
The Performance of Reliable Server Pooling
Systems in Different Server Capacity Scenarios

Thomas Dreibholz
University of Duisburg-Essen

Ellernstrasse 29
45326 Essen, Germany

Email: dreibh@exp-math.uni-essen.de
Telephone: +49 201 183-7637

Fax: +49 201 183-7373

Erwin P. Rathgeb
University of Duisburg-Essen

Ellernstrasse 29
45326 Essen, Germany

Email: rathgeb@exp-math.uni-essen.de
Telephone: +49 201 183-7670

Fax: +49 201 183-7373

Abstract— Reliable Server Pooling (RSerPool) is a protocol
framework for server pool management and session failover,
currently under standardization by the IETF RSerPool WG.
While the basic ideas of RSerPool are not new, their combination
into one architecture is. Some research into the performance
of RSerPool for certain specific applications has been made,
but a detailed, application-independent sensitivity analysis of the
system parameters is still missing.

The goal of this paper is to systematically investigate RSer-
Pool’s load distribution behaviour on changes of workload and
system parameters, to determine basic guidelines on designing
efficient RSerPool systems. In this paper, we focus particularly
on scenarios of server pools consisting of servers with unequal
capacities.

I. INTRODUCTION

The Reliable Server Pooling (RSerPool) architecture [1]
currently under standardization by the IETF RSerPool WG is
an overlay network framework to provide server replication
and session failover capabilities to its applications. These
functionalities themselves are not new, but their combination
into one application-independent framework is.

While there has already been some research on the perfor-
mance of RSerPool for applications like SCTP-based mobil-
ity [2], distributed computing [3]–[9], e-commerce [10] and
battlefield networks [11], a generic application-independent
performance analysis is still missing. The goal of our work
is therefore an application-independent quantitative character-
ization of RSerPool systems and a generic load distribution
sensitivity analysis on changes of workload and system pa-
rameters. In particular, we want to identify critical parameter
spaces to provide guidelines for designing efficient RSerPool
systems. In this paper we concentrate our analysis on failure-
free scenarios, since servers are usually available in 99.9x%
of their lifetime and therefore best performance in this case is
most crucial to a system’s cost benefit ratio.

II. THE RSERPOOL ARCHITECTURE

An illustration of the RSerPool architecture defined in [1]
is shown in figure 1. It consists of three component classes:
servers of a pool are called pool elements (PE); each pool is
identified by a unique pool handle (PH) in the handlespace, i.e.
the set of all pools; the handlespace is managed by registrars
(PR). PRs of an operation scope (e.g. a company or an
organization) synchronize their view of the handlespace using
the Endpoint haNdlespace Redundancy Protocol (ENRP [12],
[13]), transported via SCTP [14]–[16]. An operation scope
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Fig. 1. The RSerPool Architecture

has a limited range, e.g. a company or organization; RSerPool
does not intend to scale to the whole Internet. Nevertheless,
it is assumed that PEs can be distributed worldwide, for
their service to survive localized disasters (e.g. earthquakes
or floodings).

A client is called pool user (PU) in RSerPool terminology.
To use the service of a pool given by its PH, a PE has to be
selected. The selection works in two stages: first, an arbitrary
PR of the operation scope is asked for a handle resolution
of the PH to a list of PE identities. This communication be-
tween PU and PR uses the Aggregate Server Access Protocol
(ASAP [13], [17]). The PR selects the requested list of PE
identities using a pool-specific selection rule, called pool pol-
icy. The PU writes this list into its local cache, denoted as PU-
side cache, and selects again one PE for its communication.
Subsequent handle resolutions may be directly satisfied from
the cache, until its entries time out. This timeout is called stale
cache value. Using a stale cache value of zero, every handle
resolution must query a PR.

Adaptive and non-adaptive pool policies are defined in [18];
for this paper the relevant policies are non-adaptive Round
Robin (RR) and Random (RAND), Weighted Round Robin
(WRR) (integer weights specify how many times per round
robin round a PE has to be selected), Weighted Random
(WRAND) (weights specify the PEs’ proportional selection
probabilities) and the adaptive policy Least Used (LU). LU
selects the least-used PE, according to up-to-date load infor-
mation. Round robin selection is applied among multiple least-
loaded PEs [19], [20]. The definition of load is application-
specific and could e.g. be the current number of users, band-
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width or CPU load.
For more detailed information on RSerPool, see [2]–[5], [9],

[10], [19], [21], [22].

III. QUANTIFYING AN RSERPOOL SYSTEM

The service provider side of an RSerPool system consists
of a pool of PEs, using a certain server selection policy. Each
PE has a request handling capacity, which we define in the
abstract unit of calculations per second. Depending on the
application, an arbitrary view of capacity can be mapped to this
definition, e.g. CPU cycles, bandwidth or memory usage. Each
request consumes a certain amount of calculations, we call
this amount request size. A PE can handle multiple requests
simultaneously, in a processor sharing mode as commonly
used in multi-tasking operating systems.

On the service user side, there is a set of PUs. The amount
of PUs can be given by the ratio between PUs and PEs (PU:PE
ratio), which defines the parallelism of the request handling:
the higher the PU:PE ratio, the more requests that have to be
simultaneously handled by the PEs. Each PU generates a new
request in an interval denoted as request interval. Requests are
queued in the request queue and are sequentially assigned to
PEs selected by the RSerPool mechanisms (see section II).

