX NIKKEI S&P 500 FTSE ALL

log(|rt |+ 0.001)

0.60 0.521 0.860 0.515 0.446 1.245 0.877 0.765 1.085 1.233

(0.862) (0.314) (0.871) (0.949) (0.494) (0.665) (0.854) (0.912) (0.054)

0.65 0.505 0.749 1.078 0.443 1.052 0.793 1.681 0.619 1.470

(0.886) (0.474) (0.118) (0.953) (0.220) (0.495) (0.013) (0.979) (0.014)

0.70 0.395 0.519 1.100 0.739 1.370 0.814 1.726 0.557 1.448

(0.983) (0.865) (0.107) (0.492) (0.179) (0.395) (0.004) (0.998) (0.016)

0.75 0.640 0.469 1.477 0.547 1.322 0.918 1.843 0.598 1.413

(0.662) (0.929) (0.013) (0.824) (0.057) (0.257) (0.002) (0.948) (0.019)

log RVt

0.60 0.317 0.425 1.179 0.544 0.700 0.452 1.283 0.548 0.662

(0.999) (0.966) (0.071) (0.829) (0.600) (0.978) (0.173) (0.992) (0.621)

0.65 0.445 0.641 0.807 0.929 1.241 0.965 1.140 0.985 1.465

(0.950) (0.661) (0.387) (0.236) (0.136) (0.187) (0.279) (0.425) (0.014)

0.70 0.406 0.657 0.700 0.670 0.617 0.539 1.039 0.807 0.643

(0.977) (0.632) (0.554) (0.607) (0.729) (0.881) (0.331) (0.635) (0.656)

0.75 0.597 1.062 0.724 1.022 0.488 0.397 0.614 1.199 0.683

(0.740) (0.129) (0.513) (0.152) (0.946) (0.999) (0.919) (0.082) (0.585)

Table 8: Test statistics of the Qu test applied to each series separately and the MLWS test
applied to the multivariate series for different bandwidths m = bT δc. p-values are given in
brackets. Critical values are 1.252 and 1.374 for α = 5% and α = 1%, respectively.

relationship anymore, supporting the selection of the estimated cointegrating relations.

It should be noted, that the rank-estimation procedure of Robinson and Yajima (2002)

operates under the assumption of a multivariate long memory series. In the presence of

low frequency contaminations, on the other hand, it may no longer be consistent. The

estimates of the cointegrating relations should therefore not be interpreted unless the

MLWS test fails to reject.

To formally test for true long memory, we then apply the M̃LWS (B̂( p̂G)) to the system

B̂Xt. The asymptotic validity of this approach is established in Theorems 4 and 5.

In addition to that, some simulations for finite samples with parameter constellations

similar to those found in the log-absolute return series and log-realized volatility series

are provided in the supplementary materials. These show that the test maintains its

size in the situation at hand.

The test for contaminations in components of the system discussed in Section 3.2 is

applied to analyze which components of the series might cause a rejection of the M̃LWS
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test. As a benchmark, we also apply the univariate test of Qu (2011) to each series

separately. Because of the large number of observations the trimming parameter is set

to ε = 0.02 for both tests. The corresponding test statistics are given in Table 8, where

the p-values are displayed in brackets.4

As one can see, Qu’s univariate test fails to reject the null hypothesis of true long

memory for each country, all bandwidth specifications, and both variation measures.

The only exception is the log-absolute return series of the S&P 500, if the bandwidth

is set to m = bT 0.75c. This would lead to the conclusion that there are no low frequency

contaminations in the variation of stock returns. Similarly, the M̃LWS test calculated

for the realized volatility series also fails to reject - except for m = bT 0.75c. For the log-

absolute return series, on the other hand, the M̃LWS statistic rejects for all but one

bandwidth.

If one considers the tests for contaminations in components of the spectral density ma-

trix, we find that the test rejects for the S&P 500 series if the bandwidth parameter is

δ ∈ {0.65,0.70,0.75} for the log-absolute return series, but not for the realized volatility

series. The application of the M̃LWS test therefore gives formal support to the argu-

ments of Granger and Ding (1996) and Granger and Hyung (2004), among others, who

argued that the memory in the log-absolute returns of the S&P 500 might be spurious.

