A Future Internet Architecture supporting
Multipath Communication Networks

Martin Becke, Thomas Dreibholz, Hakim Adhari, Erwin P. Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics
Ellernstraf3e 29, 45326 Essen, Germany
{martin.becke,dreibh,hakim.adhari,rathgeb } @iem.uni-due.de

Abstract—The classic layered OSI reference model has reached
its limits for the Internet of today. In this paper, we propose
a clean-slate conceptual design of a new architecture as a
contribution to the ongoing discussion on the Future Internet. We
address the shortcomings of the layered model by redesigning the
classical model. Our approach differs from the concepts found in
prior work, which focus on special parts of the problems (such
as the application, the service or the event) by staggering back a
couple of steps and trying to see the requirements from a different
perspective. Our concept — which is denoted as Encapsulated
Responsibility-Centric Architecture Model (ERiCA) — focuses on
determining the responsibilities by using different planes in
addition to a partitioning of the network into different decision
domains. With this partitioning, we can reduce the complexity
of providing a certain service.

I. INTRODUCTION AND RELATED WORK

The history of the Internet is one of the best success stories
in the technological areas. It has started with a very few
hosts and has grown to the largest network of the world,
in terms of architecture as well as in terms of the services
supported. Its key idea is the possibility to exchange informa-
tion among multiple communication partners, irrespectively of
geographical distances: the communicating hosts are situated
in different networks, possibly being separated into multiple
network segments. Usually, the hosts are also confronted with
limited resources and with shared media where access time
and availability of the medium are not predictable. The goal
of a communication between two or more hosts — from an
application perspective — is the establishment of transport-
specific services, where resources have to be provided as stably
and inexpensively as possible.

Nowadays, the rigid layered structure [1] of the Internet
protocol stack is becoming an limitation for achieving this
goal. In fact, new structures and ways to use this huge
network have become the norm; data is stored in data centers,
computations are made in clouds and terms such as Software
as a Service (SaaS) and on-demand software are becoming
more and more usual. All this implies more new issues
and difficulties a network designer has to deal with and
makes layer violations unavoidable. Therefore, the use of half-
layer approaches [2] as well as the use of non-standard API
extensions is becoming more and more common.

In this paper, we present a novel clean-slate for the Internet
of tomorrow. We would not claim the right to have a new
approach which is complete in itself. However, and along this
paper, we considered the Future Internet challenges presented
by [3] (i.e., mobility, scalability, security, etc.) and demon-
strated that our architecture fulfills these criteria. It is here also
to be mentioned that clean-slate, as explained by [3], should
be viewed as a design process, not as a result in itself. Our
goal is to extend the input to the process and to demonstrate
an alternative concept. This concept describes a Encapsulated
Responsibility-Centric Architecture Model (ERiCA-Model),

978-1-4673-0269-2/12/$31.00 © 2012 IEEE

Network Segment
supporting 64 Mbit/s

-

e~ Sub-Flow

Data Packet

Figure 1.

A Cluster of Network Segments

which is based on the idea of recognizing the different actors
in the network, their influence as well as their responsibilities.
Our approach focuses neither on an application, service nor
event driven architecture. Instead, its duty is to determine the
responsibilities for the services concerned by establishing a
complete transport chain.

II. THE ERICA-MODEL
A. Basics and Terminology

A Network Segment is a network subset that builds a logical
or physical connection between two communication partners
during a data transmission. Figure 1 shows an example net-
work topology connecting Communication Partner 1 (CP) and
Communication Partner 2 (CP2); each hexagon represents a
network segment. A Network Cluster is the set of network
segments that could be utilized to build a combination that
allows a data communication between two communication
partners. In Figure 1, the network cluster consists of all
network segments which could be utilized for connecting the
two endpoints; they are represented by hexagons with plain
structure. The hexagons with the streaked structure cannot be
included in any segment chain between CP; and CP, and
therefore do not belong to this cluster. A possible combination
of network segments which can be used for the data transfer is
denoted as Path. The data packets which are sent via one path
are denoted as Sub-Flow. The combination of all available sub-
flows (in other terms: data which is transferred between CP;
and CP») is denoted as Flow. We consider a communication
partner representing a service-requesting instance. Within a
flow, the logical entity of the data transferred is called Stream.
Figure 1 shows two streams: here, packets belonging to
different streams (Stream 1: plain; Stream 2: streaked) are sent
via different paths.

