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Abstract— Due to the resilience requirements of a steadily
growing number of critical Internet services (like emergency
call handling or e-commerce transactions), the deployment
of multi-homed network sites becomes more and more
common. Having multiple Internet access paths, it seems
straightforward to utilise them simultaneously in order
to improve payload throughput by so-called Concurrent
Multipath Transfer (CMT). Currently, CMT extensions for
the two important Internet Transport Layer protocols –
Multipath-TCP (MPTCP) for TCP and CMT-SCTP for
SCTP – are in the focus of IETF standardisation. A challenge
– which is currently very actively discussed in the IETF
context – is congestion control for these CMT protocols.

Based on the idea of Resource Pooling (RP), two ap-
proaches are currently discussed in the IETF: our own
approach CMT/RP for CMT-SCTP as well as the MPTCP
congestion control for MPTCP. Both approaches only have
been roughly tested yet – mostly in similar path setups,
i.e. paths having almost the same QoS characteristics,
using “their” protocol. Therefore, the goal of this paper is
to compare the existing approaches. Particularly, we also
analyse more challenging scenarios containing dissimilar
paths, i.e. paths having differing characteristics. Our goal is
to provide insight into the different approaches, to support
the IETF standardisation activities on CMT. 123
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I. INTRODUCTION

Two of the main requirements on the Internet are
robustness and stability. One basic mechanism to achieve
these goals is the application of Congestion Control (CC)
on the Transport Layer. As stated by [1], data transport
should utilise the network as closely as possible on the
efficiency border on the one hand, and in a fair matter for
all customers on the other.

Currently deployed end-to-end Transport Layer proto-
cols like the Transmission Control Protocol (TCP) [2]
and the Stream Control Transmission Protocol (SCTP) [3]
provide CC as core functionality. However, their CC
mechanisms are specialized for single path data trans-
fer. This stands in contrast to the trend that more and
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the anonymous reviewers for their helpful comments.

more endpoints are connected by multiple paths, which
is denoted as multi-homing. In the context of Transport
Layer protocols, this could be caused by different access
technologies or different addressing schemes, e.g. ADSL
and UMTS as access technologies as well as IPv4 and
IPv6 as addressing schemes.

Having multi-homed endpoints, it is a straightforward
desire to not only improve network resilience but also
to utilise all paths for increased application payload
throughput. This approach is denoted as Concurrent Mul-
tipath Transfer (CMT). On the Transport Layer, CMT
is currently highly discussed in the IETF as extensions
for TCP (so-called Multipath TCP – MPTCP [4]) and
SCTP (so-called CMT-SCTP [5]). Both approaches face
the same challenge: the need for a CC strategy with
multipath data transfer in mind. Two different strategies
– our own CMT/RP CC for CMT-SCTP as well as
MPTCP CC for MPTCP – are currently discussed within
the IETF. However, a performance comparison has been
missing. Furthermore, the behaviour of the CCs in setups
containing so-called dissimilar paths, i.e. paths having
different QoS characteristics and queuing behaviours, has
been unclear. Such scenarios are challenging for CMT
– as shown in [6]–[8] – but very common in realistic
Internet setups.

Therefore, the goal of this paper is to first provide an
overview of the different CCs and their underlying ideas.
After that, we analyse and compare their performance –
in similar as well as dissimilar path setups – in order to
support the IETF discussion and foster the standardisation
process of both, CMT-SCTP as well as MPTCP.

II. CONGESTION CONTROL BASICS

While telecommunications networks like ATM provide
sophisticated mechanisms to guarantee certain QoS prop-
erties, the Internet only provides a Best Effort service.
Therefore, it is the duty of the Transport Layer protocol
to perform a CC strategy which avoids overloading the
network – while still achieving an acceptable payload
throughput for its users. In the following, we briefly
introduce the basics of CC in the Internet which are
relevant for this paper. A more detailed introduction to
congestion control can be found e.g. in [1], [9].

The two reliable, unicast Transport Layer protocols
standardised by the IETF – TCP [2] as well as SCTP [3]



– both apply window-based CC. That is, the sender
endpoint maintains a congestion window variable c, which
denotes the maximum amount of outstanding data (i.e.
data being sent but not yet acknowledged by the receiver
instance). c is adapted using so-called Additive Increase,
Multiplicative Decrease (AIMD) behaviour, i.e. c may
grow once old data is acknowledged and c is decreased
on congestion (which is determined by packet loss4).

