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Abstract

This paper provides a multivariate score-type test against spurious long memory. In
particular, we prove the consistency of the test against the alternatives of random level
shifts and smooth trends. The test statistic is based on the weighted sum of the partial
derivatives of the multivariate local Whittle likelihood function. By choosing the weight-
ing scheme accordingly, one can either test the complete spectral density matrix for a
misspecification local to the origin, or one can focus on particular rows and columns.
In the first case, we obtain a pivotal limiting distribution, whereas we can use the sec-
ond weighting scheme in a subsequent step to evaluate which series of the multivariate
system might cause a possible rejection.

To apply the test to fractionally cointegrated series, the test statistic is calculated for
the linearly transformed system after estimating the cointegrating matrix. We derive
the limiting distribution and show consistency under this procedure. A Monte Carlo
analysis shows good finite sample properties of the test in terms of size and power.

To highlight the usefulness of the test in practice, we apply it to the log-absolute returns
and the log-realized volatilities of the S&P 500, the DAX, the FTSE, and the NIKKEI.
It is found that the log-absolute return of the S&P 500 is not correctly specified as a
pure long memory process. In contrast to that, there is no indication of spurious long

memory in the realized volatility series.
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1 Introduction

Distinguishing between true and spurious long memory is of major importance for the
empirical modeling of many macroeconomic and financial time series. Usually, series
with slowly decaying empirical autocorrelation functions are modeled as fractionally in-
tegrated processes. However, several authors point out that other data generating pro-
cesses such as nonlinear time varying coefficient models, random level shift processes,
STOPBREAK models, and markov switching models can generate similar autocovari-
ance features. Examples of this literature include Granger and Ding (1996), Lobato and
Savin (1998), Diebold and Inoue (2001), Granger and Hyung (2004) and Mikosch and
Starica (2004).

Motivated by these findings, several tests have been proposed to distinguish true and
spurious long memory. Berkes et al. (2006) or Yau and Davis (2012), among others, sug-
gest tests for the null hypothesis of spurious long memory. Tests for the null hypothesis
of true long memory include Dolado et al. (2005), Shimotsu (2006), Ohanissian et al.
(2008), Haldrup and Kruse (2014) and Davidson and Rambaccussing (2015).

Perron and Qu (2010) derive the properties of the periodogram of processes with short
memory and level shifts. They find that for low frequencies the effect of the shifts
dominates the behavior of the spectral density and the implied value of d is one. For
larger frequencies, on the other hand, the short memory component is dominant and the
implied d is zero. These findings explain the sensitivity of semiparametric d-estimators
with respect to the bandwidth choice. Therefore, Perron and Qu (2010) propose a test
statistic based on the difference between memory parameters estimated with different
bandwidths. The same results on the spectral density of level shift processes are used
by Qu (2011), who derives a score-type test that is based on the derivative of the local
Whittle likelihood function. Simulation studies conducted by Qu (2011) and Leccadito
et al. (2015) show that against a wide range of alternatives the Qu test has the best
power among the tests suggested so far.

Closely related to our paper are also multivariate extensions of the local Whittle estima-
tor. In particular, Lobato (1999) and Shimotsu (2007) extend the local Whittle estimator
to a multivariate framework. Extensions of the local Whittle estimator to fractionally
cointegrated systems have been considered by Nielsen (2007), Robinson (2008b) and
Shimotsu (2012).

We contribute to this literature by generalizing the approach of Qu (2011) to test for
true long memory in multivariate processes. The test statistic is based on the weighted
sum of the partial derivatives of the multivariate local Whittle likelihood function in the
form introduced by Shimotsu (2007). In this specification the cross-spectral densities

contain information on the phase and coherence of the process. As Kechagias and
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Pipiras (2015) show, the assumed form of the spectral density matrix local to the origin
is specific to causal filters with hyperbolically decaying coefficients. Therefore, our test
can be interpreted as a general test on the correct specification of a multivariate series
as a causal long memory process. If one is willing to assume that the process is causal,
a rejection of the test can be interpreted as evidence for low frequency contaminations.
The limiting distribution of the test statistic is derived for general weights. However, by
choosing the weighting scheme accordingly, one can obtain a pivotal distribution that
coincides with that of the univariate Qu test. Furthermore, it is also possible to choose
the weights so that one can gain further insights into which components of a multivariate
process cause a rejection.

To our knowledge, this is the first multivariate test against spurious long memory. The
idea behind the test is that under the null hypothesis the derivative of the local Whittle
likelihood function evaluated at d for the first [mr] < m Fourier frequencies with r € [g,1]
is approximately equal to zero. Under the alternative the derivative diverges if it is
evaluated for a lower number of Fourier frequencies than used for the estimation of d,
since it is based on a wrong assumption about the shape of the spectral density.

Our test statistic is derived in a multivariate long memory framework which excludes
fractional cointegration. Nevertheless, we show that the test can easily be modified for
the situation of fractionally cointegrated data.

In the empirical example we apply our test to the log-absolute returns and log-realized
volatilities of four stock market indices: the Standard & Poor 500, the DAX, the FTSE
and the NIKKEIL. Even though especially the log-absolute values of S&P 500 returns
have been studied in many of the aforementioned contributions on the possibility of
spurious long memory, the tests proposed so far often fail to reject the null hypothesis
of a true long-memory process. We therefore reconsider this example by extending it to
a multivariate framework and we can clearly reject the null hypothesis of a pure long
memory process for the S&P 500. For realized volatility series of these four stock market
indices, on the other hand, we do not find any evidence of spurious long memory.

The rest of the paper is structured as follows. After stating the model and the assump-
tions in Section 2, the test statistic is derived in Section 3. Some Monte Carlo simulations
are given in Section 4. The empirical application is presented in Section 5 and Section 6
concludes. A supplementary appendix is provided on the authors webpages. It contains
some of the more standard proofs, details on the pre-whitening procedure, a series of

additional Monte Carlo experiments and robustness checks for the empirical application.



2 Model Specification and Assumptions

The spectral density of a multivariate long-memory process X;, with d = (dy,d>, ...,d,)’

and —1/2 <dj,...,d; < 1/2 being the memory vector, is local to the origin given by
F(A)) ~ A{dGA(d), (1)

with A j(d) = diag(A jo(d)) and A jo(d) = /l;d“ei(”‘/lf)da/z, where A; = 27j/T denotes the j-th
Fourier frequency, and j=1,...,[T/2]. G is a real, positive definite, symmetric and finite
matrix and the asterix A* denotes the conjugate transpose of the matrix A. Further, the
imaginary number is denoted by i and d, is the memory parameter in dimension a.
The assumptions on G exclude fractional cointegration as they stand. We first derive
our test statistic under this assumption and consider the case of fractionally cointegrated
series afterwards in Section 3.3.

The spectral density representation in (1) accounts for phase shifts in the spectrum.
Phase shifts occur as the covariance function y(h) of the process is no longer necessarily
time-reversible in the multivariate setting, that is y(h) # y(—h). Therefore, the off-
diagonal elements in row a and column b of the spectral matrix of X; contain complex
valued elements which are not vanishing at 4 =0 and which depend on the difference
between the memory parameters d, and dp. These complex valued elements vanish if
and only if the matrix G in (1) is diagonal or d, = d for all dimensions a.

A possible example is the multivariate g-dimensional FIVARMA model

(1-L)% 0 X1 — EXyy i
0 (1-L)% )\ Xy —EXy gt
with t=1,...,T. This can alternatively be written as
D(dy,...,dg)(X; — EX;) = uy, (2)

where X; is a (g% 1) column vector and u; = (uy,, U, ..., Ug)" is a covariance stationary
process with spectral density f,(1) which is bounded and bounded away from zero in a
matrix sense at the zero frequency, 4 =0. The operator D(dj,...,d,) = diag((1 L)%, .., (-
L)%) is a (g x ¢) matrix polynomial with zeros on the non-diagonal elements.

In a univariate framework a type II fractionally integrated process (e.g., Marinucci and
Robinson, 1999) is defined by (1 — L)% = u,1(¢ > 0), where u, is an 1(0) process having the
Wold representation u, = Z;’.‘;O 0€—; with Z;‘;O |2 j||2 < o0o. The innovations ¢ are assumed

to be a martingale difference sequence satisfying E(&|&;—1) =0 and E(etzl&_l) < oo with
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& = 0({€, s <t}). Furthermore, it is u; =0 for £ <0. The order of fractional integration is

AL €m0 MY
j=0 TG

with I'(z) = fooo #~le7dt. L denotes the Backshift operator, i.e. Le; = e;—;. Details about
recent developments on long-memory time series can be found in Beran et al. (2013) or
Giraitis et al. (2012).

The spectral density of the process u; in (2) is assumed to fulfill the local condition
fu() ~G, as 1 — 0. This condition is fulfilled whenever u, has the Wold decomposition
u; = C(L)g;, where C(1) is finite and has full rank, and C(L) is a polynomial in the lag

given by d and (1 — L) is defined by its binomial expansion (1 —L)¢ =Y

operator with absolute summable weight matrices.

Furthermore, the periodogram of X; evaluated at frequency A is defined as I(1) = w(D)w*(1),
with w() = ﬁ Zthl X,e"™ and the superscript 0 denotes the true value of a parameter.
We need to state the following assumptions which follow those in Shimotsu (2007):

Assumption 1. For B€(0,2] and a,b=1,...,q as 1 — 0"

Far) = exp (i (e = ) (d) - df) 12) 148G, = (1 4+F).

Here and in the following f,; and G, are the respective elements of the matrices f(A1)
and G.

Assumption 2. [t holds that

Xl - EX[ = A(L)St = ZAjgt_j,
=0
with Z?io ||Aj||2 < oo and ||-|| denotes the supremum norm. It is assumed that E(&|&—1) =
0, E(s,sgli‘y,_l) =1, a.s. fort=0,x1,%2,... where §; denotes the o-field generated by &
and 1y 1s an identity matriz, s <t. Furthermore, there exists a scalar random variable &
such that E€* < co and for all T>0 and some K >0 it is P(||le/|* > 1) < KP(e? > 7). In
addition, it holds for a,b,c,d =1,2, t=0,+1,%2,... that E(€y€p&ctlFi-1) = Habe a.5. and

E(eurepi&ct€arlFi-1) = Habea a.5., where |tape| < 00 and |uapeal < oo.

