
Evaluation of
Concurrent Multipath Transfer over Dissimilar Paths

Hakim Adhari, Thomas Dreibholz, Martin Becke, Erwin P. Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstraße 29, 45326 Essen, Germany
{hakim.adhari,dreibh,martin.becke,rathgeb}@iem.uni-due.de

Michael Tüxen
Münster University of Applied Sciences

Department of Electrical Engineering and Computer Science
Bismarckstraße 11, 48565 Steinfurt, Germany

tuexen@fh-muenster.de

Abstract—The steadily growing deployment of resilience-
critical Internet services is leading to an increasing number
of Multi-Homed network sites. Asymmetric Digital Subscriber
Lines (ADSL) are an inexpensive way to add a secondary Internet
access connection. With the development of Multi-Path Transport
Layer protocols – like Multipath TCP (MPTCP) and the Stream
Control Transmission Protocol (SCTP) furnished by a Concur-
rent Multipath Transfer (CMT-SCTP) extension – there is also a
strong interest in utilising all access connections simultaneously
to improve the data throughput of the applications. However,
combining network paths over ADSL with paths over other
access technologies like fibre optic links implies highly dissimilar
paths with significantly different bandwidths, delays and queuing
behaviours. Efficient Multi-Path transport over such dissimilar
paths is a challenging task for the new Transport Layer protocols
under development.

In this paper, we show the difficulties of Multi-Path transport
in a real-world dissimilar path setup which consists of a high-
speed fibre optic link and an ADSL connection. After that, we
present an optimised buffer handling technique which solves the
transport efficiency issues in this setup. Our optimisation is first
analysed by simulations. Finally, we also show the usefulness of
our approach by experimental evaluation in a real Multi-Homed
Internet setup.1234

Keywords: Concurrent Multipath Transfer, Dissimilar Paths,
Buffer Handling, Performance Analysis, Experimental Validation

I. INTRODUCTION

Using more than one interface to networks like the Internet
is a common feature of currently available communication
devices such as laptops or smart phones. Using an IP-based
protocol stack allows different network carriers and technolo-
gies to be part of the communication. The existence of multiple
IP addresses is denoted as Multi-Homing. An example could
be the simultaneous use of different access media – like

1Parts of this work have been funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft – DFG).

2Parts of this work have been funded within the scope of the G-Lab project
by the German Federal Ministry of Education and Research (Bundesminis-
terium für Bildung und Forschung – BMBF).

3The authors would like to thank Irene Rüngeler for her friendly support
regarding INET and Randall Stewart for initial discussions about Receiver
Buffer Splitting.

4The authors would like to thank the reviewers for their helpful comments.

the widespread Asymmetric Digital Subscriber Line (ADSL)
and Universal Mobile Telecommunications System (UMTS)
– within a single communication device. However, current
standards focus on the use of a single network interface and
only take advantage of additional interfaces for providing
mobility or for increasing availability. Therefore, it seems to
be a natural evolution to aggregate bandwidths in order to
generate throughput benefits. The load balancing of data –
which is denoted as Multi-Path Transfer – may be realised on
different layers of the OSI model, such as the Application, the
Transport or the Network Layer. However, the Transport Layer
stands out by being the only layer which is able to realise
a path-transparent congestion control [1], [2]. Furthermore, a
Transport Layer-based approach does not require to modify the
applications (which may be numerous) or change the Network
Layer protocol (i.e. IPv4/IPv6).

Multi-Homing support on more than one endpoint is an
absolute prerequisite to provide Multi-Path Transfer on the
Transport Layer. However, the most common Transport Layer
protocol in the Internet – the Transmission Control Proto-
col (TCP) – does not support any Multi-Homing features. The
Multipath TCP (MPTCP) [3] approach defines a modification
of TCP to support more than one IP address per endpoint
within the same connection. For an endpoint, each peer address
describes a unidirectional path to the remote instance. Multi-
Path Transfer is applied on these paths.