The so-called slow-start threshold variable s controls
whether the congestion window c may grow on every
acknowledgement (c < s – so-called Slow Start phase, see
also [9, Section 3.1]; this leads to an exponential growth
of c) or each time the data amount of a full congestion
window is acknowledged (c ≥ s – so-called Congestion
Avoidance phase, see also [9, Section 3.1]; this leads to
a linear growth of c). The recommended way (see [9,
Section 3.1]) to decide whether enough data has been
acknowledged to advance c during Congestion Avoidance
is to add another variable p (“partially acknowledged”),
which counts the previous acknowledgements. A window
advance is possible for p ≥ c; on advance, p is reset. Note,
that congestion window growth – regardless of the phase
– is only allowed on new advances of the cumulative
acknowledgement, in order to avoid jumps of c after filling
a gap in the sequence of acknowledgements.

On detection of a packet loss, state-of-the-art imple-
mentations once perform so-called Fast Retransmission
(Fast RTX; see also [9, Section 3.2]) by halving s,
setting c = s (i.e. multiplicative decrease) and retrans-
mitting the lost segment. Usually, Fast RTX is combined
with so-called Fast Recovery (see also [9, Section 3.2]),
which means to forbid growing c until the retransmitted
segment has been acknowledged. Further losses of the
same segment are assumed as a sign of severe congestion.
Therefore, its retransmission is triggered by expiration
of the segment’s Retransmission Timer. It is therefore
denoted as Timer-Based Retransmission (Timer-Based
RTX); at that time, s is halved but c minimised.

In most state-of-the art CC implementations, the con-
gestion window c and slow start threshold s are stored
in bytes. Using packets instead of bytes, which is still
widespread due to older implementations, leads to the
problem that hosts using different Maximum Transmis-
sion Units (MTU; e.g. an ADSL-connected user with an
MTU of 1,492 bytes due to PPPoE and a Gigabit Ethernet
user with an MTU of 9,000 bytes) may – for the same
setting of c – send different byte amounts of data. The
MTU – given by the underlying Data Link Layer – implies
an upper segment payload limit on the Transport Layer.
This limit is denoted as Maximum Segment Size (MSS).
It is e.g. 1,460 bytes for TCP or 1,452 bytes for SCTP
using IPv4 over a 100BaseTX Ethernet interface with an
MTU of 1,500 bytes.

The setting of c limits the bandwidth bData of the data
transmission for a given round trip time (RTT):

bData ≤
c

RTT
(1)

This is an implication of the bandwidth-delay product.

4We neglect advanced mechanisms like Explicit Congestion Notifica-
tion (ECN) [10] here for simplicity.

III. CONGESTION CONTROL APPROACHES
FOR MULTIPATH TRANSPORT PROTOCOLS

In the following subsections, we introduce the multi-
path CC strategies which are currently discussed in the
IETF for CMT-SCTP and MPTCP, with focus on appli-
cation for CMT-SCTP (which is used for our evaluation).

A. Plain CMT Congestion Control

CMT-SCTP [5] is the straightforward approach of
adding CMT support to SCTP. Since SCTP [3], [11]
itself already incorporates multi-homing support, there is
no need to change the CC behaviour for CMT-SCTP.
All paths are handled separately, i.e. for each path P

there are independent congestion window cP , slow-start
threshold sP and partial acknowledgements pP variables.
All variables are counted in bytes.

On α newly acknowledged bytes on path P in a fully-
utilized congestion window, cP is adapted as follows:

cP = cP +

min{α,MSSP } (cP < sP )
MSSP (cP ≥ sP ∧ pP ≥ cP )

SCTP applies – like state-of-the-art TCP implemen-
tations – so-called Appropriate Byte Counting [12], i.e.
cP is only advanced by the minimum of the acknowledged
bytes α and MSSP the MSS of P in Slow Start (i.e. cP <

sP ) as well as only by MSSP in Congestion Avoidance
(i.e. cP ≥ sP ).

Note, that CMT-SCTP [5] has to keep multiple paths in
mind. That is, in contrast to a single-homed transmission,
there is no global cumulative acknowledgement. CMT-
SCTP therefore introduces per-path so-called “pseudo
cumulative acknowledgements”. An illustrative example
is provided in [13].