We find that one would falsely conclude that the process is not contaminated, if only

the univariate test is used. In contrast to that, there is little evidence for low frequency

contaminations in the log-realized volatility series. The Qu test as well as the M̃LWS

test for contaminations in a specific component generate no rejection at the 95-percent

level. Only the test with an equal weighting scheme generates a single rejection for

δ = 0.65. We therefore conclude that the realized volatility series are well modelled as

long memory processes.

6 Conclusion

This paper provides a multivariate score-type test for spurious long memory based on

the objective function of the local Whittle estimator. The test statistic consists of

a weighted sum of the partial derivatives of the concentrated local Whittle likelihood

function. By introducing a suitable weighting scheme, the test statistic becomes pivotal

and the limiting distribution becomes independent of the dimension of the data generat-

ing process. Consistency against multivariate random level shift processes and smooth

trends is shown.

4Due to the large number of free parameters in the 4-dimensional example, the pre-whitening is carried
out for each series separately. Monte Carlo results supporting the validity of this approach are provided
in the supplementary appendix.
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Our test encompasses the test of Qu (2011) as a special case for scalar processes. Apart

from the generalization to vector valued series, we consider several issues that are unique

to the multivariate case. First, we provide a modification of the test statistic in the

case of fractionally cointegrated series. Second, by changing the weighting scheme, the

multivariate test statistic can be used to gain insights about which components of the

multivariate series cause a rejection.

A Monte Carlo study shows that the test has good size and power properties in finite

samples. These properties hold for different bandwidths, m = bT δc, as well as for different

trimming parameters ε. Furthermore, the size and power remain good if the dimensions

of the data generating process increase. Likewise, the M̃LWS (B) statistic and the test

for contaminations in components of the process perform well in finite samples.

In our empirical example we consider the log-absolute returns and the log-realized volatil-

ities of the S&P 500 together with those of the DAX, the FTSE and the NIKKEI in a

multivariate framework. By applying our multivariate test, we find evidence of spurious

long memory in the log-absolute returns of the S&P 500. A simple application of the

univariate Qu test to the log-absolute returns, on the other hand, cannot reject the null

hypothesis of true long memory. As discussed in Section 5, several authors have pointed

out that the log-absolute returns might follow a spurious long-memory process. Our

empirical application adds to this literature by providing a formal rejection of pure long

memory in the sense of a statistically significant test decision. For realized volatilities,

on the other hand, no such evidence is found.

Appendix

Proof of Theorem 1:

To prove the theorem we start with the Taylor expansion

√
mη′

∂Rr(d)
∂d

∣∣∣∣∣∣d̂ =
√

mη′
∂Rr(d)
∂d

∣∣∣∣∣∣d0 +
√

mη′
∂2Rr(d)
∂d∂d′

∣∣∣d̄ (d̂−d0) (12)

where d̄ fulfills ‖d̄−d0‖ ≤ ‖d̂−d0‖ and the notation Rr(d) indicates that the summation

is done until [mr] rather than m. For the first part of the right hand side of equation
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(12) we can write:

q∑
a=1

ηa
√

m
∂Rr(d)
∂da

∣∣∣d0 =
2
√
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q∑
a=1
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(
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)−1 [
Re

[
Λ0
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]]
a
−1

)
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+oP(1) + tr

Ĝ (
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)−1 1
√
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λ j−π

2
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[
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j(d))−1(−iaI(λ j)

+I(λ j)ia)(Λ0∗
j (d))−1

]]
=

2
√

m

q∑
a=1

aG0ηa

[mr]∑
j=1

ν j

[
a

(
G0

)−1′

a

(
G0

)−1 [
Re

[
Λ0

j(d)−1I(λ j)Λ0∗
j (d)−1

]]
a
−1

]

−
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By arguments as in Shimotsu (2007), we can write the first term plus the imaginary part

as
∑T

t=1 zt +oP(1) with z1 = 0 and zt = ε
′

t
∑t−1

s=1[Θt−s +Θ̃t−s]εs. Here Θs = 1
π
√

mT

∑m
j=1 ν jRe[Ψ j +

Ψ
′

j]cos(sλ j), Θ̃s = π
2

1
π
√

mT

∑m
j=1 Re[Ψ j−Ψ

′

j] sin(sλ j), Ψ j is defined by Ψ j =
∑q

a=1 ηa

[A∗(λ j)Λ0∗
j (d)−1]aa(G0)−1Λ0

j(d)−1A(λ j), A(λ) =
∑∞

j=0 A jεt− j and A j is given in Assumption

2. The asymptotic normality of zt follows from Theorem 2 of Robinson (1995). To obtain

the covariance of the zt we have for 0 ≤ r1 ≤ r2 ≤ 1

Cov

 T∑
t=1

zt,r1 ,

T∑
t=1

zt,r2

 = E

 T∑
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)]
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by using Lemma 2 and 3 from Lobato (1999). Now we have
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[mr1]∑
j=1