Another Transport Layer protocol, which provides Multi-
Homing support out of the box, is the Stream Control Trans-
mission Protocol (SCTP) [4]. Similar to MPTCP, paths are
described by IP addresses of the remote endpoint. However,
standard SCTP just uses one selected path per transport direc-
tion to actually transmit user data – unless a failure occurs.
CMT-SCTP [5] is an extension of SCTP to provide Multi-Path
Transfer. A further extension – denoted as CMT/RP-SCTP [6]
– applies the approach of Resource Pooling (RP) [1] – to
realise TCP-friendly Multi-Path congestion control.

Independently of the used Transport Layer protocol, the
Multi-Path Transfer of data over dissimilar paths – i.e. paths
having different characteristics like bandwidths, delays and
queuing behaviours – is challenging and still an open issue.
In this paper, we present an approach to cope with these



Figure 1. Multi-Path Transport between Multi-Homed Endpoints

challenges by optimising the buffer handling of the com-
munication instances. Our approach will first be evaluated
by simulations; after that we also prove its usefulness by
experimental validation in a real Multi-Homed network setup.

II. RELIABLE TRANSPORT BETWEEN
MULTI-HOMED SYSTEMS

In this paper, we use SCTP as the Transport Layer protocol
to evaluate our approach. However, our solutions could be
transferred to other protocols – like MPTCP – as well.

A. Basics
SCTP [4], as illustrated in Figure 1, selects a so-called

Primary Path in each transport direction from the set of all
paths to a peer endpoint. The Primary Path is used for the
actual user data transmission; all other paths remain as backup
and are only used in case of failures on the Primary Path. If
necessary, the Primary Path can be switched.

The SCTP protocol provides a connection-oriented, unicast
and TCP-like congestion-controlled transport of user messages
within multiple independent streams. An SCTP connection
including all of its streams is denoted as Association. The
user messages can be bundled into a single SCTP packet by
using one or multiple chunks, denoted as DATA chunks. Each
DATA chunk is identified by a unique Transmission Sequence
Number (TSN). The TSNs are used to assure reliability as well
as to allow possible chunk reordering on the receiver side.
While TCP always transfers data in an ordered way, SCTP
also has the possibility to pass data to the application in an un-
ordered way. SCTP provides reliable transport. That is, DATA
chunks are acknowledged by the receiver and gaps in the
TSN sequence (i.e. missing DATA chunks) are reported to the
sender by the so-called Selective Acknowledgement (SACK)
chunks.

In order to cope with changing network conditions, SCTP
uses congestion control mechanisms which are similar to TCP.
For each path, a congestion window applying AIMD (Additive
Increase, Multiplicative Decrease) behaviour is used to avoid
network congestion. In addition to it, and in order to avoid
receiver overload, the flow control mechanism is used by
utilising a receiver window to protect the sink. The receiver
window is calculated by the sender on base of the Advertised
Receiver Window (A RWND). The A RWND is reported as
part of a SACK chunk. The receiver window itself is the sum
of A RWND and the amount of data, which is still in flight
and/or not yet acknowledged by the receiver. This amount of
data is commonly denoted as outstanding data and is counted
in bytes.

Figure 2. Retransmission Queue and Selective Acknowledgements

B. Selective Acknowledgements
A functionality example of the SCTP acknowledgement

mechanism is illustrated in Figure 2. In the ideal case, DATA
chunks are received in their original sequence and without any
gaps. In this case, two data chunks (here: TSN #1 and TSN #2)
are transmitted, successfully received and acknowledged by a
Cumulative Acknowledgement (CumAck). This CumAck uses
the last TSN without any gaps (here: TSN #2) and is also the
trigger for the sender to release the memory occupied by the
TSNs up to #2 in the send buffer. This memory is occupied
by the corresponding user messages to make a retransmission
possible.

DATA chunks with a TSN above the TSN of a CumAck
are noticed in a gap report as part of a SACK chunk, in
order to optimise the retransmission behaviour (GapAck; here:
TSN #4 to TSN #5). In contrast to TSNs acknowledged by a
CumAck, the DATA chunks in the gap report are renegable.
That is, the receiver may revoke their acknowledgement at
any time and request their retransmission. This revocation of
an acknowledgement is denoted as reneging (here: TSN #8).