B. Motivation

Common protocol stacks in the Internet of today — like
TCP/IP — usually only support a single path per communi-
cation direction. Additional extensions may provide a load
sharing functionality, e.g. CMT-SCTP or MPTCP. However,
these solutions may have serious shortcomings. For example,

Management and Control Plane

Service Manager |

2-Service |
Negotiation

Consumer

| Network Manager | |

3.a - Ressource g

Management Ext

Consumer
ﬁ 3.b-Data ﬁ
Transfer
)
-
-

Figure 2. Concept Architecture

1- Information
Collection

Data Plane

the throughput reached with two different, dissimilar segments
can be even worse than the throughput reached by just using
the best one of them [4].

Let us consider the case of a consumer (here: CP;) which
is about to load data from a data center (here: CP5), as shown
in Figure 1. The consumer has the possibility to connect to
two different networks. For the complete flow, 256 Mbit/s
are needed. The network is composed of network segments
supporting different bandwidth characteristics (gray hexagons
support 128 Mbit/s, white hexagons only 64 Mbit/s). There-
fore, the transmission would miss the service requirements
with a single-path transmission. Even by utilizing multi-path
transfer, the required bandwidth could not be guaranteed. In
fact, in case of multi-path transfer, the flow could be split into
two sub-flows denoted as S, and S; (each using 128 Mbit/s).
One possible transmission scenario could be to transmit S,
via the upper part of the cluster and \S; via the lower one.

Concerning S,,, a bandwidth-based routing could allow the
network to be able to transfer this data. On the other hand,
this is not the case for the lower part of the cluster: there is no
path offering a continuously available 128 Mbit/s bandwidth.
In this case, it is clear that the limits of the current layer-
based Internet architecture have been reached. In fact, in
our example, a solution that makes an application-transparent
bandwidth aggregation possible — as depicted for the lower
sub-flow (dashed line) in Figure 1 — is needed in order to
utilize the given network anyway. This scenario is easily
extensible to further requirements, such as delay, transmission
costs, security restrictions, etc..

C. Concept Architecture

In our concept, we differentiate between Data Traffic, where
service-specific data is transferred, and Control Traffic where
data is exchanged between the different network components
in order to manage the communication itself. That is, as shown
in Figure 2, we distinguish between a Data Plane as well as
a Management and Control Plane. The data plane consists of
two independent networks; in the best case, they are physically
separate networks. Within this architecture, a communication
partner, which is willing to access a service, has no direct
connection to the accessible medium (here: the data plane).
Each access to the resources needed by an application is
managed by the management and control plane.

The idea of separating the networks is not new: [5] discusses
the consequences, advantages and challenges associated with
this design. However, our approach does not focus on the
reduction of the router complexity. Instead, the separation of
management and data communication allows to find a unique,
but not centralized, allocation of responsibilities. Responsibil-
ities are defined as the choice of functions and mechanisms in
the bounded system.

1) Management and Control Plane: The Management and
Control Plane is a computational entity (e.g., a cloud) whose
task consists of gathering, aggregating, grouping and clas-
sifying native network characteristics. Example native char-
acteristics are physical network properties (e.g., delay or
bandwidth), location-based properties or security-based prop-
erties. A similar architecture applying homogeneous services,
based on service classes over a meshed network, is described
in [6]. However, it only considers bandwidth. Our approach
is also able to handle any other network property, too. We
denote a set of native characteristics describing the minimum
characteristics needed to guarantee a service class as Quality
Class. Such quality classes build up the base on which the
management and control plane works as a mediator, and match
them with the application service requirements.