Assumption 3. In a neighborhood (0,6) of the origin, A(1) = Z‘J’.":OAJ-eWL is differentiable

and

9 -1
- aAW) = 0(17 AWI). 20,

where 4A(A) is the a-th row of A(Q).

Assumption 4. As T — oo it holds for any y >0
1 1+28 2
i m (logm) +logT .
m Tzﬁ mY
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where m 1s the bandwidth parameter.

Assumption 5. There exists a finite real matrix Q such that

0\~1
Aj(d®) A@)=Q+o(1). ;-0

These assumptions are multivariate versions of the assumptions in Qu (2011). They
allow for non-Gaussianity. Assumption 1 to 5 are satisfied by multivariate FIVARMA
processes. Assumption 4 is slightly stronger than the assumption used in Qu (2011)
for the univariate local Whittle estimator. It gives a sharp upper bound of m = o(T%3)
for the number of frequencies m which can be used for the local Whittle estimator and
thus for our test statistic. This stronger assumption is necessary for the Hessian of the
objective function of the local Whittle estimator to converge, which is needed in our

proof.

3 Testing for Spurious Long Memory

In this section we propose a multivariate test for pure long memory. Our test is spectral
based and uses the different properties of the periodogram of long-memory processes and
processes with structural breaks, trends or other forms of low frequency contaminations.
Special use will be made of the fact that the slope of the spectral density of a process

with these kind of contaminations is nearly zero for Fourier frequencies A; with j> VT.

3.1 The MLWS Statistic

To be specific, we are interested in testing the hypothesis that the spectral density local

to the origin has the shape given in equation (1):
Ho: f(2)) ~ Aj(d)GA(d)

as 4j = 0% with d, € (-1/2,1/2) V a=1,...,q. Thus, under the null hypothesis X; is a
multivariate causal long-memory process with phase (d, —dp)(mr—A)/2. The alternative

is that the data cannot be described by this spectral density:
Hy: f(4)) Aj(d)GAj.(d).

To motivate the test statistic, we discuss the properties of the periodogram under the al-

ternative of low frequency contaminations for the example of random level shift processes



and smooth trends. The multivariate random level shift model is defined by

Xt = My +K; Wlth (3)
ue = Iy — U1 + ey,

where &, I, = diag(nyy,...,my) and e, are mutually independent. The Bernoulli variables
niy and mj; for the different dimensions of the g-dimensional process X; are correlated
with correlation matrix X for i, j=1,...,q. We consider a shift probability that is defined
by p = p/T, where p is the expected number of shifts in the sample. Furthermore, the
magnitude of the shifts is characterized by the g-dimensional column vector e;, with
e; ~ N(0,%,), and the noise process «; is an iid sequence with «; ~ N(0,Z,). The pairwise
correlation coefficients of m;; and 7j;, e;; and ej;, and «;; and «j; are labeled as prj, pe,ij
and py;j, Y i,j=1,...,q.

The autoregressive coefficient 0 < ¢ < 1 determines the persistence of the level shifts. This
allows us to consider stationary as well as non-stationary multivariate random level shift
processes. This formulation of our random level shift model is a multivariate version of
the autoregressive random level shift process suggested in Xu and Perron (2014).

The second example for a possible model under the alternative is the smooth trend

model:
t
Xt :H(7)+Kt, (4)

where all variables are g-dimensional column vectors, H(¢/T) = (h1(¢/T),...,hy(t/ 7)) and
ha(t/T) is a Lipschitz continuous function on [0,1], V¥ a =1,...,q. The noise term «; is
defined as in equation (3).

In analogy to Perron and Qu (2010), the periodogram of X; in (3) or (4) can be decom-

posed in four components by

T
Z KZK’S exp {i(t - s)/lj}
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By similar arguments as in Proposition 3 of Perron and Qu (2010) for A; = o(1) the first
summand is of order Op(T_l/lj_.Z), the second is of order Op(1), and the third and fourth
term are of order Op(T~Y 2/l]_.l). Therefore, for each component in X; the level shifts
affect the periodogram only up to j= O(T'?). The stochastic orders are exact in the

case of level shifts as in equation (3) and approximate for slowly varying trends as in
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(4). McCloskey and Perron (2013) show that these orders also hold for deterministic
level shifts and fractional trends.

This decomposition of the periodogram can now be used to construct a multivariate local
Whittle score-type test (MLWS test). It is based on the difference between the spectral
density of a fractionally integrated process and the periodogram of a series contaminated
by mean shifts or smooth trends that is almost flat for frequencies m > VT. This property
also explains why the bias of the estimate d of the memory parameter depends heavily
on the bandwidth choice if a local semiparametric estimator is used.

The test statistic is based on the derivative of the local Whittle likelihood function
evaluated at d, where d is the local Whittle estimate obtained using the first m Fourier
frequencies. Qu (2011) now evaluates the derivative of the local Whittle likelihood
function at the first |mr] Fourier frequencies, where r € [g,1] with € > 0. For r =1 the
derivative is exactly zero and for smaller r the derivative should be close to zero as long
as the estimate of d remains stable when the bandwidth is decreased. This is the case
under the null hypothesis. If the alternative is true, the non-uniform behavior of the
spectral density leads to a divergence of the derivative. The test statistic is obtained by
taking the supremum of the derivative over all r.

Our test statistic extends this idea to the multivariate case. It is based on the weighted
sum of the partial derivatives of the multivariate local Whittle likelihood as defined in
Shimotsu (2007).

As the Gaussian log-likelihood of X; and G are real, the local Whittle likelihood localized

to the origin can be written as

Om(G,d) =

1 ¢ ) - - .

— > {logdet A ()G +1r[GT' Re[A @) TapAs@ ]|} (5)
j=1

The first order condition with respect to G gives G(d) = % ?:1 Re [A j(d)_ll (1 j)A;(d)_l].
Substituting this into Q,,(G,d) and

q
logdetA j(d) +log detAj-(d) =log detAj(d)Aj-(d) =-2 Z dgloga;

a=1

gives the objective function of the multivariate Gaussian semiparametric estimate (GSE)

of Shimotsu (2007):

q m
) 1
R(d) = log detG(d) - 2Zdan—1 > log;. (6)
a=1 j=1

To state our test statistic, we need to introduce an approximation of the first derivative

of the objective function R(d) that is used in Shimotsu (2007). For easier reference, we
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restate it in Lemma 1 below. Denote by n = (m,...,nq)' a (gx1) vector of real numbers
with at least one 1, # 0 and v; = logd; - l/mZ;illog/lj. Furthermore, set ,G™!' to be
the a-th row of G™!' and set i, to be the (¢x¢) matrix with a one on the a-th diagonal
element and zeros elsewhere. Additionally, M, denotes the a-th column of the matrix

M. Then, we can write:

Lemma 1. Under Assumptions 1 to 5 we have

q m

q
Zma maR(") - %Z]naZlVj(aG‘lRe[Aﬂd)‘lluj)A;(d)‘lL-1)
a= a J=

q m

Z

The right hand side of Lemma 1 is the main ingredient of our test statistic which is

llm[A (@) IA)AS ) ] +op(1).

asymptotically equivalent to the weighted sum of the components of the gradient vector.

The test statistic is given by:

1 ) g9 [mr] . . A
MLWS = 5 sup ——— >0 Y vi(GT DRe| A IAHAYD T ~1) (7)
rE[s 1] 'Z;n:lvi a=1 le

g ._
+ ; Z na (G (@) Z /l]TﬂIm (A @ TApASD™],

Remark 1: The factor 1/2 is added in order to obtain comparability with the univariate
case.
Remark 2: As usual, a small sample correction is applied by replacing m~!/? with

(Z] | J) 1/2 which improves the size of the test and is asymptotically equivalent.

In the univariate case our test reduces exactly to that of Qu (2011). The imaginary part
in our test statistic accounts for the phase shifts in the multivariate spectrum that appear
under long memory. Kechagias and Pipiras (2015) show that the phase will be given by
(d; —dp)r/2 for every causal linear process with hyperbolically decaying coefficients in
their Wold representation. The MLWS test will therefore also generate power against
non-causal processes and can thus be interpreted as a general misspecification test. If one
is willing to assume that the process is causal and has the required Wold representation
(which is the case for the commonly used fractionally integrated model), than the test
will be specifically against low frequency contaminations.

By combining the results of Shimotsu (2007) with those of Qu (2011) we are able to derive
the limiting distribution of the test statistic (7). It is stated in the following theorem,

- 9.



where B(s) denotes standard one-dimensional Brownian motion, © is the Hadamard

product and = denotes weak convergence:

172

(1+1ogs) (2;7’;7 w2 (GO @(GO)_l)n) (8)

Theorem 1. Under Assumptions 1 to 5 we have for T — oo
1
MLWS = = sup
rele,l]

r
S (0@ o)

)
- 2n’B(1)f(1+1ogs)dsn
0

+i dB(s)

1
- f |(1-+10g5) (20 FnQ ' G0 (G + 1)@ F'n)
0

dB(s)|,

5 1/2
+i(’%n’F(r)9‘1<G° oG - L»Q‘“F(r)’ﬂ)

where Q =2 [GOQ(GO)—l +I,+ TG 0(6%) - q)] and

F(r)szr
0

The test statistic as it stands and its limiting distribution in Theorem 1 hold for any

(1+1ogs)? (GO o(c)" +1q) 4 %2 (GOQ(GO)_I - Iq)] ds.

choice of the weight vector n. However, the test statistic is not pivotal as the limiting dis-
tribution depends on G° and thus on the unknown memory parameter d°. Furthermore,
the limiting distribution depends on the dimension g.

To overcome this problem, we fix the weighting scheme n to n, =1/+/g, Ya=1,...,q,
to obtain a pivotal test independent of the unknown parameter d°. Furthermore, this
choice guarantees that for every dimension ¢ the limiting distribution is exactly the same

as in Qu (2011). This is stated in the following lemma:

Lemma 2. Under Assumptions 1 to 5 and setting m = ... =14 = 1//q we have for
T —
-
MLWS = sup f(1+logs)dB(s)
rele, 1] 0
- B(l)f(1+10gs)ds
0
1
- F(r)f (1 +1log s)dB(s)||,
0

where F(r) = for(l +log s)2ds.
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Remark 3: For £ =0.02, the asymptotic critical values of the MLWS test with n, =
1/4q VY a=1,...,q are given by 1.118, 1.252, 1.374, and 1.517 for a 10%, 5%, 2.5%, and
1% significance level respectively. The corresponding critical values for a larger trim-
ming parameter, & = 0.05, equal 1.022, 1.155, 1.277, and 1.426, as shown by Qu (2011).