That is, in case of standard SCTP, a GapAck’ed chunk has
to stay in the send buffer until it is finally acknowledged
by a CumAck. The Non-Renegable Selective Acknowledge-
ments (NR-SACKs) protocol extension [7] adds the possibility
of marking selected GapAcks as non-renegable. In Figure 2,
the DATA chunks with TSN #6 and TSN #7 are marked
this way. The sender does not have to hold non-renegably
acknowledged chunks in the send buffer any more, giving it
the possibility to free buffer space earlier and reuse it for new
DATA chunks.

C. Multi-Path Transfer
Multi-Path Transfer support for SCTP is provided by the

Concurrent Multipath Transfer extension (CMT-SCTP) [5],
[8]. Since SCTP already supports Multi-Homing out of the
box, this extension is small in comparison to the effort of
adapting plain TCP to MPTCP. CMT-SCTP just adds some
further mechanisms to the retransmission, congestion control
and acknowledgement handling. CMT-SCTP works well on
homogeneous paths, i.e. paths with similar characteristics like
bandwidth, delay and error rate. However, applying CMT-
SCTP over dissimilar paths leads to some challenges [9], [10].

III. BUFFER BLOCKING ON DISSIMILAR PATHS

Problems of Multi-Path Transfer over dissimilar paths are
blocking issues at the send and receive buffers. We categorise
these issues as described in the following subsections.



Figure 3. Receiver Buffer Blocking

A. Window-Induced Receiver Buffer Blocking
An example for the blocking issue at the receive buffer –

which we denote as Window-Induced Receiver Buffer Blocking
– is illustrated in Figure 3: endpoint A is trying to send all
of its DATA chunks using unordered delivery to endpoint B.
These chunks are numbered from TSN #36 to TSN #44; a
round robin scheduling [9] between the two paths is applied.
Path #1 has a large delay and large queuing capacity (e.g.
a long queue on an ADSL modem). The delay and queuing
capacity of path #2 are much smaller.

TSN #36 is the first chunk reaching Endpoint B; it is directly
delivered to the application layer. TSN #37 to TSN #41 are
still outstanding. The sender calculates the receiver window for
the association based on A RWND and the number of already-
outstanding bytes. The larger the number of outstanding bytes,
the smaller the actual possibility to transmit new DATA chunks
into the network. Once the long-delay path #1 has a high
number of bytes outstanding, A RWND limits the possibility
to send more data on path #2.

In order to fully utilise its capacity, a path needs to steadily
have at least a number of bytes given by its bandwidth-RTT
product outstanding. If it cannot have this amount of data in
flight, its throughput will suffer. A problem will always occur
if the queue capacity of path #1 is larger than the receive buffer
capacity of endpoint B. In this example, the receive buffer
of endpoint B has the capacity to store up to six full-sized
packets. Therefore, the calculated receiver window variable for
endpoint B maintained in the sender instance of endpoint A
will be decreased by the queued data on the slow path #1.
When more and more data is buffered on path #1, endpoint A
decreases the calculated receiver window of endpoint B down
to zero.

In this example, this is the reason for the sender to interrupt
its transmission until a SACK for TSN #38 arrives. This trig-
gers a new receiver window calculation and restarts sending5

with TSN #42 on path #2. This transmission decreases the
receiver window to zero again – and the sender has to wait
until TSN #40 is acknowledged. Then, the sender can again
continue transmitting. The same happens to TSN #43 and the
sender has to wait before it is able to send it. The large
buffer capacity of path #1 works as a queue ahead of the
receive buffer. In case of just sending over one path, this path
characteristic has no effect: in this case, it is just a neutral
element for the flow control.

5We assume that the data size of TSN #42 is larger than the Silly Window
Syndrome Avoidance threshold.