On retransmission on path P , sP and cP are adapted as
follows, similar to state-of-the-art TCP implementations:

sP = max{cP −
1

2
∗ cP , 4 ∗MSSP }

cP =

sP (Fast RTX)
MSSP (Timer-Based RTX)

In result, plain CMT CC behaves like a TCP flow using
a state-of-the-art implementation – on each of its paths.
Clearly, when n CMT paths share a single bottleneck link
with a non-CMT flow (e.g. a standard SCTP or TCP flow),
the CMT flow occupies n times the bandwidth of the non-
CMT flow. Obviously, this behaviour is unfair.

B. CMT/RP Congestion Control

An approach to overcome the unfairness problem of
CMT is Resource Pooling (RP), which denotes “making
a collection of resources behave like a single pooled
resource” [14]. Adapted to CMT, the set of all paths
should behave like a single large one. RP should achieve
the following goals [14]:

1) A CMT flow should get at least as much bandwidth
as a single-homed flow via the best path.

2) A CMT flow should not take more capacity on a
shared bottleneck path than a single-homed flow via
the same bottleneck.



3) A CMT flow should balance congestion on all of
its paths.

Based on the idea of RP, we have defined two CC
variants, which we introduce in the following.

1) Version 1 – CMT/RPv1: CMT/RP [15] version 1
– shortly CMT/RPv1 – is our initial approach to apply
RP to CMT-SCTP. It is now also provided by FreeBSD
kernel SCTP [11]. CMT/RPv1 assumes similar paths, i.e.
paths having almost the same characteristics (bandwidth,
delay, error rate). The slow start threshold is used as a
useful metric for the capacity of a path. For each path P ,
the slow-start threshold ratio ŝP is defined as:

ŝP =
sP∑
i si

(2)

On α acknowledged bytes on path P in a fully-utilized
congestion window, CMT/RPv1 adapts cP as follows:

cP = cP +

dŝP ∗min{α,MSSP }e (cP < sP )
dŝP ∗MSSP e (cP ≥ sP ∧ pP ≥ cP )

That is, cP is increased according to the slow-start thresh-
old ratio ŝP of P .

On retransmission on path P , CMT/RPv1 adapts sP
and cP as follows:

sP = max{dcP −
1

2
∗
∑
i

cie, dŝ ∗ 4 ∗MSSP e,MSSP }

cP =

sP (Fast RTX)
MSSP (Timer-Based RTX)

That is, CMT/RPv1 reduces cP by half of the flow’s total
congestion window ∑

i ci, with a lower bound of MSSP .
2) Version 2 – CMT/RPv2: CMT/RPv1 assumes com-

parable slow start thresholds si in the computation of
the ratio ŝP (see equation 2) of a path P . However, this
may be difficult in case of dissimilar paths [7], [8]. Our
advanced approach CMT/RPv2 – which is currently under
discussion within the IETF – overcomes the limitations
of CMT/RPv1 by considering path bandwidths.

In order to increase the congestion window cP on α ac-
knowledged bytes on path P in a fully-utilized congestion
window, the increase factor îP is calculated:

îP =

cP
RTTP∑
i

ci
RTTi

It represents the current bandwidth share of P on the total
bandwidth of the flow (based on equation 1). Using î, cP
is adapted as follows:

cP = cP +

d̂i ∗min{α,MSSP }e (cP < sP )
d̂i ∗MSSP e (cP ≥ sP ∧ pP ≥ cP )

For reducing cP on a packet loss on path P , the
decrease factor d̂P is applied:

d̂P = max{
1

2
,

1

2
∗

∑
i

ci
RTTi

cP
RTTP

}

d̂ represents the factor by which the bandwidth of P

should be reduced in order to halve the total bandwidth
of the flow. For example, two paths P1 (10 Mbit/s) and P2

(2 Mbit/s) lead to a total bandwidth of 12 Mbit/s. A

loss on P1 leads to d̂1 = 1
2 ∗

12
10 = 0.6; a loss on P2

to d̂2 = 1
2 ∗

12
2 = 3.0.

Using d̂P , sP and cP are adapted as follows:

sP = max{cP − dd̂P ∗ cP e, 1 ∗MSSP }

cP =

sP (Fast RTX)
MSSP (Timer-Based RTX)

That is, the new setting of cP tries to halve the total
bandwidth, with a lower bound of MSSP .