Remark 4: It is assumed that dg €e(-1/2,1/2) Y a=1,...,q, i.e. that the process has
stationary long memory. However, the simulation results in Table 11 in the supplemen-

tary appendix indicate that the test statistic remains valid for d < 1.

After deriving the limiting distribution of the test, we have to prove its consistency

under the alternatives (3) and (4). This is done in the following theorem:

Theorem 2. Suppose that the process X; is generated by (3) or (4). Assume that as

T — oo, we have m/TY?* — oo, P(cfa—dg >0)— 1 forallae{l,...,q}, where G(d) is positive
P

definite and Assumptions 1 to 5 hold. Then, MLWS — oo, as T — oo, for any ||n|| > 0.

Note that (3) and (4) nest the cases, where only a subvector of X; is subject to low
frequency contaminations. Theorem 2 therefore does not assume, that all components
of X; are affected. Furthermore, the consistency result holds for every weight vector n
- except for the trivial case when all elements are zero. The intuition behind this is

discussed in detail in Section 3.2.

To robustify the test against the influence of short memory dynamics in finite samples,
we proceed in analogy to Qu (2011), and apply the MLWS test to the filtered series
X, = ?AI(L)'I/\A/((L)(X,—EX,), where A(L) and /\>((L) are the estimated lag-polynomials
from a low order FIVARMA model in final equation form selected using the AIC. Details
on the implementation of the pre-whitening procedure and its performance in Monte
Carlo studies can be found in the supplementary appendix.

To prove the validity of this procedure, we sharpen Assumption 2 and replace it by

Assumption 6, which is a multivariate version of Assumption F in Qu (2011).

Assumption 6. Assume that in addition to Assumption 2 we have A = O(~12=¢y with

c>0 as j— oo.
We then obtain the following result.

Lemma 3. Assume that X; satisfies Assumptions 1 to 6. Then, the MLWS test applied

on the filtered series X; has the same limiting distribution as given in Theorem 1.

Note that we do not assume that the short memory dynamics follow a VARMA-process.

We only use it as a reasonable approximation to the true short memory dynamics in

- 11 -



finite samples. Asymptotically the test is unaffected by any form of short memory
dependence because we only use the periodogram ordinates at Fourier frequencies local
to the pole. The short memory dynamics have no influence on the shape of the pole.
This is also why the pre-whitening procedure leaves the limiting distribution of the test

unaffected.

3.2 Testing for Low Frequency Contaminations in a Component of

a Multivariate System

A rejection of the MLWS statistic indicates misspecifications in at least one of the
components of the process. To gain further insights into which of the components of X;
cause the rejection, one can use the limiting distribution derived in Theorem 1 to test

the hypothesis
Hoy(a): S(a)O f(4)) ~ S(a)@(Aj(d)GA;(d)), 9)

as Aj — 0, where S(a) is a selection matrix with ones in its a-th row and a-th column
and zeros in all other elements. Such a test is obtained by setting the a-th element of n
to one and all others to zero.

In this case the limiting distribution simplifies slightly to

r det(G° 12
MLWS = 1sup f \/§(1+1ogs)(w+1) (10)
rele, 1] 0 det(G )
i 72 (8aadet(GY ) 1 " dB(s)—2B(1) f r(1+1 )d
127 dewa®) ' o B

172
aa

1
- f [(1+1ogs)(2F(r)9—1(G0@(G°)—1+1q)Q—1’F(r)’)
0

1/2

2
+i(%F(r)Q_1(GO oG - Iq)Q‘l'F(r)') dB(s)

aa

Since the distribution depends on G, it is not pivotal and the implementation of the
test statistic requires the simulation of critical values for each G(d).

Under the null hypothesis the a-th row and column of the spectral density matrix cor-
respond to those of a multivariate long memory process. In case of a low frequency
contamination in component b # a, only one of the off-diagonal elements in the a-th row
and the a-th column is affected, whereas all elements in the b-th row and column differ
from the null hypothesis.

A rejection of Hy(a) might therefore be due to a low frequency contamination in the b-th

- 12 -



component. However, a non-rejection of Hy(a) and a rejection of Hy(b) can be interpreted
as evidence for a contamination in component b only. Furthermore, the ordering of the
p-values of the test statistics can be used as an indication for the relative probability of
a contamination in the respective components.

If there is indeed only a contamination in the component of the series for which the
test is applied, the test statistic for this component will have better power than the test
using equal weights. Other tests for contaminations in a subset of the components of
X; can be constructed following the same logic, by using a suitable weighting vector.
However, an optimal choice of the weighting vector requires a priori information on the
components of X; that may be contaminated. If contaminations are considered to be
equally likely in each component, then an equal weighting will generate the best power.
We therefore recommend (as the default procedure) to start with an equal weighting
scheme. In case of a rejection for the whole system, one can proceed with testing for
contaminations in each of the components separately.

After the components that are subject to contaminations are identified, one is left with
the task to model the time variation in the mean. A discussion of the available meth-
ods in the univariate case is provided by Qu (2011). Recently, McCloskey and Perron
(2013) and Hou and Perron (2014) proposed semiparametric estimators of the memory
parameters that are robust to spurious long memory and can be used to determine the
memory orders of the components. The estimated memory orders can in turn be used
together with the methods of Lavielle and Moulines (2000) or Beran and Feng (2002) -

depending on the assumptions about the nature of the time variation in the mean.

3.3 MLWS Test for Fractionally Cointegrated Series

So far, fractional cointegration has been ruled out by our assumptions on the matrix G,
which has reduced rank if components of X; are cointegrated. However, our test can be
robustified against fractional cointegration. Let there be pg cointegrating relationships
between the components of X;, where 1 < pg < ¢, and assume without loss of generality
that these involve the first pg components of X;. Then rank(G) = g — pg, the memory
order of the first pg components is dy = dp = ... = d,;, and there exists a cointegrating
matrix B, such that BX; = w;, and w; has a spectral density matrix as specified in (1),
but with G = BGB’ and d = (dpg = b1,....dp; = bpi,dps+1,...,dg) instead of G and d, for
0 < b, <d,. The matrix B is such that in w, the first pg elements of X; are replaced by
the cointegrating residual series so that G has full rank. This is achieved, if the first pg
rows of B contain the cointegrating vectors, normalized so that the diagonal elements of

B equal 1 and the remaining rows contain zeros on all the off-diagonal elements. In the
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bivariate case, for example, B takes the form

le'g
0 1

Consequently, the MLWS test for the hypothesis Hy : fgx,(4;) ~ A j(d)GAj(d), asA;— 0"
can simply be carried out on the transformed series BX;, if the cointegrating matrix B is
known. To obtain a feasible procedure for unknown B, a consistent estimator for B has to
be applied, that converges with a faster rate than /m, where m is the bandwidth used for
the MLWS statistic. For this purpose multivariate local Whittle estimators of éMLW,
such as those of Robinson (2008b) or Shimotsu (2012) can be used for which ,Byrw
converges to oB° with rate \/ﬁ/l,;b“. This is asymptotically equivalent to constructing
the test statistic as in (7), but using the concentrated local Whittle likelihood of the
cointegrated system.!

The resulting test statistic is

. 1 2 & E L N-17 )
MILWS (B) = = sup —2 Z Na Z Vj (aG—l(d, B)Re [Aj(d)_ll(/lj, B)Aj(d)_l]a - 1)
Z;'nzl Vj a=1 =1

2 refeny|| |

a ol o
! Na(uG71d,B)) D @ 5 " im |A @ A, BN )|
1

+—
m 2
. YV oa=
V&=

where G(d,B) = £ " | Re [Aj(d)‘lBI(/lj)B’A;‘.(d)‘l] and I(1j,B) = BI(1,)B’. Here, we

J

’
a

J=1

m
write MLWS (B) as a function of B, to stress the dependence on the cointegrating matrix

that is used. We will write B® and pOG for the true cointegrating matrix and cointegrating
rank and B(pOG) and B(ﬁg) for estimates of BY that are either based on the (known) true

cointegrating rank or an estimation of it. We then obtain the following result.

Theorem 3. Let Assumption 1 to 5 hold, and let aé(p%) = aBO+Op(M/1,;b“). Then,
for known p%, the test statistic MLWS (E(pOG)) has the null limiting distribution of the
MLWS statistic in Theorem 1, but with G° replaced by G° = B°G'BY".

Consequently, if fractional cointegration is present, the cointegrated variables can be
removed from X; and replaced by an estimate of the cointegration residuals. Since the
consistency of B depends on the assumed cointegrating rank, Theorem 3 assumes that
the true cointegrating rank pg is known. However, we can extend the MLWS (B) statistic

to the case when pg is unknown but can be estimated consistently.

Tt should be noted that Robinson (2008b) and Shimotsu (2012) derive their results for bivariate
processes. However, Robinson (2008b) states that this restriction is mainly for expositional purposes
and the results can be extended straightforward (cf. Remark 12 in Robinson (2008b)).
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Theorem 4. Let Assumption 1 to 5 hold, let af?(p%) = aBO+Op(\/ﬁ/l;,b"), and let
o~ A d o~ A
lim7e0 P(pG = p°) = 1. Then MLWS (B(pg)) > MLWS (B(p2)).

Note that multivariate local Whittle estimators and narrow band estimators of the
cointegrating vectors are usually derived under the assumption of a known cointegrating
rank (mostly pg = 1). Estimates of the cointegrating rank p¢ (as required in Theorem 4)
are proposed in Robinson and Yajima (2002) and Robinson (2008a), but the effect of an
estimated pg on subsequent estimators or tests is usually not considered. By allowing
for an estimated cointegrating rank, we therefore improve the theoretical justification
for the empirical application of the MLWS (B) test relative to other procedures.

There is a close relationship between Theorems 3 and 4. Theorem 3 considers the
distribution of the test statistic conditional on the use of the correct cointegrating rank.
Here B is required to converge to B? with a rate faster than +m in Theorem 3. This is
due to the appearance of the partial sum in the test statistic.

Theorem 4, on the other hand, applies to the test statistic without conditioning. It
shows that the distribution of the test statistic based on an estimate of the cointegrating
rank converges uniformly to the distribution of the test statistic conditional on the
true cointegrating rank pOG for any consistent estimator pg. Therefore, the methods of
Robinson and Yajima (2002) and Robinson (2008a) can be used in this context.