[mr2]∑
l=1

ν jνltr
[
Re

[
Ψ
′

j +Ψ j
]
Re

[
Ψl−Ψ

′

l

]]
×cos(sλ j) sin(sλ j) = 0
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as tr[(A
′

+ A)(B−B
′

)] = 0 for any real matrices A and B. Furthermore, we have

T∑
t=2

t−1∑
s=1

tr
[
Θ
′

t−s,r1
Θt−s,r2 +Θ̃

′

t−s,r1
Θ̃t−s,r2

]
=

1
π2mT 2

T−1∑
t=1

T−t∑
s=1

[mr1]∑
j=1

ν2
j × tr

[
Re

[
Ψ
′

j +Ψ j
]

Re
[
Ψ j +Ψ

′

j

]]
cos2(sλ j)

+
1

π2mT 2

T−1∑
t=1

T−t∑
s=1

[mr1]∑
j=1

[mr2]∑
l=1,l, j

ν jνltr
[
Re

[
Ψ
′

j +Ψ j
]

Re
[
Ψl +Ψ

′

l

]]
cos(sλ j)cos(sλl)

+
π2

4
1

π2mT 2

T−1∑
t=1

T−t∑
s=1

[mr1]∑
j=1

tr
[
Re

[
Ψ
′

j−Ψ j
]

Re
[
Ψ j−Ψ

′

j

]]
sin2(sλ j)

+
π2

4
1

π2mT 2

T−1∑
t=1

T−t∑
s=1

[mr1]∑
j=1

[mr2]∑
l=1,l, j

tr
[
Re

[
Ψ
′

jΨ j
]
Re

[
Ψl−Ψ

′

l

]]
sin(sλ j) sin(sλl).

The second and fourth term of this sum are oP(1) by Lemma 3b) and 3d) in Shimotsu

(2007). Applying Lemma 3a) in Shimotsu (2007) for the first term, we obtain for λ j→ 0

1
π2mT 2

T−1∑
t=1

T−t∑
s=1

[mr1]∑
j=1

ν2
j tr

[
Re

[
Ψ
′

j +Ψ j
]
Re

[
Ψ j +Ψ

′

j

]]
cos2(sλ j)

=
1
m

[mr1]∑
j=1

ν2
j

1
4π2 tr

[
Re

[
Ψ
′

j +Ψ j
]
Re

[
Ψ j +Ψ

′

j

]]
=

1
m

[mr1]∑
j=1

ν2
j

2 q∑
a=1

η2
a + 2

q∑
a=1

q∑
b=1

ηaηbG0
ab

(
G0

)−1

ab

 .
For the third term we have again for λ j→ 0 by Shimotsu (2007) Lemma 3c)

π2

4
1

π2mT 2

T−1∑
t=1

T−t∑
s=1

[mr1]∑
j=1

tr
[
Re

[
Ψ
′

j−Ψ j
]
Re

[
Ψ j−Ψ

′

j

]]
sin2(sλ j)

=
π2

4m

[mr1]∑
j=1

1
4π2 tr

[
Re

[
Ψ
′

j−Ψ j
]
Re

[
Ψ j−Ψ

′

j

]]
=

π2

4m

[mr1]∑
j=1

2 q∑
a=1

q∑
b=1

ηaηbG0
ab

(
G0

)−1

ab
−2

q∑
a=1

η2
a

 .
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From the Euler-Mc Laurin equality and Lemma B.1 in Qu (2011) it follows that

1/m
∑[mr1]

j=1 ν2
j →

∫ r1

0 (1 + log s)2ds. We thus obtain altogether

Cov

 T∑
t=1

zt,r1 ,

T∑
t=1

zt,r2

 → ∫ r1

0

(1 + log s)2

2 q∑
a=1

η2
a + 2

q∑
a=1

q∑
b=1

ηaηbG0
ab

(
G0

)−1

ab


+

π2

4

2 q∑
a=1

q∑
b=1

ηaηbG0
ab

(
G0

)−1

ab
−2

q∑
a=1

η2
a


ds.

