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Abstract—Multi-homed Internet sites become more and
more widespread, due to the rising dispersal of inexpensive
Internet access technologies combined with the growing
deployment of resilience-critical applications. Concurrent
Multipath Transfer (CMT) denotes the Transport Layer
approach to utilise multiple network paths simultaneously, in
order to improve application payload throughput. Currently,
CMT is a quite hot topic in the IETF – in form of
the Multipath TCP (MPTCP) and CMT-SCTP protocol
extensions for TCP and SCTP. However, an important issue
is still not fully solved: multipath congestion control.

In order to support the IETF activities, we have set
up a distributed Internet testbed for CMT evaluation.
An important tool – which we have developed for multi-
protocol Transport Layer performance analysis – is the
Open Source NETPERFMETER tool-chain. It supports the
parametrisation and processing of measurement runs as well
as results collection, post-processing and plotting. However,
its key feature is to support multiple Transport Layer pro-
tocols, which makes a quantitative comparison of different
protocols – including state-of-the-art features like CMT –
possible. In this paper, we first introduce NETPERFMETER
and then show a proof-of-concept performance evaluation
of CMT congestion controls which are currently discussed
in the IETF standardisation process of CMT-SCTP.1234
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I. INTRODUCTION

The increasing deployment rate of resilience-critical
Internet services leads to a steady growth in the num-
ber of multi-homed Internet sites. Technologies like
ADSL (Asymmetric Digital Subscriber Line) make
adding access redundancy possible at a competitive cost
level. The availability of a secondary (or even more)
access path to different Internet Service Providers (ISP)
for redundancy reasons also leads to the demand for
utilising all paths simultaneously – in order to increase
application payload throughput. The idea of this so-
called Concurrent Multipath Transfer (CMT) is to apply
load sharing among all available paths. It is currently
a hot topic in IETF standardisation, in form of the
Multipath TCP (MPTCP) [1] extension for TCP as well
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as the CMT-SCTP [2], [3] extension for the Stream
Control Transmission Protocol (SCTP) [4], [5]. However,
Congestion Control (CC) for CMT is still an open topic:
the possible existence of shared bottlenecks [6] may lead
to an unfair bandwidth distribution. [7] provides a set
of new CC strategies, which are simulatively evaluated.
However, a proof of concept in a real network is missing.

In order to evaluate these new CCs, we have set up
a testbed and developed Open Source tools – denoted as
NetPerfMeter tool-chain – to perform performance evalua-
tions and analyse the results. These tools and testbed setup
experiences are also useful for other projects evaluating
and comparing Transport Layer protocols performance –
particularly with respect to distributed environments like
G-LAB [8]. We finally apply NetPerfMeter to evaluate the
CC schemes of [7] – on the example of CMT-SCTP – in
a real-world, heterogeneous Internet setup. However, the
results are protocol-independent and may be adapted to
other ones – particularly to MPTCP – as well.

II. THE SCTP PROTOCOL

SCTP [4], [5] is a general-purpose, connection-
oriented, unicast transport protocol which provides the
reliable transport of user messages and a multi-homing
concept out of the box. An SCTP connection between
two peers is denoted as association. In an association,
each peer is able to use multiple IP addresses. This is
called multi-homing. Each IP address of the peer endpoint
defines a unidirectional path. In each direction, one of the
paths is chosen as primary path. This designated path is
actually utilised for the data transmission; the other paths
are only used for retransmissions. Upon failure of the
primary path, it may be switched to one of the backup
paths.