The consistency of the test statistic under fractional cointegration is established in the
following theorem. Note that we do not require p((); to be known or estimated consistently

under the alternative.

Theorem 5. Suppose that the process BX; is generated by (3) or (4) and B has full rank.
Assume that as T — co, we have m/T'? — oo, P(Ja—cig >0)—> 1 for all ae{l,...,q},
G(d, B) is positive definite and Assumptions 1 to 5 hold. Then, MLWS (B(ps)) LA 00, as

T — oo.

4 Monte Carlo Study

To analyze the finite sample properties of the MLWS test, we conduct a Monte Carlo
analysis that consists of four parts. In the first part, we consider a bivariate setup and
conduct experiments to determine the influence of the bandwidth choice, m = |[T?], and
the choice of the trimming parameter & on the size and the power of the test. Then, we
turn to higher dimensional applications to analyze how the size and power depend on
the dimension ¢ of the multivariate process. Afterwards, we consider the finite sample
performance of the test under fractional cointegration. Finally, in the fourth part, we
study the properties of the test for breaks in components that was proposed in Section
3.2.
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py=-08 =0 py=04 py=038

dy 0 0.4 0 0.4 0 0.4 0 0.4
T dy ole 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05
0.60 0.006 0.007 0.007 0.012 0.005 0.010 0.006  0.009 0.005 0.008 0.007  0.008 0.004 0.008 0.007 0.007
0 0.65 0.009 0.014 0.011 0.013 0.008 0.015 0.010 0.015 0.009 0.014 0.007 0.013 0.011 0.015 0.012  0.012
0.70 0.012 0.017 0.012 0.015 0.011 0.016 0.014 0.018 0.013  0.017 0.011 0.016 0.010 0.021 0.011  0.019
0.75 0.013  0.015 0.016 0.023 0.014 0.019 0.014 0.019 0.016 0.023 0.012 0.018 0.015 0.021 0.013  0.021
250
0.60 0.007 0.010 0.008 0.008 0.007  0.009 0.007 0.010 0.005 0.008 0.006  0.009 0.008  0.008 0.006  0.009
04 0.65 0.011  0.016 0.007 0.013 0.009 0.016 0.011 0.015 0.010 0.015 0.011 0.014 0.009 0.018 0.011 0.013
0.70 0.013 0.014 0.017 0.021 0.014 0.018 0.011  0.017 0.012  0.016 0.014 0.019 0.015 0.017 0.012 0.018
0.75 0.015 0.025 0.017  0.023 0.016 0.024 0.019 0.019 0.014  0.022 0.021 0.022 0.021 0.019 0.016  0.022
0.60 0.022 0.031 0.023  0.027 0.022  0.025 0.021  0.028 0.021  0.033 0.016 0.027 0.028 0.030 0.023  0.028
0 0.65 0.028 0.035 0.025 0.035 0.026  0.029 0.022  0.035 0.023  0.037 0.024 0.033 0.020 0.029 0.026  0.032
0.70 0.029  0.029 0.031 0.038 0.025 0.034 0.026  0.031 0.026  0.035 0.024 0.035 0.028 0.033 0.030 0.034
0.75 0.031 0.041 0.043  0.042 0.036  0.040 0.034 0.040 0.032  0.040 0.031 0.038 0.033  0.039 0.042  0.039
2000
0.60 0.021  0.034 0.022  0.027 0.018 0.025 0.021  0.026 0.020 0.032 0.018 0.028 0.021 0.028 0.018 0.029
04 0.65 0.024 0.028 0.026 0.038 0.024 0.035 0.023  0.034 0.028 0.031 0.028 0.032 0.023  0.035 0.026  0.032
0.70 0.035 0.033 0.028 0.033 0.028 0.033 0.030 0.033 0.028 0.034 0.027 0.034 0.026  0.034 0.031 0.028
0.75 0.036  0.044 0.035 0.042 0.032  0.036 0.033  0.043 0.034 0.043 0.038 0.039 0.037  0.046 0.038 0.043

Table 1: Size of MLWS test for FIVARMA (0,d,0): D(d;,d»)X; = v, with v, ~ N(0,%,) and
a’% = 1. The bandwidth m is determined by m = [T?].

The simulation studies of Qu (2011) and Leccadito et al. (2015) show that the Qu test
has good power against a wide range of different alternatives, such as random level
shifts, smooth trends, markov switching models, or the STOPBREAK proces of Engle
and Smith (1999). Therefore, we focus on analyzing the properties that are specific to
the multivariate case and use a random level shift process for all power DGPs. Further
simulation studies are discussed briefly in Section 4.5 and included in full length in
a supplementary appendix, available online. All results presented hereafter are based
on M = 5000 Monte Carlo replications and all tests are carried out with a nominal

significance level of a = 0.05.

4.1 Size and Power Comparison in a Bivariate Setup

The size study for the bivariate case is based on the multivariate fractionally integrated
process from equation (2), where the short memory component u, = v, with v, ~ N(0,%,)
and X, = ((1,p,),(py, 1)) is specified to be a bivariate white noise D(dy,d>)X; = v;.

In this setup we want to investigate two aspects. First, we evaluate whether the size
depends on the correlation p, between the components of the innovation vector v, or
whether it depends on the (possibly different) degrees of memory d; and d; in the two
series. Second, we want to determine the effect of the bandwidth m and the trimming
parameter €. Since the trimming parameter € can be chosen discretionary, we follow Qu
(2011) and conduct our simulations for & € {0.02,0.05}.

Table 1 shows the results. We find that the test is generally conservative in finite samples
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Stationary (¢ =1) Non-Stationary (¢ =0)

Pr = Pe 0 0.5 1 0 05 1

T /s 0.02 0.05 002 0.05 0.02 0.05 0.02 0.05 0.02 005 002 0.05
0.60 0114 0120 0110 0.128  0.199 0.196 0.184 0209 0192 0218  0.296 0.302

X 0264 0308 0259 0299 0350 0.377 0.395 0441 0407 0465 0485 0.502
0.70 0.447 0475 0445 0463 0494 0.509 0.598 0.610  0.613 0.623  0.641 0.634
0.75 0632 0640  0.638 0.645  0.634 0.633 0.766 0.764  0.764 0.768  0.743 0.730
0.60 0918 0922 0910 0921  0.912 0.908 0.957 0.963  0.954 0961  0.936 0.944

o000 0-65 0984 0984 0982 0982 0959 0.958 0.991 0.993  0.988 0.986  0.963 0.964
0.70 0.995 0.996  0.994 0.993  0.970 0.969 0.996 0.997  0.996 0.994  0.977 0.970
0.75 0.998 0.996  0.995 0.994  0.976 0.974 0.999 0.998  0.995 0994 0979 0.977

Table 2: Power of MLWS test against stationary random level shifts: Y; =y, +v, with v, ~
N(0,%,) and p; = (I, — ¢l -1 +1e;. The bandwidth m is determined by m = | T°].

- a feature which it shares with its univariate version. For all parameter constellations,
the size is better with & = 0.05 than with &£ =0.02 and it is increasing in m. The results
also improve as the sample size increases. With a sample size of T = 2000, m = [T%7]
and & = 0.05 for example, we find that the size is between 3.6 and 4.6 percent for all
combinations of p,, di, and dy. Thus, in larger samples the MLWS test achieves good
size properties with the right choice of m and .

With regard to the correlation p, between the innovations, the size tends to improve as
the correlation increases, since the MLWS test makes use of the coherence information.
Overall, even though the test is quite conservative in small samples, the size is good in
larger samples and it is stable for different degrees of memory in the components of the
series and correlations among the innovation sequences.

We will now turn to the effect of m and & on the power of the test. In contrast to the
true long-memory processes under the null hypothesis, that we denote by X;, the DGP
in the power study will be denoted by Y;. Here, Y; is the sum of the white noise sequence

v and the multivariate random level shift process y, from equation (3):

Yl :,ut+v, (11)
Mr = (g — Pl ps—1 + ey

For ¢ =1 the process is stationary and for ¢ = 0 it is non-stationary. The shift probability
is always kept at p =5/T, so that in expectation there are five shifts in every sample
and the standard deviation of the shifts is o, = 1. Since a different behavior of the
breaks could imply different coherence information, we consider different values for the
correlation between the occurrence of shifts p, and the correlation of the shift sizes p,.

For simplicity, we always set pr = pe. If pr = p. = 0 shifts occur independently in each
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Size Power

MLWS Qu MLWS Qu
T q/ps 0 04 08 0 04 08 4/ P> Pe 0 05 1 0 05 1
1 0011 0.010 0.011  0.014 0.013 0.012 1 0.0908 0.093 0.095  0.093 0.098 0.094
2 0011 0.013 0.015  0.008 0.010 0.010 2 0173 0.172 0.205  0.121 0.125 0.105
100 3 0.013 0.015 0.011  0.007 0.007 0.007 3 0.243 0.243 0.296  0.125 0.118 0.111
4 0.013 0.014 0.009  0.007 0.010 0.008 4 0.295 0.309 0.328  0.128 0.126 0.120
5 0.011 0.010 0.011  0.006 0.006 0.007 5 0.356 0.357 0.366  0.135 0.133 0.118
1 0.027 0.026 0.025  0.027 0.027 0.026 1 0.751 0.742 0.752  0.742 0.743 0.747
2 0.028 0.029 0.026  0.025 0.021 0.026 2 0.922 0.919 0.865 0911 0.890 0.813
500 3 0.026 0.028 0.029  0.018 0.021 0.021 3 0.979 0.973 0.906  0.963 0.951 0.834
4 0.029 0.029 0.029  0.025 0.026 0.021 4 0.996 0.987 0.917  0.983 0.974 0.849
5 0.026 0.031 0.028  0.021 0.023 0.022 5 0.999 0.994 0.923  0.994 0.987 0.857

Table 3: Size and power of MLWS test and repeated Qu test with Simes correction for
increasing dimensions ¢g. Left panel: Size for FIVARMA (0,d,0): D(d,...,d,)X; =v;. Right
panel: Power for Y; = u; +v; with v; ~ N(0,%,).

of the components of the series, whereas shifts always coincide in timing and size if
Prn = Pe = 1.2

The results of this experiment are shown in Table 2. We find that the power is always
increasing in the bandwidth and it is higher against non-stationary level shifts. For
small sample sizes with weakly correlated shifts the test has better power with & =0.05,
but in larger samples & = 0.02 leads to a higher power if m is also relatively large. With
regard to the correlation of the shifts, we find that the power of the test increases in
small samples if shifts show a stronger correlation. In large samples the power slightly
decreases if shifts are perfectly correlated.