The management and control plane is divided into two major
parts: the Service Manager and the Network Manager. The
service manager announces different services and functions,
depending on the existing quality classes and their costs.
Before establishing a connection, the consumer contacts the
service manager by sending a request with its requirements,
such as bandwidth, delay upper limits or security restrictions.
The network manager, which is in constant touch with the
network infrastructure, is aware of the characteristics of the
available links. Its task is to manage the available resources,
in order to utilize them in an effective way. Depending on
the characteristics requested by the consumer, the network
manager allocates (if required) the resources needed and
releases the remaining resources for future services. Once the
service manager has confirmed a service, the consumer is able
to start transferring data.

Many other clean-slate designs also focus on the reengi-
neering of the network stack into a new kind of network
service-based stack as well. In [2], [7], this is performed by
using functional composition. Here, the requirements of the
application will be utilized to generate an adapted network
stack, as a result of composing functional mechanisms. Our
concept could adapts ideas from these approaches, especially
for finding a usable description language for the requirements
of an application. But, from our point of view, the network
should not only be adapted to the application needs. We are
convinced that it is sufficient for a network to offer a tuple of
existing characteristics that may guarantee a minimal fit to the
application requirements intervals. This property may greatly
improve the flexibility of the system.

2) Data Plane: 1Tt consists of the physical components
being responsible for transferring the data. The communication
chain could be composed of many different media types (e.g.,
Ethernet, ADSL, WLAN, LTE, etc.) which all have their
individual characteristics.

This gives a short overview about the roles presented in our
approach, and how we define the information flow between
them. In order to establish a Communication Chain, i.e. a set
of one or multiple segments connecting two communication
partners, decisions (e.g., routing) have to be made, based on
gathered information. Clearly, we need a strict organization
of where to make and deploy these decisions. In our concept,
this is performed by a Decision Domain whose functionality
will be described in the following.

D. Decision Domains

In the Internet of today, the communication partners have
— in most of the cases — no influence on and very limited
information about the characteristics of the paths used to
transfer data. In order to make sure that a service can be
established, different strategies are possible. One solution to

cope with this difficulty is a complete network separation [7],
[8] for the various service classes provided by the different
sub-flows which are requested by the services. This approach
can be helpful in special cases. However, in the usual case,
different consumers have to share the same network in order
to achieve cost-efficiency.

From our point of view, there is no need for a strict
separation of the services provided by the network. But a way
is needed to connect and to route over the usable network
segments. Furthermore, additional solutions are needed to
aggregate it with other sub-flow characteristics. This is for
example the case if many high-bandwidth links are used
to bundle performance. In this case, unused resources on
neighbor network segments with bandwidth resources larger
than the already-used link could be utilized in order to improve
the quality (here: throughput) of the existing communication.

We distinguish between two kinds of decision domains:

1) Local Decision Domain (LDD): is a clearly-arranged,
autarchic network entity that denotes the smallest responsibil-
ity entity in our concept. All information needed to establish
the services are available within the entity itself (provided
by configurations or policies). The size of a LDD can vary
between one network segment with at least one host (e.g., a
combination of an ADSL router and a laptop) and complex
structures consisting of one or more segments (e.g., a campus
network). The information gathered within the network and
the communication of the LDD with external networks is
performed by an entity called Edge Device; it is placed on
the borders of a LDD.In our design, and contradiction to [9],
no functional dependencies are generated within the network.
In fact, possible singular functionalities (e.g., anti-virus func-
tionality) in the network are strongly against our paradigm
that a transport medium just provides a homogeneous service
class over a heterogeneous, meshed network to support data
transport.