The user data is segmented into units of so-called
DATA chunks. Each DATA chunk is identified by a unique
Transmission Sequence Number (TSN). The receiver ac-
knowledges the successful reception of DATA chunks
by using a Selective Acknowledgement (SACK) chunk.
Such a SACK chunk contains a cumulative acknowl-
edgement (CumAck) which acknowledges all TSNs until
a given TSN. It may furthermore acknowledge chunks
above the CumAck in form of so-called GapAcks. This
allows the sender instance to selectively retransmit only
the particular chunks which are still missing in the re-
ception sequence. A SACK chunk is sent back over the
peer path of the last received DATA chunk packet. While
CumAcks are obviously non-renegable (i.e. the receiver



may not “unacknowledge” a CumAck), it may revoke
GapAcks. This could e.g. happen when the receiver queue
gets too full to store earlier chunks which are necessary
for the next CumAck. In order to improve efficiency –
and to avoid retaining the non-outstanding GapAck’ed
chunks in the send buffer – the Non-Renegable SACK
extension (NR-SACK) [9] can be used to signalise non-
renegable GapAcks.

Two different mechanisms are applied to handle re-
transmissions [5]: Fast Retransmissions (Fast RTX) are
used to retransmit a DATA chunk once, after being
GapAck’ed for 3 times by default [5]. Fast RTX occurs
frequently, due to sporadic packet loss caused by concur-
rency. Timer-Based Retransmissions (Timer-Based RTX)
are triggered by a timeout for any further retransmission.
They should occur rarely and are usually a sign of severe
congestion.

SCTP applies window-based congestion control [10]
– similar to TCP – on each path, i.e. the amount of
outstanding data (i.e. in flight through the network and/or
not yet acknowledged by the receiver) is limited by
the congestion window cP of path P . AIMD (Additive
Increase, Multiplicative Decrease) behaviour is used to
adapt cP to changing network conditions: on α newly ac-
knowledged bytes on path P in a fully-utilised congestion
window, cP is adapted as follows [5]:

cP = cP +

{
min{α,MTUP } (cP ≤ sP )
MTUP (cP > sP ∧ pP ≥ cP )

(1)
Here, s denotes the so-called slow-start threshold s. For
cP ≤ sP , the increase phase is denoted as slow start and
leads to an exponential growth of cP . In slow start, SCTP
applies Appropriate Byte Counting [11], i.e. cP is only
advanced by the minimum of the acknowledged bytes α
and MTUP . The other case, i.e. cP > sP , is denoted as
congestion avoidance phase. Here, cP is only increased by
one MTU when a full window cP has been acknowledged.
The variable pP (“partially acknowledged”) counts the
acknowledged bytes; when it reaches the threshold cP ,
the window is increased and pP reset. In case of a
retransmission (i.e. Fast or Timer-Based) on path P ,
sP and cP are adapted as follows [5]:

sP = max

{
cP −

1

2
∗ cP , 4 ∗MTUP

}
(2)

cP =

{
sP (Fast RTX)
MTUP (Timer-Based RTX)

(3)

That is, on a Fast RTX, the sender remains in congestion
avoidance (and is therefore able to quickly recover from
the frequently occurring sporadic packet loss); on Timer-
Based RTX – which is a sign for severe congestion –
cP slow-starts again from one MTUP .

The CMT-SCTP extension [2], [3] adds CMT support
to SCTP. It is used to distribute data across multiple paths
in order to improve the payload throughput. CMT-SCTP
is quite straightforward; it just adds a few mechanisms to
improve retransmission, congestion window update and
acknowledgements handling (for examples, see [12]). To
efficiently handle dissimilar paths – i.e. paths having dif-
ferent QoS characteristics like bandwidths, bit error rates
and delays – so-called Buffer Splitting techniques [13],

[14] in combination with NR-SACKs [9] are necessary to
solve blocking issues.

III. MULTIPATH CONGESTION CONTROL

Plain CMT-SCTP CC handles each path independently,
i.e. each path shows the same AIMD behaviour as a
normal TCP flow. In result, having n paths sharing a
single bottleneck, a CMT-SCTP flow gets n times the
bandwidth of a concurrent TCP flow – which is quite
unfair [6], [7].