B. Reordering-Induced Receiver Buffer Blocking
Using ordered delivery, the receiver side also has to take

care of the message order and store out-of-order DATA chunks
in the receive buffer for later reordering. This can lead to
another kind of receive buffer blocking, which we denote as
Reordering-Induced Receiver Buffer Blocking. Details can be
found in our paper [10]. Since the focus of this paper is on
unordered delivery, it is not further explained here.

C. GapAck-Induced Sender Buffer Blocking
At the send buffer, GapAck-Induced Sender Buffer Blocking

is caused by TSNs having been GapAck’ed (i.e. renegably
acknowledged) but not yet CumAck’ed. NR-SACKs [7] help
to solve this problem, as shown by us in [10].

D. Transmission-Induced Sender Buffer Blocking
Transmission-Induced Sender Buffer Blocking denotes the

unbalanced distribution of buffer space among the paths: when
the sender transmits too many DATA chunks on a subset of the
paths, too few buffer space may remain to utilise other paths.
This situation may happen when one of the paths has to reduce
its congestion window due to a loss while the other path may
steadily increase its congestion window. We will demonstrate
this problem in Section VI.

IV. OPTIMISATIONS FOR
MULTI-PATH TRANSFER OVER DISSIMILAR PATHS

The key idea for countermeasures against the buffer block-
ing issues described in Section III is to prevent that problems
or special characteristics on one path lead to insufficient buffer
resources on well-working paths. Our solutions – Receiver and
Sender Buffer Splitting – have been introduced in [10]. They
split the corresponding buffer resources into fixed per-path
sections, i.e. all paths get an equal buffer share. The transfer
of this approach to a real system shows (to be explained in
Subsection VI-B) that Buffer Splitting is a useful solution and
works in combination with NR-SACKs as expected. But on
a system without NR-SACK support, some optimisation is
possible: a dynamic use of the buffer space would give a faster
path the possibility to send more data by granting it to occupy
more buffer space.

The goal is to keep a balance of the amount of outstanding
bytes on all paths. This increases the throughput of the whole
system. For this purpose, our approach in this paper is not
based on the occupied buffer space any more. Instead, we
just focus on the amount of outstanding data, because this
value better represents the dynamic allocation of resources in
the system. Like [10], our enhanced approach splits the send
buffer of size BSender into n (i.e. number of paths) sections.

Let Outstandingi be the number of outstanding bytes
and MTUi be the MTU on path Pi. Then, a new chunk on
path Pi may be sent if the congestion window of path Pi

allows its transmission and its buffer share allows another
MTU-sized packet:

Outstandingi + MTUi ≤
BSender

n

We denote this approach against Sender Buffer Blocking issues
as Sender Buffer Splitting based on Outstanding Bytes.

Similar to the send buffer handling, the sender(!) also takes
care of the receive buffer. It may send a new chunk on path Pi



Figure 4. The Testbed and Simulation Setup

if the congestion window of path Pi allows its transmission
and its assumed receive buffer share allows another MTU-
sized packet:

Outstandingi+MTUi ≤
A RWND +

∑n
j=1 Outstandingj

n

We denote this approach against Receiver Buffer Blocking
issues as Receiver Buffer Splitting based on Outstanding
Bytes. Note, that this approach – being located at the sender
side – also handles Window-Based Receiver Blocking issues,
occurring for unordered transmission.

To clearly distinguish our new blocking countermeasures
from the Buffer Splitting approaches in [10], the following
sections will denote the mechanisms from [10] – which are
based on buffered instead of outstanding bytes – as Sender
Buffer Splitting based on Buffered Bytes and Receiver Buffer
Splitting based on Buffered Bytes.