For the second term of the second equality of (13) we have by similar arguments as in

Qu (2011) that

aG0

m1/2

m∑
j=1

[
a

(
G0

)−1′

a

(
G0

)−1 [
Re

[
Λ0

j(d)−1I(λ j)Λ0∗
j (d)−1

]]
a
−1

]
⇒ B(1),

where B(s) denotes a standard Brownian motion. As before we have from Lemma B.1

in Qu (2011) that

1
m

[mr1]∑
j=1

ν j→

∫ r1

0
(1 + log s)ds.

It remains the last part of the Taylor expansion. For the second derivative of the

objective function R(d) we obtain

∂2R(d)
∂da∂db

= tr
[
−Ĝ−1(d)

∂Ĝ(d)
∂da

Ĝ−1(d)
∂Ĝ(d)
∂db

+ Ĝ−1(d)
∂2Ĝ(d)
∂da∂db

]
.

Thus,

∂Ĝr(d)
∂da

=
1
m

[mr]∑
j=1

(logλ j)Ĝ1a(d) + oP
(
(logT )−1

)
with Ĝ1a(d) = iaĜ(d)+Ĝ(d)ia and the superscript r denoting again that the sum goes up

to [mr] rather than m. Furthermore, it is

∂2Ĝr(d)
∂da∂db

=
1
m

[mr]∑
j=1

(logλ j)2Ĝ2ab(d) +
π2

4
Ĝ3ab(d) + oP(1),

with G2ab(d) = iaibĜ(d)+ iaĜ(d)ib + ibĜ(d)ia +Ĝ(d)iaib and G3ab(d) = −iaibĜ(d)+ iaĜ(d)ib +

ibĜ(d)ia− Ĝ(d)iaib. It also holds that tr
[
Ĝ(d)−1Ĝ1a(d)Ĝ(d)−1Ĝ1b(d)

]
= tr

[
Ĝ(d)−1Ĝ2ab(d)

]
.
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Altogether this gives

∂2Rr(d)
∂da∂db

= tr

−Ĝ(d)−1

 1
m

[mr]∑
j=1

(logλ j)Ĝ1a(d) + oP
(
(logT )−1

)
×Ĝ(d)−1

 1
m

[mr]∑
j=1

(logλ j)Ĝ1b(d) + oP
(
(logT )−1

)
+ Ĝ(d)−1

 1
m

[mr]∑
j=1

(logλ j)2Ĝ2ab(d) +
π2

4
Ĝ3ab(d) + oP(1)




= tr


 1
m

[mr]∑
j=1

ν2
j

Ĝ(d)−1Ĝ2ab(d) +
π2

4
Ĝ(d)−1Ĝ3ab(d)

+ oP
(
log2T

)
→ tr

[∫ r

0
(1 + log s)2ds

(
G0

)−1
G0

2ab +
π2

4

(
G0

)−1
G0

3ab

]
so that

∂2Rr(d)
∂d∂d′

→ 2
∫ r

0

(
(1 + log s)2(G0�

(
G0

)−1
+ Iq) +

π2

4
(G0�

(
G0

)−1
− Iq)

)
ds

:= F(r). (14)

From the mean value theorem, we have
√

m(d̂− d0) =
√

m
(
∂2R(d)
∂d∂d′ |d̄

)−1
R(d)
∂d |d0 . Since from

Shimotsu (2007) ∂2R(d)
∂d∂d′ |d̄→Ω, with Ω = 2

[
G0� (G0)−1 + Iq + π2

4 (G0�
(
G0

)−1
− Iq)

]
, we have

√
m(d̂−d0)→

√
mΩ−1 ∂R(d)

∂d |d0 and finally using the result from (14)

η
′ ∂2Rr(d)
∂d∂d′

√
m(d̂−d0)→ η

′

F(r)Ω−1√m
∂R(d)
∂d
|d0 . (15)

Now,
√

m∂R(d)
∂d |d0 can be treated as before. Thus, the right hand side of (15) has the co-

variance
∫ 1

0 (1+ log s)22η
′

F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)
′

η+ π2

2 η
′

F(r)Ω−1(G0� (G0)−1−

Iq)Ω−1′F(r)
′

ηds. Altogether, we obtain

η
′ ∂2Rr(d)
∂d∂d′

√
m(d̂−d0) ⇒

∫ 1

0

[
(1 + log s)

(
2η
′

F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)
′

η
)1/2

+i
(
π2

2
η
′

F(r)Ω−1(G0� (G0)−1− Iq)Ω−1′F(r)
′

η

)1/2dB(s).