C. MPTCP-Like Congestion Control

Like CMT/RP, the CC of MPTCP [16], [17] also
applies RP [14] to ensure fairness. However, the CC
behaviour is different: while CMT/RP tries to halve the
total congestion window/total bandwidth on a packet loss
on path P , MPTCP CC behaves exactly like standard
TCP or SCTP by only halving the path congestion
window cP (see Subsection III-A for the formula). Since
this behaviour alone would cause unfairness, the growth
behaviour has to be adapted. MPTCP uses the idea of
controlling engineering: growth and decrease of cP have
to be brought into equilibrium by adapting the congestion
window growth by a per-flow aggressiveness factor â.

Since the MPTCP CC introduced in [16] is based on
packets instead of bytes and we furthermore use SCTP
instead of TCP for our evaluation (see Section IV),
we had to port the MPTCP CC accordingly. That is,
on α acknowledged bytes on path P in a fully-utilized
congestion window, our MPTCP-like CC adapts cP as
follows:

cP = cP +



min{dâ ∗min{α,MSSP }e,min{α,MSSP }}

(cP < sP )
min{dâ ∗ cP

MSSP
∗MSSP e,MSSP }

(cP ≥ sP ∧ pP ≥ cP )

â denotes the per-flow aggressiveness factor, defined as:

â =
maxi{

ci/MSSi
(RTTi)

2 }

(
∑

i
ci/MSSi

RTTi
)2

Both formulae are based on [16]. However, we have
cancelled out the term of the total congestion win-
dow tot cwnd, since tot cwnd

tot cwnd = 1. Note further, that due to
application of partial acknowledgements (see Section II)
– which is standard behaviour for SCTP [3] – cP is only
increased each time a full congestion window has been
acknowledged (i.e. pP ≥ cP ). Therefore, cP

MSSP
increment

steps as in [16] are skipped and the increase is multiplied
by cP

MSSP
therefore.

IV. RELIABLE MULTIPATH TRANSPORT

TCP [2] is a byte-stream-oriented, single-homed Trans-
port Layer protocol, while SCTP [3] is message-oriented
with multi-homing support. Despite these fundamental
differences, both protocols provide a unicast, reliable
and congestion-controlled service and share many basic
mechanisms. Particularly, both use the basically same,
window-based CC mechanism. Neither TCP nor SCTP
provide CMT (i.e. simultaneous usage of multiple paths)



Figure 1. The Simulation Setup

out of the box. For TCP, the MPTCP extension adds sup-
port for multi-homing and CMT. For SCTP, that already
supports multi-homing, the CMT-SCTP extension [5],
[18] provides the CMT capability.

Since MPTCP and CMT-SCTP provide – despite of
their very different realisations – a very similar service,
we concentrate on CMT-SCTP for our CC evaluation.
Nevertheless, all results can be transferred to other CMT
protocols – particularly to MPTCP – as well.

An SCTP connection is denoted as association. Each
Network Layer address of the peer endpoint defines a
unidirectional path. User messages are segmented into so-
called DATA chunks for transport and reassembled at the
peer endpoint. The so-called smallest Path MTU (sPMTU)
of all paths is applied for data segmentation [3], since
the MTUs may differ on distinct paths. If there are
DATA chunks smaller than the sPMTU, SCTP tries to
bundle multiple DATA chunks into a single SCTP packet,
in order to keep the transport overhead as small as
possible – and therefore to improve efficiency.

Each DATA chunk is identified by a unique Trans-
mission Sequence Number (TSN). The TSNs are used
by the peer endpoint to acknowledge the reception of
DATA chunks by Selective Acknowledgement (SACK)
chunks. These SACK chunks provide the possibility to
cumulatively acknowledge data up to a given TSN – as
well as TSNs further ahead in so-called gap acknowledge-
ments. These gap acknowledgements identify gaps in the
transmission sequence, which have to be selectively filled
by Fast or Timer-Based RTX.

In the context of CMT-SCTP, it is particularly important
to note that gap acknowledgements in SACK chunks are
renegable (i.e. a receiver may decide to “un-acknowledge”
them at any time). So-called Non-Renegable SACK (NR-
SACK) chunks introduced as protocol extension by [19]
allow a receiver to declare gap acknowledgements as
non-renegable. NR-SACK significantly improves CMT
transport performance – as shown in [6]–[8] – by allowing
a sender to remove gap-acknowledged chunks from its
send buffer.