V. SYSTEM SETUP

For our performance evaluation of CMT-SCTP, we have
used the OMNET++-based INET framework with our CMT-
SCTP simulation model [11]. The SIMPROCTC [12] tool-
chain has been used for parametrization and result processing.
Our experimental validation in the real Internet has used the
testbed setup depicted in Figure 4. Sender and receiver have
run FreeBSD stable release 8.1 with the upcoming kernel 8.2
CMT-SCTP version (still under development). The sender
located in Essen/Germany has transmitted its data over two
paths to the receiver in Burgsteinfurt/Germany. NETPERFME-
TER [13] has been used for CMT-SCTP transmission and
statistics recording. Path A has utilised a high-speed fibre optic
connection over the German Research Network (Deutsches
Forschungsnetz – DFN), with a typical RTT of 4 ms. The ac-
tual outgoing bandwidth can be varied using DUMMYNET [14]
on the first router. Path B has used an ADSL connection in
Essen (Versatel; 800 Kbit/s upstream) as well as an ADSL
connection in Burgsteinfurt (Telekom; 16 Mbit/s downstream);
the typical RTT has been 56 ms. Both paths have been known
to be disjoint. This testbed setup has also been modelled in
the simulation environment.

The following configuration parameters have been used for
simulation and testbed setup, unless otherwise specified:

• The sender has been saturated (i.e. it has tried to transmit
as much data as possible); the message size has been
1,444 bytes at an MTU of 1,492 bytes on the ADSL
links (i.e. MTU-sized packets [4]). All messages have
used unordered delivery.

• The send buffer has been set to 300,000 bytes, the receive
buffer has been set to 100,000 bytes.

• In the simulation, FIFO queues of 100 packets (ADSL
path) and 10 packets (high-speed path) have been config-
ured on the first router.

• The runtime of each throughput test has been 60 s.
Tests have been repeated multiple times (24 times for
simulation, 8 times for measurement) in order to ensure
a sufficient statistical accuracy. The results plots show the
average values and their corresponding 95% confidence
intervals.

VI. EVALUATION

A. Simulation Results

For the evaluation of the two Buffer Splitting variants, we
have performed simulations varying the bandwidth of the high-
speed path β from 0.1 Mbit/s to 10 Mbit/s. The resulting CMT-
SCTP payload throughputs are presented in Figure 5: Buffer
Splitting based on Buffered Bytes is shown in the left-hand
plot, Buffer Splitting based on Outstanding Bytes in the right-
hand plot. Each plot displays the four cases: Buffer-Splitting
on both sides (i.e. Sender and Receiver Buffer Splitting) turned
on (i.e. Π=bothSides; curves 1 and 2 drawn in red colour on
a colour plot) or off (i.e. Π=none; curves 3 and 4 drawn in
blue colour on a colour plot) as well as NR-SACKs turned on
(i.e. ρ=true; curves 1 and 3 drawn as solid lines) or off (i.e.
ρ=false; curves 2 and 4 drawn as dotted lines).

Clearly, without Buffer Splitting, the sender is unable to
utilise the high-speed path by having a sufficient number
of outstanding bytes. The problem here is Window-Induced
Receiver Buffer Blocking (see Subsection III-A), caused by
the ADSL path: due to the long transmission queue of the
ADSL modem, too many bytes are outstanding on the slow
ADSL path – leaving no more room for increasing the number
of outstanding bytes on the high-speed path (to be explained in
detail below). The total number of outstanding bytes is limited
by the advertised receiver window (100,000 bytes) – which is
clearly much smaller than the send buffer (300,000 bytes).
This size difference is also the reason why NR-SACK has
no effect here: NR-SACK can help to reduce the send buffer
space requirements (see Section II-B), but the send buffer is
not fully occupied here.

Turning on Buffer Splitting significantly improves the
payload throughput: in combination with NR-SACKs, both
variants of Buffer Splitting (i.e. based on buffered bytes as
well as based on outstanding bytes; see Section IV) reach
the expected throughput of nearly 10.4 Mbit/s. Without NR-
SACK, the throughput is significantly lower in more dissimilar
path scenarios (here: β ≥ 4 Mbit/s). Obviously, GapAck- and
Transmission-Induced Sender Buffer Blocking (see Subsec-
tion III-C and Subsection III-D) occurs and prevents the high-
speed path from utilising its bandwidth. As introduced in Sec-
tion IV, this problem is clearly stronger when basing the Buffer
Splitting on buffered instead of outstanding bytes (compare
curve 2 in the right-hand plot to the corresponding one in
the left-hand plot of Figure 5). That is, our improved variant
of Buffer Splitting (based on outstanding bytes) achieves a
significant performance improvement when NR-SACK cannot
be applied, e.g. if the receiver side does not support this
protocol extension [15].