Key idea for fair multipath CC is Resource Pool-
ing (RP), which denotes “making a collection of resources
behave like a single pooled resource” [15]. That is,
the set of all paths should behave like a single high-
capacity path [6], fulfilling the following goals [16]: (1) In
comparison to a single-homed flow via the best path, a
CMT flow should get at least the same (or – if possible
– better) bandwidth. (2) On a shared bottleneck path, a
CMT flow should not take more bandwidth than a single-
homed flow. (3) Congestion should be balanced among
all paths of a CMT flow.

CMT/RPv1 CC [6] scales the congestion window in-
crement (see Equation 1) by the so-called slow-start
threshold ratio ŝP = sP∑

i si
, and tries to halve the total

congestion window (
∑

i ci) on decrement (see Equation 1
and 3). While CMT/RPv1 CC works well for similar
paths [6], the simulations in [7] show performance issues
for dissimilar paths.

These issues are solved by CMT/RPv2 CC [7], which
scales the congestion window increment cP on path P
(see Equation 1) by the so-called increase factor îP =

cP
RTTP∑
i

ci
RTTi

, which denotes the bandwidth ratio of P on the
total bandwidth of the association. On decrement, it is
tried to halve the bandwidth of the flow, not the total
congestion window.

The MPTCP CC [16] – defined for MPTCP – is also
based on RP. The main difference to CMT/RPv1 and
CMT/RPv2 is that, while CMT/RP tries to halve the total
congestion window/total bandwidth on a retransmission
on path P , MPTCP CC behaves exactly like standard
TCP or SCTP by only halving the path congestion win-
dow cP . To ensure fairness, MPTCP uses the idea of
controlling engineering: growth and decrease of cP have
to be brought into equilibrium by adapting the congestion
window growth by a per-flow aggressiveness factor â
(see [7], [16] for derivation and details). That is, â is used
to scale the congestion window increment cP on path P
(see Equation 1).

While Plain-CMT-SCTP, CMT/RPv1, CMT/RPv2 for
SCTP, as well as MPTCP CC for MPTCP have been
examined by simulations [7], a comparison of all four
approaches in a real network had been missing.

IV. THE NETPERFMETER TOOL-CHAIN

In order to evaluate the CCs mentioned, we had first
considered to apply one of several existing tools. Each
tool has its own advantages and disadvantages. However,
none of the existing tools has fulfilled our requirements,
and we have finally designed our own multi-platform and
Open Source tool-chain: NETPERFMETER.

In fact, the first difficulty we were confronted with
was that most of the known tools are designed to work



Figure 1. The Concept of a NetPerfMeter Measurement

Figure 2. The NetPerfMeter Protocol Stack

mainly with TCP and UDP. Tools such as TTCP or NTTCP
do not support SCTP. Modified versions of IPERF are
available and are able to support this protocol. However,
only basic functionalities are possible, due to the lack of
parametrisation possibilities. On the other hand, TSCTP
is a powerful SCTP tool, which makes it possible to
address most of the important SCTP-specific parameters.
However, this tool is only designed for SCTP and does
not support other Transport Layer protocols.

In our self-developed tool, it is possible to use UDP,
DCCP, TCP as well as SCTP (including multi-homing
and the parametrisation of extensions like CMT-SCTP [2],
[13], [17]). It allows to configure multiple transport con-
nections, denoted as flows, between two systems using
varying parameters. Furthermore, each flow may use its
own Transport Layer protocol. In fact, independent traffic
configuration is possible for each stream of an SCTP
association, as well as bidirectional data transmission and
on-off traffic (i.e. setting time stamps when to start, stop
and restart a flow or sub-flow) are possible. One example
configuration is to start with one SCTP flow, to start
a second SCTP flow after 10 s and a TCP flow after
30 s. This example shows the advantage of our tool in
comparison with other existing tools, since none of them
is able to manage different flows with different protocols
out of the box, and to start the flows at different times
without having to write additional scripts.