2) Distributed Decision Domain (DDD): The information
delivered by a LDD is useful for data transfer within the LDD
itself. This makes it possible to guarantee services inside the
LDD. However, in a typical data transfer, the communication
is not limited to a local network only. Instead, communication
partners may belong to distinct, and — in most of the cases
— distant entities, i.e. to different LDDs. For this purpose,
and in order to support the services within multiple LDDs,
the management and control plane adopts the functionality
of gathering and computing the information belonging to
different LDDs, in order to generate a decision base. A set of
LDDs is denoted as DDD. This hierarchic architecture makes
the management and control plane within a DDD responsible
for keeping a balance between the available global resources
and the services supported.

Note, that there may be multiple DDDs in most use cases.
Let us consider two neighbor DDDs: DDD; and DDDs. A
consumer belonging to DDD; could be confronted with the
situation that a service supported by DDD5 is needed. For such
inter-DDD communication, we designed a strategy where at
least best effort quality classes can be established. In this case,
DDD; has to be registered by DDDy as External Consumer,
as illustrated in Figure 2. That is, in the context of DDD», the
DDD; behaves like a standard consumer (e.g., an application);
DDD; is able to send service requests to the service manager
of DDDs», and to use the data plane resources of DDDs.

In other words, dividing a network into different DDDs
leads to a new and simplified view on that network. This
fulfills the goal of scalability [3], which is one of the most
important challenges for the Future Internet. That is, different
DDDs may exist for special clusters of similar services. A

DDD could e.g. provide a high-level routing decision, which
makes it possible to decrease the number of low-level routing
entries in a LDD situated in a DDD. Also, our approach
handles the economical goal [3]: a DDD is able to allow
or to deny access to certain services of a network entity,
based on economic criteria. For example, an Internet service
provider could provide multiple quality classes at different
prices. Depending on the charges, some high-quality classes
may only be allowed for premium customers.

III. FUNCTIONALITY

Starting from a single network segment, it is first impor-
tant to figure out a tuple of basic, unique, non-manipulable
physical-based characteristics (e.g., bandwidth, latency, jitter
or error rate) which describe this segment. This is performed
e.g. by configuration, measurement or calculation and is de-
noted as Basic Network Characteristic (BNC). The set of the
BNCs characterizing the segments situated in a LDD are used
to build the base information describing the properties of a
LDD.

Let us consider a LDD composed of a cluster built by
two disjoint paths between two edge devices on the borders.
Multiple ways of how to describe the BNC of this LDD
are possible. The LDD itself could decide between different
description possibilities. For example, the LDD could utilize
the available paths for channel bundling (i.e. aggregation to
increase bandwidth). Alternatively, the LDD could decide to
use one path for redundancy. Here, the LDD changes its
properties to decreased bandwidth, but with a reduced error
rate.

The LDD expands the property list to provide additional
mechanisms and algorithms, such as prioritization of streams
in order to improve the performance level of the LDD. It is also
possible that no decision making process is desired within the
LDD, so the LDD could provide only basic characteristics.
Segment bundling as well as repetition can be provided as
an additional possible functionality. In the latter case, it
is in the responsibility of the DDD to decide how to use
these root characteristics. This set of characteristics, as well
as the cost of each characteristic, is reported by the edge
devices to the DDD. It is further denoted as LDD Network
Characteristics (LDDNC).

Particularly for security and simplification purposes, an
abstraction is needed while gathering information from the
edge devices. Here, it is important to minimize the amount
of information exchanged between the different entities. The
abstraction of the characteristics between the edge devices at
the border of the DDD are used to build a database which is
denoted as DDD Network Characteristics (DDDNC).

A consumer requests a service provided from the service
manager in the management and control plane. The service
manager sends a request to the network manager, which —
depending on the requested service of the communication and
based on the data provided in the database — starts searching
for a suitable quality class. Here, the network manager per-
forms a lookup for the minimum quality class needed to guar-
antee the service requested by the application. Quality classes
are pre-defined formal definitions which describe network
properties that could be relevant to ensure special services or
common service types. The limits specified by a quality class
could be a result of past experiences or customer requirements.
The quality class necessary for supporting a high-performance
grid computing data transfer could e.g. request a down and
upstream bandwidth higher than 12 Gbit/s, as well as a delay
less than 10 ms.