Figure 5. Simulation Results for Bandwidth Variation on the High-Speed Path

In order to further explain the effects causing the through-
put results shown above, Figure 6 presents an extract from
time t0=1 s to t1=2.5 s of the corresponding congestion
window (solid lines) and slow start threshold (dotted lines)
behaviour of ADSL path (blue colour) and high-speed path
(red colour) for each of the four cases (i.e. Sender and
Receiver Buffer Splitting based on Outstanding Bytes on/off;
NR-SACKs on/off).

Plot 1 shows the results for Buffer Splitting turned off.
Obviously, the congestion window of the ADSL path steadily
increases to almost the size of the advertised receiver window
(i.e. 100,000 bytes): as long as there is room in the advertised
receiver window, the saturated sender tries to increase the
congestion window of a path on reception of a new acknowl-
edgement (see also [11] for details). DSL modems typically
have a very long queue (here: 100 packets) – which is useful to
avoid losses – but also leads to a linearly increased message
delay on growing queue occupation. In our case, the rising
number of outstanding bytes on the ADSL path fills this
queue – which causes more delay but not an improvement
of the throughput. Even worse, since the high-speed path
is bandwidth-limited and using only a short queue (here:
10 packets), the congestion window of the ADSL path may
take more buffer space when the high-speed path experiences
a packet loss (which is caused regularly as part of the normal
AIMD behaviour). In the end, the ADSL path – experiencing
no loss due to its long queue – almost occupies all space of
the send buffer. This implies no possibility for the congestion
window of the high-speed path to grow large enough (i.e. at
least up to the bandwidth-RTT product of the high-speed path)
to fully utilise its capacity.

Turning on NR-SACKs (plot 2) has the effect that the
congestion window growth becomes almost perfectly linear:
without the need to wait for a cumulative acknowledgement,
it can increase the number of outstanding bytes immediately on
reception of an acknowledgement (i.e. Sender Buffer Blocking
– see Section [10] is avoided). Once the congestion window

of the ADSL path is large enough (here: t ≥1.8 s, it causes
Window-Induced Receiver Buffer Blocking and the typical
AIMD behaviour on the high-speed path (i.e. growing until
a loss, then restarting from slow start threshold) is made
impossible.

With Buffer Splitting turned on, but without NR-SACKs
(shown in plot 3), it is clearly observable that the congestion
window of the ADSL path can now only take a send buffer
space of at most half of the advertised receiver window (i.e.
50,000 bytes) – which would in fact leave enough room for
increasing the number of outstanding bytes on the high-speed
path. However, while the throughput of this path is actually
increased (see curve 2 on the right-hand plot of Figure 5),
the congestion window curve of the high-speed path does
not show the typical AIMD behaviour. Now, the problem is
GapAck-Induced Sender Buffer Blocking: there is need to wait
for TSNs on the long-delay (in particular due to the filling
DSL modem queue) ADSL path to be acknowledged in order
to cumulatively acknowledge a sequence of chunks. This is
needed to actually gain space in the send buffer to transmit
new chunks.

Also turning on NR-SACK (plot 4) solves this Sender
Buffer Blocking problem: the feature of non-renegably ac-
knowledging chunks allows the sender to remove selectively
– but not yet cumulatively – acknowledged chunks from the
send buffer and gain the space required to put more bytes in
flight. This leads to fully utilising both paths and achieving
the expected payload throughput (see curve 1 in Figure 5).

In summary, our simulations have shown that Buffer Split-
ting combined with NR-SACKs is necessary to fully utilise
both paths of the high-speed path/ADSL path setup. If NR-
SACK cannot be applied – e.g. if it is unsupported by the
receiver side – Buffer Splitting must be based on outstanding
bytes instead of buffered bytes to still achieve a performance
improvement. In the following, we show the experimental
validation of these results in our testbed setup – in order to
transfer our conclusions from simulation to reality.