Like Qu (2011), we use Theorem 13.5 of Billingsley (2009) to prove tightness. Thus, we

show that for every m and r1 ≤ r ≤ r2

E


∣∣∣∣∣∣∣

T∑
t=1

zt,r −

T∑
t=1

zt,r1

∣∣∣∣∣∣∣
2 ∣∣∣∣∣∣∣

T∑
t=1

zt,r2 −

T∑
t=1

zt,r

∣∣∣∣∣∣∣
2 ≤ K (ψm(r2)−ψm(r1))2
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where K is some constant and ψm(·) is a function on [0,1] which is finite, nondecreas-

ing and fulfills limδ→0 limsupm→∞ |ψm(s + δ)−ψm(s)| → 0 uniformly in s ∈ [0,1]. Here we

denote zt(s,r) = zt,r−zt,s. Denote also ct(r, s) = ct,r−ct,s and ct = tr[Θt +Θ̃t]. Using this no-

tation we can use Qu’s (2011) Lemma B.8 to show that E(|
∑T

t=1 zt,r−
∑T

t=1 zt,r1 |
2|
∑T

t=1 zt,r2−∑T
t=1 zt,r|

2) is bounded from above by

K

 T∑
t=1

t−1∑
s=1

ct−s(r1,r)2


 T∑

t=1

t−1∑
h=1

ct−h(r,r2)2


where K is some positive constant. By similar arguments as in Qu (2011) we obtain

furthermore

T∑
t=1

t−1∑
s=1

ct−s(r1,r)2 ≤

 1
Tm

[mr]∑
j=[mr1]+1

[mr]∑
k, j

(
ν2

j + ν2
k

)
+

1
m

[mr]∑
j=[mr1]+1

ν2
j


×

2 q∑
a=1

η2
a + 2

q∑
a=1

q∑
b=1

ηaηbG0
ab

(
G0

)−1

ab


≤

3
m

[mr]∑
j=[mr1]+1

ν2
j

2 q∑
a=1

η2
a + 2

q∑
a=1

q∑
b=1

ηaηbG0
ab

(
G0

)−1

ab

 .
As (2

∑q
a=1 η

2
a + 2

∑q
a=1

∑q
b=1 ηaηbG0

ab(G0)−1
ab ) ≤ K for some constant K we set ψm(s) = 1/m∑[ms]

j=1 ν
2
j . This satisfies the condition as

lim
δ→0

limsup
m→∞

|ψm(s +δ)−ψm(s)| = lim
δ→0

∫ s+δ

s
(1 + log x)2dx → 0.

This proves the theorem. �

Proof of Lemma 2:

To prove the lemma, we first need to show that η
′

(G0�(G0)−1)η= 1, if η= (1/
√

q, ...,1/
√

q)′.
For this denote

G0 =



g11 g12 . . . g1q

g21 g22 . . . g2q
...

. . .
...

gq1 gq2 . . . gqq


.
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Thus, by using Cramer’s rule we obtain for the inverse matrix

(
G0

)−1
=

1
det(G0)



det(G0
−11) −det(G0

−21) . . . (−1)1+q det(G0
−q1)

−det(G0
−12) det(G0

−22) . . . (−1)2+q det(G0
−q2)

...
. . .

...

(−1)1+q det(G0
−1q) (−1)2+q det(G0

−2q) . . . det(G0
−qq)


,

where G−ab denotes the matrix G with the a-th row and b-th column omitted. Therefore,

by applying Laplace’s formula and using that gi j = g ji we have

G0�
(
G0

)−1
=

1
det(G0)



g11 det(G0
−11) −g12 det(G0

−21) . . . (−1)1+qg1q det(G0
−q1)

−g21 det(G0
−12) g22 det(G0

−22) . . . (−1)2+qg2q det(G0
−q2)

...
...

. . .
...

(−1)1+qgq1 det(G0
−1q) (−1)2+qgq2 det(G0

−2q) . . . gqq det(G0
−qq)


.

Therefore,

G0�
(
G0

)−1
η =

1
det(G0)



1√
q
∑q

a=1(−1)1+ag1a det(G0
−a1)

1√
q
∑q

a=1(−1)2+ag2a det(G0
−a2)

...

1√
q
∑q

a=1(−1)q+agqa det(G0
−aq)


=

1
det(G0)



det(G0)
√

q
det(G0)
√

q
...

det(G0)
√

q


=



1√
q

1√
q
...