Futhermore, in combination with so-called “Buffer
Splitting based on Outstanding Bytes” [7] – which de-
scribes techniques to handle send and receive buffers in
order to avoid blocking issues – NR-SACK is required
for effective CMT transport over dissimilar paths [6], [7].

V. SIMULATION SETUP

For our performance evaluation, we have used the
OMNET++-based INET framework with our CMT-SCTP
simulation model [13]. The SIMPROCTC [20] tool-chain
has been used for parameterisation and result processing.
Figure 1 presents the simulation scenario. For the simu-
lations performed, at least two paths have been used (the
Southern and the Northern path); if needed, additional
paths can be added to the association. For all paths
available, the following configuration parameters have
been used:

• The sender has been saturated (i.e. it has tried to
transmit as much data as possible); the message size
has been between 500 bytes and 1,452 bytes (using
uniform distribution) at an MTU of 1,500 bytes. All
messages have used unordered delivery.

• The CMT flow may have used all paths, but the non-
CMT flow only the southern one.

• The send buffer has been set to 1,000,000 bytes; the
receive buffer has been set to 500,000 bytes. Buffer
Splitting according to [7] and NR-SACKs [19] have
been used.

• On the routers, FIFO queues of 100 packets have
been configured. The bandwidth of each independent
path has been 10 Mbit/s; the delay has been 1 ms.

The simulation runtime has been 300 s after a transient
phase of 20 s. Each run has been repeated 100 times in
order to ensure a sufficient statistical accuracy. The results
plots show the average values and their corresponding
95% confidence intervals.

VI. EVALUATION

In our evaluation, we first evaluate the basic CC be-
haviour in the two or more similar path setups. After that,
we focus on dissimilar path setups with only two paths.

A. Similar Paths

Figure 2 presents the achieved application payload
throughput for the concurrency of a CMT flow #1 (F=1;
solid lines) and a non-CMT flow #2 (F=2; dotted lines)
using different CCs Γ for varying the number of paths in
the two extreme setups: (1) all disjoint paths (left-hand
side) as well as (2) all paths sharing the same bottleneck
(right-hand side).

For the all disjoint paths scenario (see left-hand plot),
the CMT flow (i.e. F=1) only competes with the non-
CMT flow (i.e. F=2) on the first path. All other paths
may be used for the CMT flow exclusively. Using plain
CMT CC (i.e. Γ=cmt), the result is as expected: the
bandwidth on the path shared by both flows is halved. For
using one of the three RP-based CCs (i.e. Γ=cmtrpv1 for
CMT/RPv1, Γ=cmtrpv2 for CMT/RPv2 or Γ=like-mptcp
for MPTCP-like), the CMT flow is less aggressive on the
shared path and hands over bandwidth to the non-CMT
flow. The difference between the two CMT/RP variants
and MPTCP-like CC is that the latter is slightly more
aggressive in the range of 2 to 4 paths: using CMT/RP,
the non-CMT flow bandwidth is higher. We will explain
this fact in more detail in Subsection VI-C.



Figure 2. Application Payload Throughput for Disjoint and Bottleneck Paths Scenarios

When all paths share a single bottleneck link (see
right-hand plot), the unfairness of plain CMT-CC (i.e.
Γ=cmt) becomes clearly visible: at 8 paths, the CMT flow
occupies around 8

9 of the 10 Mbit/s, resulting in a payload
throughput of only about 1 Mbit/s for the non-CMT flow.
For up to 4 paths, the throughput difference between the
two flows is very small when using one of the three RP-
based CCs (i.e. Γ ∈ {cmtrpv1, cmtrpv2, like-mptcp}). A
scenario of 2 or 4 paths is also quite realistic in real
Internet scenarios, e.g. a setup connected to two ISPs,
with IPv4 and IPv6 prefixes from each ISP. For a rising
number of paths, there is a growing difference between the
flows: in order to probe a path P , the minimum congestion
window cP is MSSP . That is, this traffic for probing the
links – although small – sums up due to the large number
of paths. However, even at 8 paths, the performance of the
non-CMT flow is still significantly better than for using
plain CMT CC.