Overall, the test shows good size and power properties and for an increasing bandwidth
both size and power improve. Note however that a larger bandwidth also makes the test
more prone to errors if short memory dynamics are present. In view of these results the
rule of thumb to choose &€ =0.05 for T < 500, that is suggested by Qu (2011), still works
well. The same holds true for using m = | 797 as the bandwidth.

4.2 The Effect of Increasing Dimensionality

Since the proposed MLWS test is multivariate and its limiting distribution is independent
of the dimension ¢ of the process, we now consider how its finite sample properties depend

on the dimension gq.

2Since the presence of spurious long memory depends on the location of the shifts in the sample, we
discard all samples for which a test, for Hy: d =0 based on the local Whittle estimate dpw, is not
rejected for all components.
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As before, our size DGP, D(dy,...,d))X; = v;, is a fractionally integrated white noise.
Motivated by our previous findings, we set m = |T7%7°] and & = 0.05 and consider only
the effect of increasing the dimension g.

Since there is no other multivariate test against spurious long memory available in the
literature, a practitioner has no other choice but to apply the Qu test to each of the
g components of the process separately. We will use this approach as a benchmark
procedure. To avoid Bonferroni errors, some kind of size correction has to be employed.
Since a standard Bonferroni correction is based on the assumption of independence
between the test statistics, there is a considerable power loss. We therefore employ the
correction of Simes (1986) that consists in ordering the p-values in ascending order and
then comparing them with a/q, 2a/q, ..., @«. The null hypothesis is rejected, if any
of the ordered p-values exceeds its respective threshold. As Sarkar (1998) shows, this
approach is valid for processes X; that are multivariate totally positive of order two,
which is fulfilled in the Monte Carlo study, where the process is multivariate Gaussian.
Note that for ¢ =1 the MLWS test and the Qu test are identical. The left panel of
Table 3 contains the results. We can observe that the MLWS test is quite conservative
in small samples, but the size improves if the sample size increases. It also maintains
approximately the same size independent of the dimension ¢ and independent of the
correlation among the components of v;. For the repeated application of the Qu test
we find that similar to the MLWS test it is conservative in small samples. In addition,
the size tends to further decrease with increasing g and with increasing correlation p,
between the noise components, which is an effect of the Simes correction.

As in the bivariate setup, the power DGP, Y; = u, + v;, is the sum of the g-dimensional
white noise v; and the g-dimensional multivariate random level shift model from equation
(11). Similar to the size DGP, we restrict the correlations of shifts in the components
as well as the correlation of the shift sizes to be the same among all components such
that prab = Pe.ab = Pr = pe for all a # b.

If we consider the results on the right hand side in Table 3, we find that there are indeed
large power gains compared to the repeated application of the Qu test. For T'= 100 these
can be more than 24 percentage points. We find that the power is increasing in ¢ and
T. While correlated shifts increase the power in smaller samples, the power reduction
observed in the bivariate simulations for correlated shifts in large samples increases with

increasing q.

4.3 Testing Against Breaks in Fractionally Cointegrated Systems

In Section 3.3, we derived the limiting distribution of the MLWS (B) statistic calculated

for a consistent estimate B(pg) of the cointegrating matrix B°, so that the test can be
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Size Power

Py 0 0.4 0.8 0 0.4 0.8
dy T é/e 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05
0.60 0.005 0.007 0.005 0.008 0.006 0.007 0.076 0.088 0.075 0.091 0.077 0.102
250 0.65 0.008 0.016 0.010 0.010 0.009 0.013 0.179 0.223 0.178 0.198 0.187 0.227
0.70 0.010 0.014 0.012 0.014 0.009 0.014 0.321 0.327 0.303 0.322 0.337 0.355
0.75 0.012 0.021 0.011 0.019 0.011 0.016 0.471 0.465 0.459 0.455 0.509 0.517
0.1
0.60 0.018 0.025 0.015 0.026 0.021 0.026 0.854 0.862 0.864 0.861 0.862 0.872
2000 0.65 0.026 0.035 0.021  0.030 0.021 0.032 0.942  0.949 0.945 0.952 0.962 0.963
0.70 0.028 0.037 0.028 0.036 0.028 0.031 0.972 0.972 0.974  0.966 0.979 0.979
0.75 0.033 0.039 0.031 0.039 0.039 0.042 0.980 0.978 0.982 0.976 0.984 0.984
0.60 0.006 0.009 0.004 0.009 0.004 0.007 0.034 0.041 0.034 0.039 0.060 0.065
250 0.65 0.008 0.013 0.007 0.013 0.008 0.012 0.075 0.091 0.077 0.102 0.145 0.156
0.70 0.013 0.016 0.011 0.017 0.009 0.015 0.140 0.139 0.163 0.168 0.257 0.255
0.75 0.018 0.022 0.014 0.021 0.015 0.022 0.235 0.227 0.262 0.262 0.401 0.400
0.4
0.60 0.020 0.031 0.016 0.032 0.020 0.029 0.582 0.605 0.665 0.667 0.745 0.766
2000 0.65 0.021  0.029 0.024 0.035 0.021  0.030 0.811 0.821 0.856 0.864 0.911 0.919
0.70 0.026 0.034 0.022 0.038 0.026 0.033 0.912  0.902 0.932 0.933 0.966 0.964
0.75 0.031 0.042 0.032 0.036 0.031 0.043 0.942  0.934 0.958 0.946 0.977 0.970

Table 4: Size and power of the MLWS test in a bivariate fractionally cointegrated system,
where D(0,d»)BX; = v; with B=((1,0),(-1,1)"), v, ~ N(0,%,) and X, = ((1,p,),(0y,1))". The band-
width m is determined by m = [T?].

applied to the linearly transformed system BX;. To explore the finite sample performance

of this approach, we conduct a simulation study where the DGP is

I -1
D(O, d2) Xt = V¢.
0 1

Here the components of X; are fractionally cointegrated with cointegrating vector (1,—1)".
The parameter d» determines the memory of both components in X; and since d; =0, the
memory in the linear combination is reduced to zero. By increasing d the cointegration
strength is increased. The correlation between the innovations to the linear combination
and the common fractional trend is determined by p,.

The results of this experiment are shown in Table 4. First, the size remains conservative
for all parameter constellations. The power, on the other hand, is higher the higher
the correlation p,. Furthermore, one can observe that the power is decreasing with
increasing strength of the cointegrating relationship. Since the convergence rate of the
local Whittle estimator for the B matrix is faster if the cointegrating relationship is

stronger, this effect cannot be attributed to the effect of the estimation error. Instead,
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the MLWS test has lower power to detect contaminations if the memory is stronger. For
the Qu test this was pointed out by Kruse (2015), who advocates to apply the test to
the fractionally differenced process. This is also visible in the results of Table 11 in the

supplementary appendix.

4.4 Testing for Breaks in Components of a Multivariate System

In Section 3.2 we introduced a variation of the MLWS test where all components of the
weight vector n are set to zero and only one takes the value 1. This allows to test for
misspecifications in components of the spectral density matrix and can be used to gain
further insights about the components of X; that cause a rejection of the MLWS test
with equal weights.

n= %(1,1)' n= (1,0 n=(0,1y
& 0 1 0 1 0 1

T ble 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05
0.60 0.006 0.008 0.036 0.044 0.018 0.019 0.208 0.204 0.020 0.019 0.013 0.024

250 0.65 0.010 0.017 0.089 0.100 0.023 0.025 0.351 0.367 0.021 0.024 0.019 0.032
0.70 0.013 0.018 0.158 0.166 0.024 0.026 0.495 0.512 0.025 0.022 0.027 0.038

0.75 0.016 0.021 0.273 0.268 0.024 0.023 0.633 0.629 0.024 0.032 0.030 0.042

0.60 0.018 0.029 0.553 0.578 0.040 0.046 0.892 0.907 0.037 0.040 0.123 0.164

2000 0.65 0.025 0.034 0.826 0.827 0.045 0.052 0.959 0.962 0.044 0.052 0.184 0.239
0.70 0.031 0.035 0.928 0.930 0.046 0.051 0.973 0.973 0.046 0.058 0.253 0.322

0.75 0.033 0.039 0.959 0.952 0.051 0.055 0.976 0.976 0.054 0.052 0.279 0.340

Table 5: MLWS test for breaks in components using different weight vectors n for the DGP
Y: = (&,0) u; + v, with v, ~ N(0,%,) and Z, =((1,0.4),(0.4,1))’. The bandwidth m is determined
by m=|T°].

The performance of the MLWS test using the proposed weighting scheme is evaluated
in Table 5. Here the DGP is a bivariate fractionally integrated process with stationary

random level shifts only in its first component. It is given by
&
Yl = l‘ll + Vi,

with v, ~ N(0,%,), Z, = ((1,0.4),(0.4,1)) and a shift variance of one. The parameter
& controls the magnitude of the breaks. To determine the critical values based on an
estimate G(d), we approximate the integrals in (10) by sums over 500 increments and
we draw 1000 values. One can observe for & = 0 that the size is similar to the size of the

global test. Also, as one would expect, the test generates better power if we specifically
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test for a contamination in the first component, compared to the baseline case with
equal weights. Furthermore, if one specifically tests for a contamination in the second
component, the test does not generate much power due to the misspecification of the
off-diagonal components alone. A rejection therefore gives a good indication for a low

frequency contamination in the respective component.

4.5 Further Simulations

A number of further simulations are provided in a supplementary appendix. First, we an-
alyze the performance of the test if short memory dynamics exist. Without pre-whitening
the size is no longer controlled for larger bandwidths m = | T°]. With pre-whitening, on
the other hand, the test remains conservative and the power loss is reasonable.

We also explore the impact of non-stationary long memory, perturbations, heteroscedas-
ticity, breaks in the variance-covariance matrix of the innovations, the power against
other alternative processes and the performance of the test, if the pre-whitening is con-
ducted using univariate estimators. It is found, that the MLWS test is stable under all
these complications. However, power against non-causal alternatives is only developed

very slowly.