Another criterion related with network testing tools
is whether and how the results of an experiment are
recorded. Here, basic functionalities are supported by
other tools. IPERF, for example, generates text log files.
With NETPERF, it is possible re-direct the results shown
on the screen into a text file. In comparison to it, NET-
PERFMETER makes it possible to directly write the results
as scalar and in particular as vector files, which simplifies
the creation of plots showing the results.

To ease the configuration and measurement process,
the parametrisation of a run is only necessary at one

side of the communication, as illustrated in Figure 1:
the remote NETPERFMETER node (denoted as passive in-
stance), accepts incoming NETPERFMETER connections
from the local node (denoted as active instance). The
passive instance is fully controlled by the active instance,
by using a control protocol denoted as NETPERFMETER
Control Protocol (NPMP-CONTROL). That is, the pas-
sive instance may run as daemon; no manual interaction
– e.g. restart before a new measurement run – is required.
This feature is highly practical for a setup distributed over
multiple Internet sites and allows for parameter studies
consisting of many measurement runs. The payload data
between active and passive instances is transported by us-
ing the NETPERFMETER Data Protocol (NPMP-DATA).
Figure 2 illustrates the protocol stack to make the protocol
interaction clearer.

A new measurement run is initiated by first establish-
ing an NPMP-CONTROL association (using SCTP for
transport) to the passive instance. Then, the configured
NPMP-DATA connections are established by using their
configured Transport Layer protocols. The passive in-
stance is informed about the identification and parameters
of each new flow by using NPMP-CONTROL Add Flow
messages; on startup of the NPMP-DATA flow, an NPMP-
DATA Identify message allows the mapping of a new
incoming connection to a configured flow by the passive
NETPERFMETER instance. It acknowledges each newly
set up flow by an NPMP-CONTROL Acknowledge mes-
sage. After sequentially setting up all flows, the scenario
is ready to start the measurement run.

The actual measurement run is initiated by using an
NPMP-CONTROL Start Measurement message, which
is acknowledged by an NPMP-CONTROL Acknowledge
message. Then, both instances start running the configured
scenario by transmitting NPMP-DATA Data messages
over their configured flows. During the measurement
run, incoming and outgoing flow bandwidths may be
recorded as vectors (i.e. time series) at both instances,
since NPMP-DATA Data traffic may be bidirectional.
Furthermore, the CPU utilisations – separately for each
CPU and CPU core – are also tracked. This allows to
identify performance bottlenecks, which is particularly
useful when debugging and comparing transport protocol
implementation performances. Furthermore, if clocks are
appropriately synchronised, the one-way delay of mes-
sages can be recorded. To use this feature, the clocks of
both instances need to be appropriately synchronised by
using the Network Time Protocol (NTP) [18].

The end of a measurement run is initiated by the
active NETPERFMETER instance by using an NPMP-
CONTROL Stop Measurement message. It is also ac-
knowledged by an NPMP-CONTROL Acknowledge mes-
sage. At the end of the measurement, average bandwidth
and one-way delay of each flow are recorded as scalars
(i.e. single values). They may provide an overview of the
long-term performance.

After stopping the measurement, the flows are se-
quentially removed, triggered by NPMP-CONTROL Re-
move Flow messages. On flow removal, the passive
instance archives vector and scalar results of the corre-
sponding flow and reports them to the active instance by
using NPMP-CONTROL Results messages. The active
instance, as well, archives its local vector and scalar



Figure 3. The Testbed and Simulation Setup

statistics and stores them – together with the results
received from its peer – locally. All data is compressed by
using BZIP2 [19], which may save a significant amount
of bandwidth5 and disk space.

By using shell scripts, it is possible to apply NET-
PERFMETER for parameter studies, i.e. to create a
set of runs for each input parameter combination.
For example, a script could iterate over a number of
flows n from 1 to 5 and a number of frame sizes fS
from 100 bytes to 1000 bytes and perform 5 measurement
runs for each combination. Then, the NETPERFMETER
tool createsummary combines the scalar results from
each run into a table, containing columns for n and fS
as well as the flow number and its resulting average
payload throughput. For disk space saving, the resulting
tables are again compressed by using BZIP2 [19]. These
tables may be read by the statistics and plotting language
GNU R [20], which is used by our tool plotter.R
to post-process (i.e. filter parameter ranges, compute
95% confidence intervals, etc.) and finally plot the results.
plotter.R is shared with our OMNET++ simulation
processing tool-chain SIMPROCTC; a detailed description
is provided in [21].

