
NetPerfMeter – A Versatile Tool for
Multi-Protocol Network Performance Evaluations

Thomas Dreibholz, Hakim Adhari, Martin Becke, Erwin P. Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstraße 29, 45326 Essen, Germany
{dreibh, hakim.adhari, martin.becke, rathgeb}@iem.uni-due.de

Abstract—Transport Layer protocols supporting multipath trans-
fer, i.e. to simultaneously utilise multiple Network Layer paths,
are actively discussed in the IETF – particularly in the context of
Multi-Path TCP (MPTCP) and Concurrent Multipath Transfer for
SCTP (CMT-SCTP). Congestion control for such protocols is an
important research topic.

In this code contribution paper, we introduce our application
model NetPerfMeter. NetPerfMeter has been developed for per-
formance evaluations of different transport protocols, like for the
Linux/FreeBSD performance metering application NetPerfMeter.12

Keywords: Application Model, NetPerfMeter, Performance Eval-
uation, Multipath Transfer

I. INTRODUCTION

Transport Layer protocols – like UDP [1], TCP [2] and
SCTP [3]–[5] – are a highly crucial part of the protocol stack for
all Internet applications. In order to achieve a good application
performance, it is therefore useful to optimise and tune their
performance, e.g. by using CMT-SCTP [6]–[11] or MPTCP [12].
Clearly, simulations – particularly based on OMNET++ and the
INET FRAMEWORK – are very useful for this purpose.

The current INET FRAMEWORK already contains application
models for TCP (TCPBasicClientApp, TCPSinkApp, . . . ), UDP
(UDPBasicApp, . . . ) and SCTP (SCTPClient, SCTPServer, . . . ).
However, each of these application models uses its own pa-
rameter sets and has its own behaviour, making a performance
comparison between different Transport Protocols (e.g. TCP vs.
SCTP) difficult. In order to overcome this challenge, the NET-
PERFMETER application model has been developed. It provides
an application model which is independent of the underlying
Transport Layer protocol. This model, which is intended as a
code contribution, will be shortly presented in this paper.

II. THE NETPERFMETER MODULE

A. The Module

The NETPERFMETER application model has been realised as
a simple module named NetPerfMeter, which has to be connected
to the UDP, TCP and SCTP modules. In order to simplify the
usage, it has been integrated into the StandardHost module as
depicted in Figure 1. StandardHost is the basis for nearly all IP-
based models, i.e. routers as well as endpoints. The integration
of NetPerfMeter has been realised as array “netPerfMeter”, i.e.
there may be a variable number of NetPerfMeter instances.

1Parts of this work have been funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft – DFG).

2The authors would like to thank Irene Rüngeler, Michael Tüxen and Feng
Wang for their friendly support.

Figure 1. The Extended StandardHost Module

B. Features and Parameters

Similar to the real Linux/FreeBSD-based performance meter-
ing program NETPERFMETER [13], the application module pro-
vides the unidirectional and bidirectional transfer of saturated and
non-saturated flows as well as statistics recording. Its parameters
are listed in Table I.

For a performance test, a connection is established between
two NETPERFMETER instances. This connection establishment
process, by using the protocol specified by the parameter
protocol (i.e. “SCTP”, “TCP” or “UDP”), is triggered by the
instance in the so-called Active Mode (i.e. the client side). The
mode of an instance is configured by using the activeMode
parameter; a setting of “true” turns the instance into active mode.
Address and port of the remote instance in the so-called Passive
Mode (i.e. the server side; configured by setting activeMode
to “false”) are provided by the parameters remoteAddress and
remotePort. The local address and port of an instance – in
both modes – may be set by the parameters localAddress and
localPort. Since SCTP supports multi-homing, the local address
may actually be a list of addresses, or – in the usual case – just
left empty. In this case, all available Network Layer addresses
are used. The primary path may be set by the primaryPath
parameter. Also, for SCTP, the number of outbound streams
(parameter: outboundStreams) and the maximum number of

mailto:dreibh@iem.uni-due.de
mailto:hakim.adhari@iem.uni-due.de
mailto:martin.becke@uni-due.de
mailto:rathgeb@iem.uni-due.de