5 Empirical Example

Log-absolute returns of stock market indices are a typical example in the spurious long
memory literature - in particular that of the Standard & Poor’s 500 (hereafter S&P
500). The series is examined by Granger and Ding (1996) who find that it seems to
follow a long-memory process. Nevertheless, they argue that long memory properties
can be generated by other models than the standard I(d) process. Granger and Hyung
(2004) obtain a reduction of the estimated memory parameter by considering structural
breaks in the series. Similarly, Varneskov and Perron (2011) consider a model allowing
for both random level shifts and ARFIMA effects. Lu and Perron (2010) and Xu and
Perron (2014) analyze the forecast performance of random level shift processes for the
log-absolute returns of the S&P 500. In most cases, random level shift processes clearly
outperform GARCH, FIGARCH and HAR models.

All these findings indicate spurious long memory in log-absolute return series. However,
univariate tests are often not able to reject the null hypothesis of true long memory.
Dolado et al. (2005), for example, apply their test to absolute and squared returns of
the S&P 500, without being able to indicate spurious long memory.

Due to the increased availability of high frequency data, the focus in the more recent

literature has shifted to the modelling of realized volatility. Especially the heterogenous
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Figure 1: The log-absolute return and the log-realized volatility of the S&P 500.

autoregressive model of Corsi (2009) and its extensions have become very popular. As
for the log-absolute return series existing tests against spurious long memory tend not
to reject their null hypothesis if applied to these realized volatility series. An example
is the application in Qu (2011), who finds no evidence for low frequency contaminations
in the realized volatility of the exchange rate between Japanese Yen and US Dollar.

In view of the power gains of the multivariate procedure demonstrated in Section 4.2,
we revisit these variation series of the S&P 500 and additionally consider those of the
DAX, FTSE and NIKKEI in a multivariate setup to test for spurious long memory using
the MLWS test. The analysis is conducted for both - the log-absolute return and the
log-realized volatility.

We analyze the period from 2005/01/03 to 2014/12/31 (T=2608 observations). Data on
daily stock price indices is obtained from Thomson Reuters Datastream. The log-returns
are computed by first differencing the logarithm of the price index, r; = In(P;) — In(P;—1).
Subsequently, the log-absolute returns are calculated as In(|r;| +0.001).> Realized volatil-

3The constant 0.001 is added to avoid infinite values for zero returns, which is customary in the literature
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N ~

6 DAX NIKKEI S&P 500 FTSE partitions coint.rank B dy

0.60 0.379  0.295 0472 0393 (1,1,1,1) 1 (0.155, 0.066, -1.446)  0.260
0.65 0338  0.290 0411 0362  (1,1,1,1) 1 (-0.119, 0.079, -1.014)  0.236
0.70 0.328  0.285 0359 0303  (1,1,1,1) 1 (-0.043, -0.144, -1.153)  0.194
0.75 0264  0.252 0300 0290  (1,1,1,1) 1 (-0.074, -0.037, -0.954)  0.139

Table 6: Fractional cointegration analysis for the log-absolute return series based on local
Whittle estimates of d with different bandwidths m = [T°].

ities calculated from 5 minute returns are obtained from the Oxford-Man Realized Li-
brary.

As an example, Figure 1 depicts the log-absolute return and log-realized volatility of the
S&P 500 series. Both series show the typical features of long memory time series, with
local trends and cycles. This is also confirmed by the autocorrelation functions and the
periodograms given in Figures 2 and 3 in the supplementary appendix. Since the series
of the DAX, FTSE and NIKKEI are highly correlated with that of the S&P 500, we
omit plots of these series. Descriptive statistics for the dataset are given in Table 20 (in
the supplementary appendix). It can be seen that all four series have similar locations
and standard deviations if the same variation measure is used. With the exception of
the S&P 500, the distributions of the log-absolute return series are slightly negatively
skewed and all log-absolute return series have lighter tails than the normal distribution.
The realized volatility series on the other hand are positively skewed and have excess
kurtosis.

Since the specification of the MLWS test depends on whether or not the series are
fractionally cointegrated, we proceed by applying the semiparametric cointegrating rank
estimation method of Robinson and Yajima (2002). The method consists of two steps.
First, the vector series X; is partitioned into subvectors with equal memory parameters
using sequential tests for the equality of the d, in each subvector. In the second step,
the cointegrating rank of the relevant subvectors is estimated.

All results of this procedure are given in Tables 6 and 7. The analysis is carried out
for different bandwidths m = [ T¢] using the local Whittle estimator. For both variation
measures it can be observed that the estimates tend to decrease as the bandwidth
increases, which indicates that the series indeed might be contaminated by level shifts.
Since the log-absolute return series is considered to be a noisy estimate of the underlying
variation process and perturbations cause a downward bias in the local Whittle estima-

tor, we include further results using different specifications of the LPWN estimator of

(cf. for example Lu and Perron (2010) and Xu and Perron (2014)).
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6 DAX NIKKEI S&P 500 FTSE partitions coint.rank B13 B2z dy;, Gy,

0.60 0.642 0.631 0.635 0.637 (1,1,1,1) 2 -0.931 -1.084 0.464 0.596
0.65 0.605 0.612 0.642 0.570 (1,1,1,1) 2 -0.728 -0.978 0.463 0.514
0.70 0.594 0.611 0.633 0.568 (1,1,1,1) 2 -0.868 -1.068 0.400 0.483
0.75 0.563 0.573 0.588 0.540 (1,1,1,1) 2 -0.910 -1.172 0.368 0.447

Table 7: Fractional cointegration analysis for the log-realized volatility series based on local
Whittle estimates of d with different bandwidths m = | T?].

Frederiksen et al. (2012) and the robust estimator of Hou and Perron (2014) in Table
21 in the supplementary appendix. It can be observed that there is a downward bias for
the log-absolute return series. Nevertheless, as discussed in Section 4, the MLWS test is
fairly robust to perturbations. Also the Hou-Perron estimator is lower for the S&P 500,
which is a further indication of spurious long memory. Apart from that, all estimates
turn out to be very stable.

It should be noted that the estimated memory parameters of the log-realized volatility
series are in the lower non-stationary region, which is not covered by the assumptions
under which the test statistic is derived. However, our simulation results indicate that
the test statistic remains valid for non-stationary long memory processes. We therefore
proceed with the analysis and provide an additional robustness check with the test
carried out on the fractionally differenced series in the supplementary appendix.

Using the T statistic of Robinson and Yajima (2002) to test for the equality of the
memory parameters, the null hypothesis cannot be rejected for any of the bandwidths,
so that no further partitioning of X; is necessary. Subsequently, the cointegrating rank
of X; is estimated. Again, the results are stable for different bandwidth choices. We find
that there is one cointegrating relationship between the four log-absolute return series
and there are two relationships between the realized volatility series.

As described in Section 3.3, the analysis than proceeds by estimating the cointegrating
matrix B using the multivariate local Whittle estimator of Robinson (2008b) with the
phase set to (d, —dp)(m—1)/2.

In the case of the log-absolute return series the DAX series is specified to be the variable
that is replaced by the linear combination. For the log-realized volatility series we assume
pairwise relationships of the DAX and the NIKKEI with the S&P 500. Subsequently,
the transformed series BX; are obtained. Additionally, we report the estimate d,, of the
noise term in the last column of Table 6 and the last two columns of Table 7 to show
that the memory in the linear combination is reduced. When the cointegrating rank

analysis is repeated on the transformed series there is no evidence for a cointegrating
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Qu test Components MLWS
) DAX NIKKEI S&P 500 FTSE DAX NIKKEI S&P 500 FTSE ALL

log(|r¢] +0.001)

0.60 0.521 0.860 0.515 0.446 1.245 0.877 0.765 1.085 1.233
(0.862)  (0.314) (0.871)  (0.949) (0.494)  (0.665) (0.854)  (0.912) (0.054)
0.65 0.505 0.749 1.078 0.443 1.052 0.793 1.681 0.619 1.470
(0.886)  (0.474) (0.118)  (0.953) (0.220)  (0.495) (0.013)  (0.979) (0.014)
0.70  0.395 0.519 1.100 0.739 1.370 0.814 1.726 0.557 1.448
(0.983)  (0.865) (0.107)  (0.492) (0.179)  (0.395) (0.004)  (0.998) (0.016)
0.75 0.640 0.469 1.477 0.547 1.322 0.918 1.843 0.598 1.413
(0.662)  (0.929) (0.013)  (0.824) (0.057)  (0.257) (0.002)  (0.948) (0.019)
log RV
0.60 0.317 0.425 1.179 0.544 0.700 0.452 1.283 0.548 0.662
(0.999)  (0.966) (0.071)  (0.829) (0.600)  (0.978) (0.173)  (0.992) (0.621)
0.65 0.445 0.641 0.807 0.929 1.241 0.965 1.140 0.985 1.465
(0.950)  (0.661) (0.387)  (0.236) (0.136)  (0.187) (0.279)  (0.425) (0.014)
0.70  0.406 0.657 0.700 0.670 0.617 0.539 1.039 0.807 0.643
(0.977)  (0.632) (0.554)  (0.607) (0.729)  (0.881) (0.331)  (0.635) (0.656)
0.75  0.597 1.062 0.724 1.022 0.488 0.397 0.614 1.199 0.683
(0.740)  (0.129) (0.513)  (0.152) (0.946)  (0.999) (0.919)  (0.082) (0.585)

Table 8: Test statistics of the Qu test applied to each series separately and the MLWS test
applied to the multivariate series for different bandwidths m = |T°]. p-values are given in
brackets. Critical values are 1.252 and 1.374 for @ = 5% and a = 1%, respectively.

relationship anymore, supporting the selection of the estimated cointegrating relations.
It should be noted, that the rank-estimation procedure of Robinson and Yajima (2002)
operates under the assumption of a multivariate long memory series. In the presence of
low frequency contaminations, on the other hand, it may no longer be consistent. The
estimates of the cointegrating relations should therefore not be interpreted unless the
MLWS test fails to reject.

To formally test for true long memory, we then apply the MLWS (B(pg)) to the system
BX,. The asymptotic validity of this approach is established in Theorems 4 and 5.
In addition to that, some simulations for finite samples with parameter constellations
similar to those found in the log-absolute return series and log-realized volatility series
are provided in the supplementary materials. These show that the test maintains its
size in the situation at hand.