The Service requested by the communication partner trig-
gers the service manager to start the Normalize, Cluster and
Aggregate Process (NCA). Based on the DDDNC, the network
manager starts searching for possible communication tactics
between the considered partners and to fill in the Possible
Connection List (PCL). Here, it is important to notice that the
focus of this process is not to find the best path, e.g., based on
minimum hops. Instead, the goal is to define as many different
possibilities as possible to establish the service. Based on this
selection of connection possibilities, the best match from the
PCL for a selected quality class has to be identified. Once
the matching process is completed successfully, a Flow-ID is
generated and associated with the match found. This is not
a one-time procedure; whenever possible, the PCL will be
rechecked for a better connection through the network. This
could be done for example during idle time.

In our concept, the service manager acknowledges the
application service request by sending a flow-ID for each sub-
flow requested by the service description. At the same time,
it informs the network manager about the allocation of this
quality class. Depending on the requirements requested, the
network manager is able to allocate the network resources, if
an additional reservation is needed. This procedure implicitly
assures a certain reliability and availability, which is also
one of the major challenges [3] for the Future Internet. The
corresponding flow-ID may be mapped to each packet in a
specific header. The idea of using such a header can also be
found in prior work on Future Internet designs, such as [10]
introducing a role-specific header. However, in contrast to
the static workflow described in [10], we use an identifier
which is linked to a kind of more dynamic workflow. This
transforms the communication to a dynamic process which
allows characteristics to be varied during the data transmission,
for example after network failures. During a data transmission,
the edge device extracts the flow-ID from a packet, contacts the
management and control plane which decides the next LDD to
route the packet to. This is similar to flow routing performed
by ATM or MPLS with an unique flow-ID.

Inside the LDD, a packet is forwarded — based on LDD-
specific policies — to the edge device that is connected to the
next LDD. Once a packet reaches a new domain, the same
procedure is repeated again. In case of failures, the network
manager unit in the management and control plane will be
notified by the last edge device. In case of a technical problem
for a provided and promised PCL item, the network manager
could switch to another path to ensure resilience, even if higher
costs are caused. In addition, the network manager is able to
change its transmission tactic — in order to increase efficiency
or to optimize costs — at any time of the transmission. This
happens in background, transparently for the consumer and
for the service manager.

One of the obvious use cases related with this dynamical
aspect is the support of mobility [3]. In our architecture,
the changes of the characteristics of a communication ele-
ment could be handled differently. The first alternative is to
handle changes by the decision domain itself. For a mobile
device roaming between two WLAN networks with the same
characteristics in the same LDD, the LDD is responsible for
reestablishing the connection. However, if mobility events can-
not be managed by the decision domain itself, e.g. when one
communication partner moves to another LDD, the changes
have to be propagated by the edge devices to the network
managers, which have to rethink about a new strategy (such
as forwarding the traffic via another decision domain).

Furthermore, and related to the flow-ID, improved security
— which is another Future Internet requirement [3] — has

to be handled. Our approach uses this ID as a kind of a
label requested in a service-oriented way. The consumer itself
has no possibility to interact with the network organization
instances (here: the network manager). This can be compared
with a parcel service, where a consumer only knows where the
collection point is (in this case, it is the service manager), but
he is not able to gather information about the transporter itself
(here: the data plane or the network manager). Furthermore,
one critical point in the context of security is the avoidance
of denial of service attacks. In fact, many possibilities exist,
such as restricting the number of request by policy.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the architecture of a new,
clean-slate approach for the Internet of tomorrow, which we
denote as Encapsulated Responsibility-Centric Architecture
Model (ERiCA). This concept makes it possible to recognize
the different actors in the network and their influence as well
as to manage the different responsibilities by establishing a
complete transport chain. We have also reasoned that the
proposed architecture fulfills the challenges required by the
Future Internet (i.e. security, mobility, scalability, etc.) as
defined by [3].