Parameter Functionality Default Setting
activeMode Active Mode (true) or Passive Mode (false) true
protocol Transport Protocol (“SCTP”, “TCP” or “UDP”) “TCP”
localAddress Local IP Address (“” for “any” Address) “”
localPort Local Port 9000
remoteAddress Remote IP Address (Active Mode only) “”
remotePort Remote Port (Active Mode only) 9000
primaryPath Primary Path (SCTP only) “”
outboundStreams Number of Outbound Streams (SCTP only) 1
maxInboundStreams Maximum Number of Inbound Streams (SCTP only) 16
connectTime Absolute Time of Connection Establishment 0s
startTime Relative Time of Payload Data Transfer Start 1s
resetTime Relative Time of Measurement Start 5s
stopTime Relative Time of Measurement Stop 30s
frameRate Frame Rate (0Hz = saturated sender) 10Hz
frameSize Frame Size (0B = flow turned off) 1452B
frameRateString Outgoing Frame Rate per Stream, separated by “;” “”
frameSizeString Outgoing Frame Size per Stream, separated by “;” “”
maxMsgSize Maximum Message Size (SCTP and UDP only) 1452B
queueSize Queue Size (SCTP and TCP only) 1000B
unordered Fraction of Unordered Messages (SCTP only) 0.0
unreliable Fraction of Unreliable Messages (SCTP only) 0.0

Table I
THE PARAMETERS OF THE NETPERFMETER MODULE

Figure 2. The NETPERFMETER Timing Configuration

inbound streams (parameter: maxInboundStreams) can be con-
figured. These settings are used during the SCTP association
setup to negotiate [3] the number of streams in each transfer
direction.

Figure 2 provides an illustration of the NETPERFMETER
connection timing configuration. Connection setup is started at
the given Connect Time (parameter: connectTime). After a given
Start Time (parameter: startTime; relative to the begin of the
connection establishment), the transfer of payload data starts. At
that time, the connection must have been established; otherwise,
the simulation stops with an appropriate error message. Usually,
the beginning of a communication leads to some kind of irregular
initialisation behaviour. For example, the congestion window
may have to grow using slow start, etc.. In order to avoid
these effects distorting the results, the Reset Time (parameter:
resetTime; relative to the connect time) defines the length of
a settling time span. After that time, all previously generated
statistics are reset. The actual duration of the statistics recording
phase is given by the Stop Time (parameter: stopTime; relative
to the time of the statistics reset). At the end of this phase,
the data transfer is stopped, scalar statistics are written and the
connection is finally shut down.

Outgoing payload data is transmitted as frames in a given
interval with a given size. Frames are split up into datagrams,
with a maximum size given by maxMsgSize. The respective
parameters to configure frame rate and frame size are frameRate
and frameSize. The setting of frameSize=0 B turns the flow
off; frameRate=0 Hz configures a saturated sender. A saturated

sender tries to send as much data as possible. The message queue
is therefore filled with up to queueSize messages. Since UDP
has no flow control, a saturated sender is only possible for SCTP
and TCP. For using SCTP, if there are multiple outbound streams,
the frame rate and frame size of each stream may be configured
separately by providing them as colon-separated strings by the
parameters frameRateString and frameSizeString, respectively.
The application of strings in this case is necessary, since
OMNET++ does not support parameter arrays. Furthermore,
it is possible to send a given fraction of the datagrams with
unordered delivery (parameter: unordered). or using partially
reliable transfer (parameter: unreliable). For each message, its
kind of delivery (i.e. ordered or unordered) and reliability (reli-
able or partially reliable) is selected randomly, with a uniform
distribution, according to the configured fractions (from 0.0 –
i.e. 0% – to 1.0 – i.e. 100%).

III. THE CODE CONTRIBUTION

The NETPERFMETER source package can be downloaded
from the project website [14]. It is also provided as a patch
against the current GITHUB INET FRAMEWORK tree. The
package consists of:

• the NETPERFMETER application module source in
src/applications/netperfmeter/,

• a TCP module improvement to indicate available send buffer
space and a bugfix for the REDQueue module,

• the modified StandardHost module and
• an example in examples/netperfmeter/. The in-

cluded README file provides some further details.
Some more details on the implementation can be found in [15].

IV. CONCLUSIONS

In this code contribution paper, we have introduced the Net-
PerfMeter application model for performance evaluations with
different underlying Transport Layer protocols. Its application
purpose is the performance comparison of different Transport
Layer protocols, particularly with respect to multipath trans-
port [16]. Some important research results based on this model
can be found e.g. in [7], [9], [17]–[19].



REFERENCES

[1] J. B. Postel, “User Datagram Protocol,” IETF, Standards Track RFC 768,
Aug. 1980, ISSN 2070-1721.

[2] ——, “Transmission Control Protocol,” IETF, Standards Track RFC 793,
Sept. 1981, ISSN 2070-1721.

[3] R. R. Stewart, “Stream Control Transmission Protocol,” IETF, Standards
Track RFC 4960, Sept. 2007, ISSN 2070-1721.

[4] A. Jungmaier, “Das Transportprotokoll SCTP,” Ph.D. dissertation, Univer-
sität Duisburg-Essen, Institut für Experimentelle Mathematik, Aug. 2005.