The test for contaminations in components of the system discussed in Section 3.2 is

applied to analyze which components of the series might cause a rejection of the MLWS
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test. As a benchmark, we also apply the univariate test of Qu (2011) to each series
separately. Because of the large number of observations the trimming parameter is set
to £ = 0.02 for both tests. The corresponding test statistics are given in Table 8, where
the p-values are displayed in brackets.*

As one can see, Qu’s univariate test fails to reject the null hypothesis of true long
memory for each country, all bandwidth specifications, and both variation measures.
The only exception is the log-absolute return series of the S&P 500, if the bandwidth
is set to m = [ T%7]. This would lead to the conclusion that there are no low frequency
contaminations in the variation of stock returns. Similarly, the MLWS test calculated
for the realized volatility series also fails to reject - except for m = [T%73|. For the log-
absolute return series, on the other hand, the MLWS statistic rejects for all but one
bandwidth.

If one considers the tests for contaminations in components of the spectral density ma-
trix, we find that the test rejects for the S&P 500 series if the bandwidth parameter is
0 €{0.65,0.70,0.75} for the log-absolute return series, but not for the realized volatility
series. The application of the MLWS test therefore gives formal support to the argu-
ments of Granger and Ding (1996) and Granger and Hyung (2004), among others, who
argued that the memory in the log-absolute returns of the S&P 500 might be spurious.
We find that one would falsely conclude that the process is not contaminated, if only
the univariate test is used. In contrast to that, there is little evidence for low frequency
contaminations in the log-realized volatility series. The Qu test as well as the MLWS
test for contaminations in a specific component generate no rejection at the 95-percent
level. Only the test with an equal weighting scheme generates a single rejection for
0 =0.65. We therefore conclude that the realized volatility series are well modelled as

long memory processes.

6 Conclusion

This paper provides a multivariate score-type test for spurious long memory based on
the objective function of the local Whittle estimator. The test statistic consists of
a weighted sum of the partial derivatives of the concentrated local Whittle likelihood
function. By introducing a suitable weighting scheme, the test statistic becomes pivotal
and the limiting distribution becomes independent of the dimension of the data generat-
ing process. Consistency against multivariate random level shift processes and smooth

trends is shown.

4Due to the large number of free parameters in the 4-dimensional example, the pre-whitening is carried
out for each series separately. Monte Carlo results supporting the validity of this approach are provided
in the supplementary appendix.
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Our test encompasses the test of Qu (2011) as a special case for scalar processes. Apart
from the generalization to vector valued series, we consider several issues that are unique
to the multivariate case. First, we provide a modification of the test statistic in the
case of fractionally cointegrated series. Second, by changing the weighting scheme, the
multivariate test statistic can be used to gain insights about which components of the
multivariate series cause a rejection.

A Monte Carlo study shows that the test has good size and power properties in finite
samples. These properties hold for different bandwidths, m = |T?], as well as for different
trimming parameters €. Furthermore, the size and power remain good if the dimensions
of the data generating process increase. Likewise, the MLWS (B) statistic and the test
for contaminations in components of the process perform well in finite samples.

In our empirical example we consider the log-absolute returns and the log-realized volatil-
ities of the S&P 500 together with those of the DAX, the FTSE and the NIKKEI in a
multivariate framework. By applying our multivariate test, we find evidence of spurious
long memory in the log-absolute returns of the S&P 500. A simple application of the
univariate Qu test to the log-absolute returns, on the other hand, cannot reject the null
hypothesis of true long memory. As discussed in Section 5, several authors have pointed
out that the log-absolute returns might follow a spurious long-memory process. Our
empirical application adds to this literature by providing a formal rejection of pure long
memory in the sense of a statistically significant test decision. For realized volatilities,

on the other hand, no such evidence is found.

Appendix

Proof of Theorem 1:

To prove the theorem we start with the Taylor expansion

R’(d)

*R"(d)
ddod’

N ———= d—«/" a0+ Nmif g d~d (12)

where d fulfills ||d - d°|| < ||d = d°|| and the notation R"(d) indicates that the summation
is done until [mr] rather than m. For the first part of the right hand side of equation
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(12) we can write:

[mr]

Zna aR (d) |d0 _ \/_Znazyj(a GO)_I[Re[A?(d)_ll(/lj)Ag*(d)_l”a—1) (13)
+op(1)+1r|G(d) % [2] A’T_”Im |(AY@) ™ (=ial(2))
+I<Aj>ia><A°*(d)>‘1]] .
- Wiv,[a "6 [Re[A%@ rapay @], 1]
e~
m3 4 [i J]g[a (6°) " [Re[ A% AL A" )

[mr]
R 1 Adi—n
G(dop)™' — d (A(d))™!
\m ; 2 [ /

X(=ial(A))+ I(2)ia)(AY @) 7]].

xA?*(d)‘l]]a - 1] +op(1)+tr

By arguments as in Shimotsu (2007), we can write the first term plus the imaginary part
as Zt L z+op(l) with zl Oandz = stZ’s 1][®t_;+®,_s]ss Here ®, = \/_T " viRe[¥j+
¥ ]cos(s/l]) O, = 7r\/_T " Re[Y; - ]s1n(S/lj), ¥; is defined by ¥; = Z _1"a

[A*(A )A(j)*(d) 1,,(G%~ 1A?(d) TAQ), AQ) = 3% 2oAjerj and Aj is given in Assumption
2. The asymptotic normality of z; follows from Theorem 2 of Robinson (1995). To obtain

the covariance of the z; we have for 0<r; <r <1
-1

T T T - ol
Cov (Z 2t,rys Z Zt,rz] = (Z Z ®l—s,r1 + ét—s,rl ) 8; Z (®I—s,r2 + G)l—s,rz) 81]
t=1 t=1

t=1 s=1 =1
T t-1

= Z tl’[ Or—s.ry +®t—s,r1)

=2 s=1

’

(®t—s,r2 + C:)t—s,rz)] +op(1)

by using Lemma 2 and 3 from Lobato (1999). Now we have

— T-1T-1[mr][mr,]

T
Z ®, 5,71 ®t—s,r2 = 271mT2 Z Z Z ; vvitr [Re [‘I’;+‘Pj] Re [‘Pl—‘I’;”

=2 s =1 s=1

—_

I
—_

X cos(sd;)sin(sA j) 0
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as tr[(A' +A)(B-— B')] =0 for any real matrices A and B. Furthermore, we have

t=2 1s:1 Tt b | ,
~ 2mT 21242 Vz-Xtr[Re[‘I’j+‘Pj] Re[‘}’j+‘1’j”0082(5/1]')
1 T—1T—t[mr1] [mry]
+ o >0 viir|[Re[ ¥+ ;| Re[Wi+¥)]|cos(sa)cos(s )
womT = S S T
2 T-1T-t[mr]
+ T 22 ;; Z tr[Re [‘P ¥ ] Re [‘I’ Y ”sm (s4;)
2 T-1T—t[mr] [mr]
+ Z;erTz Z [Re [‘P P ]Re [‘I’l ” sin(sA ) sin(sA;).

The second and fourth term of this sum are op(1) by Lemma 3b) and 3d) in Shimotsu
(2007). Applying Lemma 3a) in Shimotsu (2007) for the first term, we obtain for 1; = 0

T—1T-t[mr]
Vi tr Re ‘P +‘I’ Re[‘Pj+‘I’j]]cosz(s/lj)

2 2
nemT =1 s=1 j=1

[mr1]
— Z Vjﬂtr[Re ‘P +‘I’j]Re[‘Pj+‘I’;-]]

7.(2 1 T-1T—t[mr]
R TTEPapaps tr[Re[¥,— | Re[¥; — ¥|| sin’(s1))
2 [mnil
i 2407 Re[¥,—¥;|Re[¥; - ¥]|
=
2 [mri] q q q
4m ZZZ%%GSI, (GO) 22772
J= a=1 b=1 p
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From the Euler-Mc Laurin equality and Lemma B.1 in Qu (2011) it follows that
1/m ZE.Z”V? — forl(l +log s)>ds. We thus obtain altogether

T T
oS S| = [
=1 =1 0

For the second term of the second equality of (13) we have by similar arguments as in
Qu (2011) that

[a (6°)" ()" [Re[A%y 1A @] - 1] = B(1),

where B(s) denotes a standard Brownian motion. As before we have from Lemma B.1

in Qu (2011) that
1 [mr]

— —>f (1+1logs)ds.
m

j=
It remains the last part of the Taylor expansion. For the second derivative of the

objective function R(d) we obtain

’R(d) _ aG(d) aG(d) 3*G(d)
dd,od, [ aCrre ad, ¢ (d) 6 (d)adaadb]'
Thus,
86" (d ]
- 2 2,002 )1 +or (05"

with G14(d) = i.G(d) + G(d)i, and the superscript r denoting again that the sum goes up

to [mr] rather than m. Furthermore, it is

(mr]

3G 1
@ _ Z(logﬂj) Gzab(d)+—G3ab(d)+0P(1)

ad,od,

with Gagp(d) = iginG(d) + i,G(d)ip + iy G(d)ig + G(d)igip and Gagp(d) = —iaipG(d) +i,G(d)ip +
iyG(d)i, — G(d)igip. Tt also holds that tr [G(d)‘lGla(a’)é(d)‘lélb(d)] —tr [é(d)—léh,,(d)].
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Altogether this gives

O*R"(d) N A |
3d.0d, tr|-G(d) E;(log/lj)Gla(d)-l-Op((logT) )
R (1 [mr] A 1
d)y | — log A; d loeT)™
xXG(d) m;(og DG1p( )+0p(( 0gT) )
. 1 ] X 2
+ G| = > (10847 Caup(d) + = Gap(d) + 0p(1)
ms 4
) 1[mr]2 A 7r2A . 2
= tr %;vj G(d) G2ab(d)+IG(d) G3ap(d) +0P<l()g T)
- ) ol o ol
— tr| | (1+logs) ds(G) GZabJr_(G) G0
[ Jo 4
so that
R’ (d) r 0 -] 2 -
Sdod - 2\[0 ((1+10gs) (G @(G) +Iq)+Z(G Q(G) —1,)|ds

= F(r). (14)

A 2 -1
From the mean value theorem, we have m(d—d®) = \m (%ja(j,) | 7 %Ido. Since from

-1
Shimotsu (2007) 28D, o with Q=2 [G‘)@ (G +1,+ %G 0(G0) - q)], we have
Vm(d—d®) — VmQ! 61;5;1) |0 and finally using the result from (14)

OPRA) — 5 o -1 IR
N~ Nmd=d’) = FrQ™ Nm=— . (15)

Now, \/ﬁm;;d) |0 can be treated as before. Thus, the right hand side of (15) has the co-
variance [ (1+logs)?27 F(NQ (G 0(G) ™ + 1)V F(r) n+ 57 F(nQ (GO0 (GY) " -
Iq)Q_I,F(r)’nds. Altogether, we obtain

, 0%R"(d) . ! , _ _ N2
Y Vmd-d% = fo [(1+10gs)(277 FQ (G oG +1)Q ™ F(r) )

n

dB(s).