Figure 6. Congestion Window and Slow Start Behaviour Example



Figure 7. Experimental Validation in the Testbed Setup

B. Experimental Validation Results
For our experimental validation, we have varied the band-

width of the high-speed link from 0.1 Mbit/s to 10 Mbit/s (i.e.
as in the simulation scenario). Figure 7 shows the achieved
CMT-SCTP payload throughput in the four configuration
cases: Buffer-Splitting based on Outstanding bytes on both
sides turned on (i.e. Π=bothSides; curves 1 and 2 drawn in
red colour on a colour plot) or off (i.e. Π=none; curves 3 and 4
drawn in blue colour on a colour plot) as well as NR-SACKs
turned on (i.e. ρ=true; curves 1 and 3 drawn as solid lines) or
off (i.e. ρ=false; curves 2 and 4 drawn as dotted lines).

When comparing the measurement to the simulation results
depicted on the right-hand plot of Figure 5, the reality matches
the expectations from the simulation results quite well: the
payload throughput linearly increases with the growing high-
speed path bandwidth β if combining Buffer Splitting with
NR-SACKs (curve 1). Just applying Buffer Splitting alone
(i.e. without NR-SACKs; curve 2) still achieves a similar
performance improvement, up to a certain dissimilarity of the
paths (here: β ≥ 4 Mbit/s). Without Buffer Splitting, only
a quite constant payload throughput of less than 2 Mbit/s is
achieved – regardless of turning NR-SACKs on (curve 3) or
off (curve 4).

In summary, our measurements have shown that our exten-
sion Buffer Splitting based on Outstanding Bytes in combi-
nation with NR-SACKs is necessary to achieve the expected
payload throughput in the high-speed path/ADSL path setup
also under real Internet conditions. As expected, a significant
throughput improvement is still achieved even without NR-
SACKs. Our optimised Buffer Splitting extension will be
included in the upcoming FreeBSD release 8.2.

VII. CONCLUSIONS

Using an ADSL connection as secondary Internet access
link is an inexpensive option for providing Multi-Homing to
an Internet site. However, using a multi-path Transport Layer
protocol in such a setup – consisting of a high-speed primary

access link and the secondary ADSL connection – imposes a
significant challenge on the transport task. In this paper, we
have presented an optimised approach to improve the send and
receive buffer handling by preventing one path to dominate
the buffer occupation. In simulations as well as in a real
multi-homed Internet setup, we have furthermore proven the
usefulness of our approach.

As part of future work, we are going to optimise the multi-
path transport for messages using ordered delivery. Further-
more, we are also going to contribute our results into the
ongoing IETF standardization process of SCTP [8], [16] and
Multipath TCP.

REFERENCES

[1] D. Wischik, M. Handley, and M. B. Braun, “The Resource Pooling
Principle,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 5, pp. 47–52, Oct. 2008, ISSN 0146-4833.

[2] F. Kelly and T. Voice, “Stability of End-to-End Algorithms for Joint
Routing and Rate Control,” ACM SIGCOMM Computer Communication
Review, vol. 35, no. 2, pp. 5–12, Apr. 2005, ISSN 0146-4833.

[3] A. Ford, C. Raiciu, S. Barré, and J. Iyengar, “Architectural Guidelines for
Multipath TCP Development,” IETF, Network Working Group, Internet-
Draft Version 02, Oct. 2010, draft-ietf-mptcp-architecture-02, work in
progress.

[4] R. Stewart, “Stream Control Transmission Protocol,” IETF, Standards
Track RFC 4960, Sept. 2007.

[5] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent Multipath Trans-
fer Using SCTP Multihoming Over Independent End-to-End Paths,”
IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp. 951–964,
Oct. 2006, ISSN 1063-6692.