NETPERFMETER has been designed with reusability
in mind. Particularly, it has been developed to support re-
search in the G-LAB [8] plattform. Therefore, it has been
released as Open Source under GPLv3 license. Currently,
Linux, FreeBSD and MacOS X are supported; it is freely
available at [22]. Also, it has been contributed to Debian
and Ubuntu Linux (allowing to install it directly from the
distributions’ standard package repositories) as well as to
FreeBSD (allowing to install it from the FreeBSD ports
collection). MacOS X and Solaris are also supported.

Furthermore, in order to support teaching and de-
bugging purposes, dissectors for NPMP-CONTROL and
NPMP-DATA have been contributed to the Wireshark [23]
network analysis tool. Also, the IANA has assigned SCTP
Payload Protocol Identifiers and a DCCP Service Code for
the NETPERFMETER protocols.

V. OUR CMT-SCTP TESTBED

Our experimental testbed setup is shown in Fig-
ure 3. Sender and receiver are running FreeBSD 8.2
(already including CMT/RPv1 CC) with CMT/RPv2 and
MPTCP CCs added. NETPERFMETER runs on sender
(active instance) and receiver (passive instance). The
sender located in Essen/Germany is connected to the
receiver in Burgsteinfurt/Germany through two different
paths which are known to be disjoint: the first path uses
a high-speed fibre optic connection over the German Re-
search Network (Deutsches Forschungsnetz – DFN), with

5Of course, the passive node compresses the data before transmission.

a typical RTT of 4 ms. The second path uses an ADSL
connection in Essen (Versatel; 800 Kbit/s upstream) as
well as an ADSL connection in Burgsteinfurt (Telekom;
16 Mbit/s downstream); the typical RTT is 56 ms.

In order to perform experiments with different network
characteristics (here: bandwidth), the FreeBSD packet
filtering mechanism DUMMYNET [24] is used to apply
traffic limitations on the routers connecting the host in
Essen to the ISPs. In case of the DFN network, this has
been realised without any problem by using DUMMYNET
on the first router. In contradiction, performing the same
procedure for the DSL path has been more complicated.
The router delivered by the ADSL ISP has to be used
for establishing the connection. However, its configuration
had been fixed by the ISP – with no possibility to re-
configure it6. Therefore, we have put another FreeBSD
router – also running DUMMYNET – between the sender
host and ADSL router. In order to subnet the IP network
provided by the ADSL ISP, we have furthermore applied
Proxy ARP on the FreeBSD router (since the locked-down
ADSL router also did not provide a way to configure
subnets).

One more restriction caused by the ADSL network has
been the lack of support for IPv6. Native IPv6 connectiv-
ity is still very unusual for end-users in Germany. Most of
the ISPs – including our ADSL ISP – still do not support
it, yet. With IPv6 connectivity only via the DFN network,
we therefore had to restrict the measurements in this paper
to IPv4 only.

Furthermore we have also started to investigate an
integration of our experiments into global platforms such
as G-LAB [8]. These platforms consist of a group of com-
puters, which are available as a large testbed for computer
networking and distributed systems research. A research
project has access to a so-called slice, which consists of
virtual machine access to a subset of the nodes. Virtual
links may be combined with real-existing physical links
(like an ADSL connection) to set up complex topologies
and perform experiments in these setups. This will bring
significant benefits in terms of scalability, extensibility
and reliability.