1√
q


and thus finally η

′
(
G0�

(
G0

)−1
)
η = 1.

From this we can conclude that (2η
′

η+ 2η
′

(G0 � (G0)−1)η)1/2 = 2 and (2η
′

η− 2η
′

(G0 �

(G0)−1)η)1/2 = 0, which shows that the first term in (8) has the desired form. The second

term of (8) equals the second term of the limiting distribution of Qu (2011) anyway, so

it remains to consider the third term.

We first show that
(
2η
′

F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)
′

η
)1/2

= 2
∫ r

0 (1+ log s)2ds. To see

this note that

F(r)
′

η = 2
∫ r

0
(1 + log s)2

(
G0� (G0)−1 + Iq

)′
ηds

= 4η
∫ r

0
(1 + log s)2ds

as
(
G0� (G0)−1 + Iq

)′
η = 2η by the same arguments as before. By denoting with η−1 the

pseudo inverse defined by the equality Aη−1η = A for every matrix A, we have η−1 = η′.
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Consequently, Ω−1′η =
(
η−1Ω′

)−1
= (Ωη)

′−1. Now, Ωη = 4η, since again (G0� (G0)−1)η = η,

so that Ω−1′η = 1/4η.

Applying the same arguments to the term η
′

F(r)Ω−1 on the left side gives us altogether

2η
′

F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)
′

η = 2
(∫ r

0
(1 + log s)2ds

)2

η
′

(G0� (G0)−1 + Iq)η

= 4
(∫ r

0
(1 + log s)2ds

)2

.

Now applying the same arguments we can furthermore conclude that η
′

F(r)Ω−1(G0 �

(G0)−1− Iq)Ω−1′F(r)
′

η = 0, which proves the lemma. �

Proof of Theorem 3:

The test statistic is given by

M̃LWS
(
B̂(p0

G)
)

=
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥∥∥
2√∑m
j=1 ν

2
j

q∑
a=1

ηa

[mr]∑
j=1

ν j
( ˜
aG−1(d̂, B̂)Re

[
Λ j(d̂)−1 Ĩ(λ j, B̂)Λ∗j(d̂)−1

]
a
−1

)

+
1√∑m
j=1 ν

2
j

q∑
a=1

ηa
( ˜
aG−1(d̂, B̂)

) [mr]∑
j=1

(λ j−π)
2

Im
[
Λ j(d̂)−1 Ĩ(λ j, B̂)Λ∗j(d̂)−1

]
a

∥∥∥∥∥∥∥∥∥ .
Now, define C(λ j, d̂, B̂) = Λ j(d̂)−1 Ĩ(λ j, B̂)Λ∗j(d̂)−1 = Λ j(d̂)−1B̂I(λ j)B̂′Λ∗j(d̂)−1 and from B̂−

B0 = OP(m−1/2∆−1
m ), where ∆m = diag(λ−b1

m , ..., λ
−bpG
m , 0, ..., 0) S B and S B is a selection

matrix that specifies the position of the free parameters in B̂

C(λ j, d̂, B̂) = Λ j(d̂)−1B0I(λ j)B0′Λ∗j(d̂)−1

+ Λ j(d̂)−1B0I(λ j)OP
(
m−1/2∆−1

m

)′
Λ∗j(d̂)−1

+ Λ j(d̂)−1OP
(
m−1/2∆−1

m

)
I(λ j)B0′Λ∗j(d̂)−1

+ Λ j(d̂)−1OP
(
m−1/2∆−1

m

)
I(λ j)OP

(
m−1/2∆−1

m

)′
Λ∗j(d̂)−1.

Therefore, C(λ j, d̂, B̂)ab = C(λ j, d̂,B0)ab +OP(λ
d̂a−d0

a+d̂b−d0
b

j )OP
(
m−1/2∆−1

m,ab

)
so that plim C(λ j, d̂, B̂)ab =

C(λ j, d̂,B0)ab + OP
(
m−1/2∆−1

m,ab

)
, due to the consistency of d̂. Now,

G̃(d̂, B̂) = m−1
m∑

j=1

Re
[
C(λ j, d̂, B̂)

] P
→ m−1

m∑
j=1

Re
[
C(λ j, d̂,B0) + OP(m−1/2∆−1

m )
]

= G̃(d̂,B0) + OP(m−1/2∆−1
m ).
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Plugging these results into the M̃LWS (B) statistic and straightforward algebra give

M̃LWS (B̂(p0
G))⇒ M̃LWS (B0) +

∑[mr]
j=1 OP(m−1/2∆−1

m )√∑m
j=1 ν

2
j

,

and since
∑m

j=1 ν
2
j → m, we have M̃LWS (B̂(p0

G))⇒ M̃LWS (B0) + OP(∆−1
m ), for m = bT δc.