[6] T. Dreibholz, M. Becke, J. Pulinthanath, and E. P. Rathgeb, “Applying
TCP-Friendly Congestion Control to Concurrent Multipath Transfer,” in
Proceedings of the 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA), Perth/Australia, Apr.
2010, pp. 312–319, ISSN 1550-445X.

[7] P. Natarajan, N. Ekiz, E. Yilmaz, P. D. Amer, and J. Iyengar, “Non-
Renegable Selective Acknowledgments (NR-SACKs) for SCTP,” in
Proceedings of the 16th IEEE International Conference on Network
Protocols (ICNP), Orlando, Florida/U.S.A., Oct. 2008, pp. 187–196,
ISBN 978-1-4244-2506-8.

[8] M. Becke, T. Dreibholz, J. Iyengar, P. Natarajan, and M. Tüxen, “Load
Sharing for the Stream Control Transmission Protocol (SCTP),” IETF,
Network Working Group, Internet-Draft Version 00, July 2010, draft-
tuexen-tsvwg-sctp-multipath-00, work in progress.

[9] T. Dreibholz, R. Seggelmann, M. Tüxen, and E. P. Rathgeb, “Transmis-
sion Scheduling Optimizations for Concurrent Multipath Transfer,” in
Proceedings of the 8th International Workshop on Protocols for Future,
Large-Scale and Diverse Network Transports (PFLDNeT), Lancaster,
Pennsylvania/U.S.A., Nov. 2010.

[10] T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tüxen, “On the Use of
Concurrent Multipath Transfer over Asymmetric Paths,” in Proceedings
of the IEEE Global Communications Conference (GLOBECOM), Miami,
Florida/U.S.A., Dec. 2010.

[11] T. Dreibholz, M. Becke, J. Pulinthanath, and E. P. Rathgeb, “Implemen-
tation and Evaluation of Concurrent Multipath Transfer for SCTP in the
INET Framework,” in Proceedings of the 3rd ACM/ICST International
Workshop on OMNeT++, Málaga/Spain, Mar. 2010, ISBN 978-963-
9799-87-5.

[12] T. Dreibholz, X. Zhou, and E. P. Rathgeb, “SimProcTC – The Design
and Realization of a Powerful Tool-Chain for OMNeT++ Simulations,”
in Proceedings of the 2nd ACM/ICST International Workshop on OM-
NeT++, Rome/Italy, Mar. 2009, pp. 1–8, ISBN 978-963-9799-45-5.

[13] T. Dreibholz, NetPerfMeter Homepage, 2010.
[14] T. Dreibholz, M. Becke, E. P. Rathgeb, and J. Formann, “Link Emulation

on the Data Link Layer in a Linux-based Future Internet Testbed
Environment,” in Proceedings of the 10th International Conference on
Networks (ICN), St. Maarten/Netherlands Antilles, Jan. 2011.

[15] P. Natarajan, P. Amer, E. Yilmaz, R. Stewart, and J. Iyengar, “Non-
Renegable Selective Acknowledgements (NR-SACKs) for SCTP,” IETF,
Network Working Group, Internet-Draft Version 06, Aug. 2010, draft-
natarajan-tsvwg-sctp-nrsack-06, work in progress.

[16] T. Dreibholz and M. Becke, “SCTP Socket API Extensions for Concur-
rent Multipath Transfer,” IETF, Network Working Group, Internet-Draft
Version 00, Nov. 2010, draft-dreibholz-tsvwg-sctpsocket-multipath-00,
work in progress.


	Introduction
	Reliable Transport between Multi-Homed Systems
	Basics
	Selective Acknowledgements
	Multi-Path Transfer

	Buffer Blocking on Dissimilar Paths
	Window-Induced Receiver Buffer Blocking
	Reordering-Induced Receiver Buffer Blocking
	GapAck-Induced Sender Buffer Blocking
	Transmission-Induced Sender Buffer Blocking

	Optimisations for Multi-Path Transfer over Dissimilar Paths
	System Setup
	Evaluation
	Simulation Results
	Experimental Validation Results

	Conclusions
	References