VI. SYSTEM SETUP

For our performance evaluation of the CMT-SCTP CCs
introduced in Section III, we have used the following
configuration parameters, unless otherwise specified: The
senders have been saturated (i.e. sending as much as
possible); the message size has been 1,444 bytes at an
MTU of 1,492 bytes (i.e. MTU-sized packets [5] on the
ADSL path applying PPPoE). All messages have used
unordered delivery. CMT-SCTP has been applied for the
first flow; the second one – denoted as reference flow
– has not applied CMT. The send buffer has been set
to 1,000,000 bytes, the receive buffer has been set to
500,000 bytes; Buffer splitting as defined in [13] (pro-
vided by FreeBSD kernel SCTP) has been applied. The
duration of each throughput measurement has been 5 min.
Tests have been repeated 5 times in order to ensure a
sufficient statistical accuracy. The results plots show the
average values and their corresponding 95% confidence
intervals.

6We have been restrained from a password recovery procedure, since
this would have violated the ADSL contract with the ISP.



0 2 4 6 8 10 12 14 16 18 20

0
2

4
6

8
1

0
1

2
1

4
1

6

Data Rate on DFN Path ρDFN [Mbit/s]

A
p

p
lic

a
ti
o

n
 P

a
y
lo

a
d

 T
h

ro
u

g
h

p
u

t 
[M

b
it
/s

]

CMT−SCTP Flow
Congestion Control Variant Γ

1: Γ=cmt
2: Γ=cmtrpv1
3: Γ=cmtrpv2
4: Γ=like−mptcp

0 2 4 6 8 10 12 14 16 18 20

0
2

4
6

8
1

0
1

2
1

4
1

6

Data Rate on DFN Path ρDFN [Mbit/s]

A
p

p
lic

a
ti
o

n
 P

a
y
lo

a
d

 T
h

ro
u

g
h

p
u

t 
[M

b
it
/s

]

SCTP Reference Flow
Congestion Control Variant Γ

1: Γ=cmt
2: Γ=cmtrpv1
3: Γ=cmtrpv2
4: Γ=like−mptcp

Figure 4. Application Payload Throughput for CMT-SCTP versus SCTP Reference Flow
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Figure 5. Application Payload Throughput for CMT-SCTP versus TCP Reference Flow

VII. EVALUATION

A. CMT-SCTP versus SCTP
In our first measurement, we have examined the per-

formance of CMT-SCTP versus standard SCTP. The
bandwidth of the DFN path ρDFN has been varied
from 800 Kbit/s to 20 Mbit/s, while the bandwidth of the
ADSL path has been fixed at 800 Kbit/s (ADSL uplink
speed). This scenario is challenging, due to the dissimi-
larity of the paths (different RTTs, different bandwidths)
and in particular due to so-called Buffer Bloat [25], which
is caused here by the typically long ADSL modem queue;
see also [13] for more details on this subject. The resulting
application payload throughputs are displayed in Figure 4
for the CMT-SCTP flow (left-hand plot) and the standard
SCTP reference flow (right-hand plot) for the four CCs
(i.e. Γ=cmt for plain CMT-SCTP CC; Γ=cmtrpv1 for
CMT/RPv1 and Γ=cmtrpv2 for CMT/RPv2 respectively,
as well as Γ=like-mptcp for MPTCP CC.

Clearly, plain CMT-SCTP CC performs as expected:
at ρDFN=20 Mbit/s, the CMT-SCTP flow achieves a pay-
load throughput of about 10.5 Mbit/s (i.e. it gets half of
the ρDFN=20 Mbit/s shared with the reference flow, as
well as the 800 Kbit/s of the ADSL link exclusively). The
reference flow achieves the corresponding throughput (i.e.
about 9.6 Mbit/s) on its single path.