The proof for the limit distribution of M̃LWS (B0) proceeds as that of Theorem 1, but

with Ĝ(d) and I(λ j) replaced by G̃(d,B0) and Ĩ(λ j,B0). �

Proof of Theorem 4:

Let FM̃LWS (B̂(p̂G))(x) denote the finite sample distribution function of M̃LWS (B̂( p̂G)) for

x ∈<∪{−∞,∞}. To prove the theorem, we show uniform convergence of the distribution

of M̃LWS (B̂(P̂G)) to its counterpart for a known cointegration rank that is covered in

Theorem 3. This is:

supT ||FM̃LWS (B̂(p̂G))(x)−FM̃LWS (B̂(p0
G))(x)|| = oP(1).

Now, the estimator p̂G of the cointegration rank can either estimate the correct, or a

false cointegrating rank. By the law of total probability we can therefore decompose

the distribution into the sum of the conditional distribution functions multiplied by the

probabilities for these two possible events.

||FM̃LWS (B̂(p̂G))(x)−FM̃LWS (B̂(p0
G))(x)||

=||FM̃LWS (B̂(p̂G))(x| p̂G = p0)P( p̂G = p0) + FM̃LWS (B̂( p̂G))(x|p̂G , p0)P(p̂G , p0)−FM̃LWS (B̂(p0
G))(x)||

≤||FM̃LWS (B̂(p̂G))(x| p̂G = p0)P( p̂G = p0)−FM̃LWS (B̂(p0
G))(x)||

+ ||FM̃LWS (B̂(p̂G))(x| p̂G , p0)P( p̂G , p0)||

≤||FM̃LWS (B̂(p̂G))(x| p̂G = p0)P( p̂G = p0)−FM̃LWS (B̂(p0
G))||+ ||P(p̂G , p0)|| = ||∆F||,

where the first inequality is due to the triangle inequality and the second holds since

0 ≤ FM̃LWS (B̂( p̂G))(x|p̂G < p0), FM̃LWS (B̂(p̂G))(x| p̂G > p0) ≤ 1. Using limT→∞P( p̂G = p0) = 1,

which implies ||P( p̂G , p0)|| = oP(1), we have

||∆F|| =||(FM̃LWS (B̂(p̂G))(x|p̂G = p0)−FM̃LWS (B̂(p0
G))(x)||+ oP(1) = oP(1),

since FM̃LWS (B̂(p̂G))(x| p̂G = p0) = FM̃LWS (B̂(p0
G))(x), by definition. Due to the continuity

of the sup, the result follows from the continuous mapping theorem. The distribution

FM̃LWS (B̂(p0
G))(x) of M̃LWS (B̂(p0

G)) is given in Theorem 3. �
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Proof of Theorem 5:

We now prove the consistency of the M̃LWS (B̂( p̂G)) statistic calculated based on an

estimate p̂G of the cointegrating rank. For ease of notation we will write B̂ instead of

B̂( p̂G). There are two possible scenarios

1. p̂G ≥ p0
G, thus the cointegration rank has been estimated correctly or overestimated.

2. p̂G < p0
G, thus the cointegration rank has been underestimated

In the second case limT→∞ G̃(d̂, B̂) does not have full rank and is singular. Therefore,

limT→∞ G̃(d̂, B̂)−1 does not exist and divergence of the test statistic is obvious.

In the first case limT→∞ G̃(d̂, B̂) has full rank and the inverse exists. Our procedure

corresponds to an application of the MLWS test to the modified random level shift

process B̂Xt = B̂µt + B̂κt. For the mean part we have B̂µt, which is a linear combination

of random level shift processes. The periodogram of this low frequency contamination

is therefore BIµ(λ j)B′, which is of the same order (OP(λ−2T−1)) as that of µt itself.

Consequently, the proof proceeds in the same way as that of Theorem 2 (in the sup-

plementary appendix), but with I(λ j), G(d), and d replaced by Ĩ(λ j, B̂), G̃(d, B̂) and d̃.
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