In summary, the three RP-based CCs significantly im-
prove the fairness of CMT transport. MPTCP-like CC is
slightly more aggressive than the CMT/RP CCs. Nev-
ertheless, all three CCs fulfil the three goals set in
Subsection III-B.

B. Dissimilar Paths
The following scenarios use the basic simulation setup

illustrated in Figure 1 to examine the performance over
dissimilar paths. Only the Southern and the Northern path
(i.e. just two paths) have been used.

1) Varying Exclusive Northern Path Bandwidth: First,
we vary the bandwidth ρN of the northern path (which
is exclusively used by the CMT flow), while keeping
the southern path bandwidth constant at ρS=5 Mbit/s.
Figure 3 presents the resulting payload throughputs for
the CMT flow #1 (i.e. F=1; solid lines) and the non-CMT
flow #2 (i.e. F=2; dotted lines) for the different CCs Γ.

Obviously, the CMT CC (i.e. Γ=cmt) behaves as ex-
pected: the CMT flow takes half of the southern path

Figure 3. Data Rate Variation on Northern Path

bandwidth (leaving the other half for the non-CMT flow)
plus the complete northern path bandwidth. Also, using
CMT/RPv2 (i.e. Γ=cmtrpv2) or MPTCP-like CC (i.e.
Γ=like-mptcp) results in shifting bandwidth on the shared
path to the non-CMT flow. Again, MPTCP-like CC is
more aggressive than CMT/RPv2 CC. That is, for all
bandwidth settings of ρN , the CMT flow using MPTCP-
like CC takes more bandwidth (and therefore leaves less
for the other flow) than CMT/RPv2 CC. Particularly,
the behaviour is significantly different for ρN < ρS ;
we will further examine this fact in Subsubsection VI-
B.2. Nevertheless, both CCs again meet the goals set in
Subsection III-B.

Furthermore, dissimilar paths reveal the problem



of CMT/RPv1: for a small setting of ρN
(here: ρN ≤ 4 Mbit/s), the throughput of the CMT
flow falls below the non-CMT flow. This violates
the first goal set in Subsection III-B. Particularly,
at ρN=250 Kbit/s, the achieved CMT flow payload
throughput is less than 1.5 Mbit/s – in contrast to the
roughly expected 2.6 Mbit/s. The reason is as follows:
the 250 Kbit/s northern link – with its 100 packets
FIFO queue – leads to so-called “Buffer Bloat” [21],
i.e. its congestion window cN may become large in
proportion to the southern path congestion window cS .
Since there is no concurrency on the northern path, loss
is only introduced by the filled FIFO queue – which
requires a sufficiently large cN . When a loss on the fast
southern path occurs (mostly due to the concurrency),
cS has to be reduced to around MSSS due to the large
total congestion window cN + cS . This leads to the
need of slowly growing cS again (due to small ŝS , see
equation 2). Until cS has not again grown large enough
to cover the RTT-delay product (see equation 1), the fast
northern path remains underutilised.

2) Varying Shared Southern Path Bandwidth: In the
following, we further examine the CC performance on
dissimilar paths by varying the bandwidth of the shared
southern path. The left-hand side of figure 4 presents the
payload throughput results for varying the southern path
bandwidth ρS , while keeping the northern path bandwidth
fixed at ρN=5 Mbit/s.

As expected from the previous results, plain CMT CC
shows the typical unfairness while CMT/RPv1 CC re-
veals its problems with dissimilar paths. Particularly,
for ρS ≥ 7.5 Mbit/s, the non-CMT flow always occupies
more bandwidth than the CMT flow.

The really interesting results are for CMT/RPv2 and
MPTCP-like CC. Both fulfil the goals set in Subsec-
tion III-B – but in different ways: using CMT/RPv2 CC,
the total bandwidth is almost equally shared between
both flows when possible (here: ρS between 7.5 Mbit/s
and 15 Mbit/s), i.e. for example at ρS=10 Mbit/s, both
flows achieve a payload throughput around 7 Mbit/s at the
total paths’ bandwidth of ρN + ρS=15 Mbit/s. In contrast,
MPTCP-like CC behaves significantly more aggressive:
it ensures that it does not take more bandwidth than a
non-CMT flow (e.g. at ρS=10 Mbit/s, the CMT flow gets
around 9 Mbit/s – leaving slightly more than 5 Mbit/s
for the non-CMT flow), but also takes significantly more
bandwidth for the CMT flow than CMT/RPv2 CC.