It is here to be noticed that we are in the early stage of this
work. As ongoing and future work, we are going to realize
a proof-of-concept implementation, in order to demonstrate
the advantages of our concept and also to find out possible
shortcomings. In addition to it, multiple points have to be
analyzed and optimized, such as the clustering and aggregating
steps in the NCA process or the efficiency of the decision-
making process. In addition to it, important milestones of our
future work are the analysis of the scalability of the approach
as well as the examination of our concept with a larger number
of services with more fine-granular requirements.

REFERENCES

[1] V. G. Cerf and R. E. Kahn, “A Protocol for Packet Network Intercom-
munication,” IEEE Transactions on Communications, vol. 22, no. 5, pp.
637-648, May 1974, ISSN 0090-6778.

[2] R. Dutta, G. N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson, “The
SILO Architecture for Services Integration, controL, and Optimization
for the Future Internet,” in Proceedings of the IEEE International
Conference on Communications, Glasgow/United Kingdom, June 2007,
pp- 1899-1904, ISBN 1-4244-0353-7.

[3] A. Feldmann, “Internet Clean-Slate Design: What and Why?” ACM
SIGCOMM Computer Communication Review, vol. 37, pp. 59-64, July
2007, ISSN 0146-4833.

[4] T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tiixen, “On the Use of
Concurrent Multipath Transfer over Asymmetric Paths,” in Proceedings
of the IEEE Global Communications Conference (GLOBECOM), Miami,
Florida/U.S.A., Dec. 2010, ISBN 978-1-4244-5637-6.

[5] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
G. Xie, J. Zhan, and H. Zhang, “Network-Wide Decision Making:
Toward A Wafer-Thin Control Plane,” in Proceedings of 3rd ACM
Workshop on Hot Topics in Networks (HotNets-11I), San Diego, Cali-
fornia/U.S.A., Nov. 2004.

[6] M. Albrecht, M. Koster, P. Martini, and M. Frank, “End-to-end QoS
Management for Delay-Sensitive Scalable Multimedia Streams over
DiffServ,” in Proceedings of the 25th Annual IEEE Conference on Local
Computer Networks (LCN), Tampa, Florida/U.S.A., Nov. 2000, pp. 314—
323, ISBN 0-7695-0912-6.

[71 L. Volker, D. Martin, C. Werle, M. Zitterbart, and I. Khayat, “An
Architecture for Concurrent Future Networks,” in Proceedings of the
2nd GI/ITG KuVS Workshop on The Future Internet, Karlsruhe/Germany,
Nov. 2008.

[8] S. Shenker, “Fundamental Design Issues for the Future Internet,” IEEE
Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1176—
1188, Sept. 1995, ISSN 0733-8716.

[9] F. Liers, T. Volkert, and A. Mitschele-Thiel, “Forwarding on Gates:

A Clean-Slate Future Internet Approach within the G-Lab Project,” in

Proceedings of the 9th Joint EuroFGI and ITG Workshop on Visions

of Future Network Generations (EuroView), Wiirzburg/Germany, July

2009.

R. Braden, T. Faber, and M. Handley, “From Protocol Stack to Protocol

Heap — Role-Based Architecture,” ACM SIGCOMM Computer Commu-

nication Review, vol. 33, pp. 17-22, Jan. 2003, ISSN 0146-4833.

(10]

	Introduction and Related Work
	The ERiCA-Model
	Basics and Terminology
	Motivation
	Concept Architecture
	Management and Control Plane
	Data Plane

	Decision Domains
	Local Decision Domain (LDD)
	Distributed Decision Domain (DDD)

	Functionality
	Conclusion and Future Work
	References