2 1/2
+i(%n’F(r)Q—1(G0 o(GH ! - Iq)Q—l’F(r)’n)

Like Qu (2011), we use Theorem 13.5 of Billingsley (2009) to prove tightness. Thus, we
show that for every m and ri <r<nr

T T
IR o
t=1 t=1

2

T T
PRI o
t=1 t=1

2
] < K Wm(r2) = m(r1))?
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where K is some constant and ,,(-) is a function on [0,1] which is finite, nondecreas-
ing and fulfills lims_,0limsup,,_, ., W (s + ) —¢¥m(s)| = 0 uniformly in s € [0,1]. Here we
denote z:(s,r) = z; —2:5. Denote also ci(r, s) = ¢;—crs and ¢; = tr[O; +0,]. Using this no-
tation we can use Qu’s (2011) Lemma B.8 to show that E(| Zt 12— Zthl 2ty |2|Z,T:1 2ty —
th] z,,rl ) is bounded from above by

T 1-1 T 1-1
[ZZC’ s(ri,7) )[cht—h(nrz)z]

=1 s=1 =1 h=1

where K is some positive constant. By similar arguments as in Qu (2011) we obtain

furthermore
T t-1 [mr]  [mr] [mr]
chz—s(rlar)z < Z Z V +Vk Z V%
t=1 s=1 ] [mri]+1 k#j ]=[mr1]+l
q ) q9 q o ol
x[2) me+2>" > namG,(6°)
a=1 a=1 b=1
3 [mr] q q 0 -1
2 2 -
< - Z v ZZna+ZZZnaanab(G )ab .
Jj=lmri]+1 a=1 a=1 b=1

As QX! mi+230 31 namyGY,(GY))) < K for some constant K we set ¢ (s) = 1/m
Z[ms] 2 This satlsﬁes the condition as

s+0

llmhmsup|¢//m(s+6) t//m(s)l—hm (1+10gx)2dx - 0.

-0 m—oo s

This proves the theorem. O

Proof of Lemma 2:

To prove the lemma, we first need to show that 17’ (GOG(GO)‘I)n =1,iftn=(1//q,...1/q)".
For this denote

811 812 ... 8lg
GO = 821 822 ... 824
8q1 842 --- 8qq
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Thus, by using Cramer’s rule we obtain for the inverse matrix

det(G?, ) —det(G?) ... (=D'9det(G? )
(GO)—l_ 1 —det(G° ) det(G,) o (1)Pdet(G? )
 det(G9) : - : ’
(=D'9det(G?| ) (=D**det(G?,) .. det(G?,,)

where G_,; denotes the matrix G with the a-th row and b-th column omitted. Therefore,

by applying Laplace’s formula and using that g;; = g;; we have

g1 det(G?, ) —g12det(GYy) ... (=D"g14det(G )
Golc?) ' = 1 ~£21det(GY,,) gndet(G0)) .. (-1)*gadet(G )
det(GY) : : . :
(—D'"g 1 det(G?, ) (=1)*"9gndet(GY, ) ... 8aqdet(G? )
-1q q -2q q9 -qq
Therefore,
1 v 1 0 det(G%) |
7 Za=1D Tg1adet(GZ ) eT B
1 v4 2 0 det(G%) I
GOQ(GO)_ln:_1 V7 2=t T R2a MG ) | 1 eT =| va
det(GO) ; det(GY)| :
1 54 [_1\q+a 0 det(G) 1
75 Za=1(- DT840 det(GZ,) Vi Vi

’ -1
and thus finally n (GOQ(GO) )77 =1.

From this we can conclude that 277+ 25 (G°0(G% Y2 =2 and 2n'n-257 (G0
(GO)'I)n)l/ 2 =0, which shows that the first term in (8) has the desired form. The second
term of (8) equals the second term of the limiting distribution of Qu (2011) anyway, so
it remains to consider the third term.

We first show that (277/F(r)Q_1 G0 (GH 1+ Iq)Q‘I'F(r)/n)l/2 = 2f0r(1 +log $)2ds. To see
this note that

F('n

2 f (1+1ogs)*(G° 0 (G ™" +1,) nds
0

4n f (1+1logs)’ds
0

as (GO(D(GO)_1 +Iq)'17 =27 by the same arguments as before. By denoting with 7! the
pseudo inverse defined by the equality Ap~'n = A for every matrix A, we have ! =7’.
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’ _l ’
Consequently, Q~!'n = (7]‘19’) = (Qn)~!. Now, Qi = 45, since again (G’ (G Hn =1,
so that Q' =1/4n.
Applying the same arguments to the term 5 F(r)Q™" on the left side gives us altogether

r 2
20 FINQ 'GP GY) ! +1)Q VF(r)'n 2( f (1+10gs)2ds) 7 G oG + 1)y
0

r 2
4(f (1+10gs)2ds) .
0

Now applying the same arguments we can furthermore conclude that n F(r)Q~(G°o
(GH! —Iq)Q_l'F(r)’n =0, which proves the lemma. O

Proof of Theorem 3:

The test statistic is given by

[mr]

MIWS (B(pY) = 1 sup Z%Z (G BRe | Ay T4 DAY ], ~1)

L S (6@ 5) S E Tl iy At
r == 1a(«G7dB) ) 5 Im [ Ay BN,

Now, define C(1;,d, B) = Aj(d)" 1A, BN (D™ = A d) ' BIApB' A3(d)™" and from B~
B = OP(m_l/zA,_nl), where A, = diag(/l,;b‘, ey /l,_npr, 0, ..., 0) Sp and Sp is a selection

matrix that specifies the position of the free parameters in B

C(.d.B) = Aid)"'B1(4)B” A3(d)!

+ A,-(c?)—lBOI(Aj)OP(m—l/ZA;})’Aj(c?)—l

+ A op(m™ 20N 1) BY Ni(d)!

+ AT Op(mTPALY) 1) 0p (m7 P0G A
Therefore, C(1;,d, B)y = C(A.d. B )ab+0p(/ld“ ) 0 (12471 ) so0 that plim C(d, Byay =
C(/lJ,d,B Yab + OP( 1/2Am}ab), due to the consistency of d. Now,

Gd,B) = 1ZRe C(4;,d, B) —>m_12Re C(1j.d.B%) +0p(m™' 2 A, 1)
j=1 j=1
=G(d,B%)+ 0p(m™'2A 1.
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Plugging these results into the MLWS (B) statistic and straightforward algebra give

. _ sl opm12AL
MLWS (B(p2)) = MLWS (B®) + ,
m 2
=i

and since | v§ — m, we have MLWS (B(p2)) = MLWS (B%) + Op(A;1), for m = |T°].

The proof for the limit distribution of MLWS (B%) proceeds as that of Theorem 1, but
with G(d) and I(4;) replaced by G(d,B%) and f(/lj,BO). |

Proof of Theorem 4:

Let Fws B i)G))(x) denote the finite sample distribution function of MLWS (B(p¢)) for
x € RU{—00,00}. To prove the theorem, we show uniform convergence of the distribution
of MLWS (B(Pg)) to its counterpart for a known cointegration rank that is covered in
Theorem 3. This is:

SupTllFM’fW’S(g(ﬁG))(x) - FMfEW’S(B(p%))(x)ll =op(l).

Now, the estimator pg of the cointegration rank can either estimate the correct, or a
false cointegrating rank. By the law of total probability we can therefore decompose
the distribution into the sum of the conditional distribution functions multiplied by the

probabilities for these two possible events.

VE\Tws (Bpe ) — F aitws (B(pOG))(x)”
=F\izws pon3Pe = PYPGBG = P')+ F otz ey 61PG # PIP(BG # 1°) = Fygzs 0 DI
<IF\izws bepon@Pe = PYP(BG = P") = Fygzws a0y )
+IF yizws 3oy XIPG # PYP(PG # pO)
<IFyizws bepon@Pe = PIP(BG = P') = Fagmws oyl + IP(e # POl = IAF,
where the first inequality is due to the triangle inequality and the second holds since

0 < Fyitws (gpe)HPG < P9, Fritws (B(pe) X1PG > p%) < 1. Using limy—e P(pg = p°) = 1,
which implies [|P(pg # pO)Il = op(1), we have

IAF]| :||(FM’[?WS(1§(1§G))(X|IA7G = pO) _FM/EWS(B(pOG))(x)ll +op(1) =op(1),

since F M’L\WS(B@G))(XUA’G = pO) =F MIWS (B, ))(x), by definition. Due to the continuity
of the sup, the result follows from the continuous mapping theorem. The distribution

Fitws B ))(x) of MLWS (E(p(c);)) is given in Theorem 3. O
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Proof of Theorem b5:

We now prove the consistency of the MLWS (E(ﬁ(;)) statistic calculated based on an
estimate pg of the cointegrating rank. For ease of notation we will write B instead of

B’(ﬁg). There are two possible scenarios

1. pG = p%, thus the cointegration rank has been estimated correctly or overestimated.

2. pg < p%, thus the cointegration rank has been underestimated

In the second case limy_e G(d, B) does not have full rank and is singular. Therefore,
limy_ e 5((?, B)_l does not exist and divergence of the test statistic is obvious.

In the first case lim7_,o G(a?, B) has full rank and the inverse exists. Our procedure
corresponds to an application of the MLWS test to the modified random level shift
process BX; = Bu; + Bk;. For the mean part we have By, which is a linear combination
of random level shift processes. The periodogram of this low frequency contamination
is therefore BI,(1;)B’, which is of the same order (0p(A72T~1)) as that of g itself.
Consequently, the proof proceeds in the same way as that of Theorem 2 (in the sup-
plementary appendix), but with 1(1;), G(d), and d replaced by 7(/1 j,B), E(d, B) and d.
O
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