The observations also remain when increasing the
number of non-CMT flows n, as shown for ρN=5 Mbit/s
and ρS=20 Mbit/s on the right-hand side of Figure 4.
Note, that only the first non-CMT flow (i.e. F=2) is shown
for readability reason – the behaviour of the further non-
CMT flows is analogous. Although the difference among
the CCs becomes smaller, MPTCP-like CC still remains
more aggressive than CMT/RPv2 CC. For example, for
n = 8 non-CMT flows, the CMT flow occupies around
7 Mbit/s vs. around 6 Mbit/s for using CMT/RPv2 CC.

3) Summary: In summary, the CMT/RPv1 CC is not
suitable for dissimilar paths. CMT/RPv2 as well as
MPTCP-like CC achieve the goals set in Subsection III-

B. However, MPTCP – in comparison to CMT/RPv2 –
more aggressively occupies bandwidth for the CMT flow.
If the administrative goal is to distribute bandwidth to
flows equally – regardless of the number of paths used
for transport – the CMT/RPv2 CC is more suitable.

C. Differences Among the Congestion Control Variants

In order to make the difference among the four pre-
sented CCs clear, we have finally plotted the conges-
tion window and slow start threshold adaptation for the
CMT flow during the first 75 s of association runtime
for settings of northern path bandwidth ρN=5 Mbit/s and
southern path bandwidth ρS=10 Mbit/s in figure 5.

Using plain CMT CC (first plot), the CC is independent
for each path. That is, on the northern path, an adaptation
is only triggered when the congestion window cN is
large enough to cause a drop in its FIFO queue. Due
to concurrency on the southern path, the corresponding
congestion window cS is also adapted on loss due to
overload caused by the non-CMT flow. Therefore, cS is
usually smaller than cN .

The plot for CMT/RPv1 CC (second plot) visualises the
Buffer Bloat issue (see Subsection VI-C): cN of the slower
northern path may become large (up to 70,000 bytes)
while cS on the faster southern path remains smaller (up
to around 30,000 bytes – due to the concurrency on this
path). A loss on the southern path leads to a very small
growth (due to awkward slow start threshold ratio ŝS ; see
equation 2), leading to not occupying the expected band-
width share. This fact implies the performance problem
of CMT/RPv1 in dissimilar path scenarios.

CMT/RPv2 CC (third plot) overcomes this problem:
after congestion window reduction on the southern path,
cS is able to recover quickly – since it cares for band-
widths instead of slow start thresholds (see Subsubsec-
tion III-B.2). In result, the expected bandwidth is utilised
on the southern path.

MPTCP-like CC (fourth plot) shows a similar be-
haviour. However, the congestion window cS on the south-
ern path is in general significantly larger than for using
CMT/RPv2 CC. This is caused by the more aggressive
behaviour of MPTCP-like CC, resulting in the observed
larger bandwidth share for the CMT flow.

VII. CONCLUSIONS

At the moment, congestion control is a very hot topic
in the IETF discussion on standardisation of the CMT
protocol extensions CMT-SCTP and MPTCP. In order to
ensure a fair resource sharing in comparison to non-CMT
protocols in the Internet, two approaches are currently
discussed: our CMT/RPv2 as well as the MPTCP-like
congestion control. Except for some performance tests
using their “own” protocols, these approaches had not
been compared or analysed in more complex setups
before.

In this paper, we have provided a survey of the
congestion control approaches currently discussed in the
IETF. After that, we have analysed their performance in
similar as well as dissimilar path setups – the latter ones
are particularly important, since they are very realistic
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for Internet setups. MPTCP-like as well as CMT/RPv2
congestion control fulfil the RP fairness goals. Depending
on network and application administration goals, the
bandwidth share may either be optimised for higher CMT
flow throughput by using MPTCP-like congestion control
or equal bandwidths by using CMT/RPv2.

As part of future work, we are going to formalise the
fairness criteria of multipath transport, in order to provide
a more fine-granular classification. Furthermore, we are
also going to contribute our results into the ongoing IETF
standardization process of CMT-SCTP [18] and MPTCP.
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