[5] T. Dreibholz, M. Becke, H. Adhari, E. P. Rathgeb, I. Rüngeler, R. Seggel-
mann, and M. Tüxen, “Improvements to the SCTP Environment in the INET
Framework,” University of Duisburg-Essen, Institute for Experimental
Mathematics,” OMNeT++ Code Contribution, Feb. 2012.

[6] M. Becke, T. Dreibholz, J. R. Iyengar, P. Natarajan, and M. Tüxen, “Load
Sharing for the Stream Control Transmission Protocol (SCTP),” IETF,
Network Working Group, Internet Draft Version 03, Jan. 2012, draft-tuexen-
tsvwg-sctp-multipath-03.txt, work in progress.

[7] T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tüxen, “On the Use of
Concurrent Multipath Transfer over Asymmetric Paths,” in Proceedings
of the IEEE Global Communications Conference (GLOBECOM), Miami,
Florida/U.S.A., Dec. 2010, ISBN 978-1-4244-5637-6.

[8] H. Adhari, T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tüxen,
“Evaluation of Concurrent Multipath Transfer over Dissimilar Paths,” in
Proceedings of the 1st International Workshop on Protocols and Appli-
cations with Multi-Homing Support (PAMS), Singapore, Mar. 2011, pp.
708–714, ISBN 978-0-7695-4338-3.

[9] T. Dreibholz, H. Adhari, M. Becke, and E. P. Rathgeb, “Simulation and
Experimental Evaluation of Multipath Congestion Control Strategies,” in
Proceedings of the 2nd International Workshop on Protocols and Applica-
tions with Multi-Homing Support (PAMS), Fukuoka/Japan, Mar. 2012.

[10] T. Dreibholz, M. Becke, J. Pulinthanath, and E. P. Rathgeb, “Implementa-
tion and Evaluation of Concurrent Multipath Transfer for SCTP in the INET
Framework,” in Proceedings of the 3rd ACM/ICST International Workshop
on OMNeT++, Torremolinos, Málaga/Spain, Mar. 2010, ISBN 978-963-
9799-87-5.

[11] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent Multipath Transfer
using SCTP Multihoming over Independent End-to-End Paths,” IEEE/ACM
Transactions on Networking, vol. 14, no. 5, pp. 951–964, Oct. 2006, ISSN
1063-6692.

[12] A. Ford, C. Raiciu, M. Handley, S. Barré, and J. R. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” IETF, Informational RFC
6182, Mar. 2011, ISSN 2070-1721.

[13] T. Dreibholz, M. Becke, H. Adhari, and E. P. Rathgeb, “Evaluation of
A New Multipath Congestion Control Scheme using the NetPerfMeter
Tool-Chain,” in Proceedings of the 19th IEEE International Conference
on Software, Telecommunications and Computer Networks (SoftCOM),
Hvar/Croatia, Sept. 2011, ISBN 978-953-290-027-9.

[14] T. Dreibholz, “Thomas Dreibholz’s SCTP Page,” 2012. [Online]. Available:
http://tdrwww.iem.uni-due.de/dreibholz/sctp/

[15] ——, “Evaluation and Optimisation of Multi-Path Transport using the
Stream Control Transmission Protocol,” Habilitation Treatise, University
of Duisburg-Essen, Faculty of Economics, Institute for Computer Science
and Business Information Systems, 2012.

[16] M. Becke, T. Dreibholz, H. Adhari, and E. P. Rathgeb, “A Future In-
ternet Architecture supporting Multipath Communication Networks,” in
Proceedings of the 13th IEEE/IFIP Network Operations and Management
Symposium (NOMS), Maui, Hawaii/U.S.A., Apr. 2012, ISBN 978-1-4673-
0269-2.

[17] ——, “On the Fairness of Transport Protocols in a Multi-Path Environ-
ment,” in Proceedings of the IEEE International Conference on Communi-
cations (ICC), Ottawa/Canada, June 2012.

[18] T. Dreibholz, M. Becke, H. Adhari, and E. P. Rathgeb, “On the Impact of
Congestion Control for Concurrent Multipath Transfer on the Transport
Layer,” in Proceedings of the 11th IEEE International Conference on
Telecommunications (ConTEL), Graz/Austria, June 2011, pp. 397–404,
ISBN 978-953-184-152-8.

[19] T. Dreibholz, M. Becke, J. Pulinthanath, and E. P. Rathgeb, “Applying
TCP-Friendly Congestion Control to Concurrent Multipath Transfer,” in
Proceedings of the 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA), Perth/Australia, Apr.
2010, pp. 312–319, ISSN 1550-445X.

http://tdrwww.iem.uni-due.de/dreibholz/sctp/

	Introduction
	The NetPerfMeter Module
	The Module
	Features and Parameters

	The Code Contribution
	Conclusions
	References