The performance of CMT/RPv1 is obviously bad, due
to the very different slow-start thresholds on both paths.
Due to the Buffer Bloat caused by the ADSL modem
queue, the congestion window cADSL grows very large in
comparison to cDFN, leading to corresponding slow-start
thresholds sADSL and sDFN – and in result to a slowly-
growing congestion window cDFN on the fast path (due
to small slow-start threshold ratio ŝDFN). Even worse,
due to the large sADSL, cDFN has to restart from one
MTU each time a retransmission occurs on the DFN path.
This happens frequently – due to concurrency with the
reference flow. In result, the achieved application payload
throughput is less than 5 Mbit/s at ρDFN=20 Mbit/s. This
clearly violates RP goal #1 of Section III.

CMT/RPv2 as well as MPTCP-like CC behave as
expected: for the CMT-SCTP flow, the achieved through-
put is slightly less than the throughput for plain CMT-
SCTP CC. This is an intended effect of RP, which tries
to shift congestion to less-congested paths (goal #3 of
Section III). Since the CMT-SCTP flow may exclusively
use the 800 Kbit/s of the ADSL path, it is less aggres-
sive on the DFN path. In result, both flows achieve a
quite similar payload throughput (e.g. about 10 Mbit/s
at ρDFN=20 Mbit/s. That is, both CCs fulfil the goals set
for RP in an CMT-SCTP-versus-SCTP scenario.



B. CMT-SCTP versus TCP
In order to show the performance of CMT-SCTP on

concurrency against a TCP flow, we have repeated the
measurement described in Subsection VII-A with the
SCTP reference flow replaced by a TCP one. The cor-
responding application throughput results are shown in
Figure 5 for the CMT-SCTP flow (left-hand plot) and the
TCP reference flow (right-hand plot).

Obviously, the results are very similar to the previous
CMT-SCTP versus SCTP results. The CMT-SCTP flow
throughput for CMT/RPv2 as well as MPTCP-like CC
are slightly lower than for plain CMT-SCTP CC – due
to a shifting of congestion to fulfil RP goal #3 – and
CMT/RPv1 is unsuitable in the dissimilar path setup. The
particularly important result of this measurement is the
fact that the CMT transport does not introduce unfairness
when concurring with TCP flows. This point is highly
crucial, since a major prerequisite for standardising CMT
protocol extensions in the IETF is to not cause unfairness
to the widely deployed TCP protocol.

VIII. CONCLUSIONS

In order to examine the multipath congestion controls
which are currently under discussion in the IETF within
the scope of standardisation activities for the CMT pro-
tocol extensions CMT-SCTP and MPTCP, we have set
up a distributed CMT testbed based on a real-world
Internet setup. To actually run measurements, we have
developed our Open Source NETPERFMETER tool-chain,
which helps researchers to perform tests in the testbed
– as well as in upcoming large-scale, multi-homing-
capable, virtualised network testbeds like the G-LAB.
Our tool-chain is not only useful for our congestion
control evaluation. It may also be used for other network
performance research purposes as well.

By using the NETPERFMETER tool-chain in our Inter-
net testbed setup, we have performed a proof-of-concept
performance evaluation of the four relevant CMT conges-
tion controls: plain CMT-SCTP, CMT/RPv1, CMT/RPv2,
as well as MPTCP-like. We have shown that both,
CMT/RPv2 as well as MPTCP-like congestion control,
fulfil the set goals and are suitable for handling CMT
traffic in a heterogeneous Internet setup.

As part of future work, we are going to perform pa-
rameter studies using a wider range of parameters in more
complex setups (e.g. based on G-LAB). Furthermore, we
are also going to simulatively evaluate the congestion
control approaches. We will use these results to formalise
the fairness criteria of multipath transport, in order to
provide a more fine-granular classification. Finally, we
are also going to contribute our results into the ongoing
IETF standardisation process of CMT-SCTP and MPTCP.
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“Evaluation of Concurrent Multipath Transfer over Dissimilar
Paths,” in Proceedings of the 1st International Workshop on
Protocols and Applications with Multi-Homing Support (PAMS),
Singapore, Mar. 2011, pp. 708–714, ISBN 978-0-7695-4338-3.

[14] T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tüxen, “On the
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