Using the definitions above, it is now possible to give a
formula for the system’s utilization:

sysUtil = puToPERatio ∗
reqSize
reqInt

peCapacity
(1)

The load fraction generated by a single PU is given by the
following formula:

puLoad =
reqSize

reqInt ∗ peCapacity
(2)

In summary, the workload of a RSerPool system is given by
the three dimensions (1) PU:PE ratio, (2) request interval and
(3) request size. In a well-designed client/server system, the
amount and capacities of servers are provisioned for a certain
target system utilization, e.g. 80%. That is, by setting any two
of the parameters, the value of the third one can be calculated
using equation 1.

To evaluate the performance impacts of parameter variation,
we define the system utilization given in equation 1 as per-
formance metric: the better the system utilization, the more
revenue is gained from the available server resources.

IV. OUR SIMULATION MODEL

For our performance analysis, we have developed a sim-
ulation model [3]–[5] using OMNeT++ [23], containing full
implementations of the protocols ASAP [17] and ENRP [12],

a PR module and PE and PU modules modelling the request
handling scenario defined in section III.

Network delay only becomes significant when the request
sizes and intervals have the network delay’s order of mag-
nitude. This case is very unlikely for the load distribution
scenarios of this paper. Therefore, we omit network delay here.
The latency of the pool management by PRs is also negligible,
as we show in our paper [19].

Since our goal is a generic parameter sensitivity analysis
being independent of specific applications, we use negative
exponential distribution for request intervals and request sizes
and a target system utilization (see section III) of 80%. The
PU-side handle resolution cache is turned off (stale cache
value set to 0s). For the LU policy, we define load as the
current amount of simultaneously handled requests; for the
WRAND policy, we define weight as the PE’s capacity. The
average capacity of a PE is 106 calculations/s; unless otherwise
specified, we use 10 PEs. The simulation runtime is 120
minutes; each simulation has been repeated 12 times with
different seeds to ensure statistical accuracy.

The amount of PRs has been set to 1, since this parameter
does not significantly affect the results; PR synchronization
via ENRP only introduces the delay of the network. For this
paper, we neglect congestion and failure scenarios of these
connections, because we assume ENRP connections to be
highly reliable, due to the usage of SCTP multi-homed asso-
ciations [19]. Furthermore, they are established in controlled
networks (e.g. of a company or an organization) where QoS
mechanisms could be applied easily.

For the statistical post-processing of our results, we used R
PROJECT [24] for the computation of 95% confidence intervals
and plotting.

V. RESULTS

A. General Workload Parameter Effects
In our first simulation, we examine the performance impact

of varying the three workload parameters: PU:PE ratio, request
size (normalized by the PE capacity) and request interval on a
system designed for a target utilization of 80% and using PEs
of equal capacity (homogeneous scenario). For our simulation
set, we varied the PU:PE ratio r from 1 to 20 for request
size:PE capacity ratios s from 1 to 100. For each pair of
both values, the request interval can be calculated based on
equation 1 described in section III:

reqInt =
puToPERatio ∗ reqSize

targetSysUtil ∗ peCapacity

That is, our simulation covers all dimensions of the workload
parameter space.

As shown, the PU:PE ratio r giving the degree of parallelism
in request handling has a significant impact on the utilization:
at r = 1, the utilization is at 53% for the RAND policy and at
about 65% for RR. Using LU, it nearly reaches 80%. The
utilization difference for the policies becomes significantly
smaller when r increases: for r = 5, the difference is about
6% and for r = 10, it decreases to about 3%.

The reason for this behaviour is the amount of simultaneous
requests processed by the PEs: at r = 1, there should be
exactly one PE for every PU. That is, each PU expects to
get a PE exclusively, which processes its requests during 80%
(target utilization) of its runtime (see equation 2). Each time
the ”wrong” PE is selected for a request, one PE is idle while
another one has to split up its capacity to handle two requests
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simultaneously. Obviously, this behaviour is most frequent
when PEs are randomly chosen. For RR selection, the PE just
selected should be chosen again only after having used every
other PE before. This method already achieves a significant
improvement over RAND. Finally, LU has the knowledge of
the PEs’ current load states; therefore - except for the rare
cases of simultaneous selection - the least-loaded PE can be
used. This is the reason for the good performance of LU.

Observing the utilization for a variation of the request
size:PE capacity ratio s, only minor differences are shown.
Even for a change of two orders of magnitude as presented
in figure 3, the utilization between s = 1 (solid lines) and
s = 100 (dotted lines) only decreases by 1%-2% for LU,
about up to 4% for RR and up to about 7% for RAND.
The reason for the small decrement is that longer requests
increase the impact duration of the selection decision. That
is, the longer the requests, the longer the impacts of a non-
optimal selection decision. Clearly, the probability of a non-
optimal assignment is highest for RAND and lowest for LU,
explaining the performance differences between these policies.

For high PU:PE ratios and s = 100 (dotted lines), it can
be observed that the utilization for RAND slightly exceeds
the value of RR (at r = 14) and even LU (at r = 18):
the frequency of PE load changes increases due to the rising
amount of concurrently handled requests. Trying to assume
which PE is a good choice to select - based on load informa-
tion for LU or by list position for RR - becomes more and
more inappropriate.

In summary, the PU:PE ratio r has been identified as the
most influential workload parameter; small values of r are
critical, since the per-PU workload is highest here. Larger
values of r introduce more parallelism, decreasing the penalty
on choosing the ”wrong” PE. While LU provides superior
utilization in case of low r, the performance of RAND and
RR improves with rising r. A large job size:PE capacity
ratio s extends the impact duration of inappropriate selection
decisions, leading to a slightly decreased performance.

B. Deterministic Heterogeneous Scenarios
After having examined the basic system behaviour on

workload parameter changes in scenarios of equal server
capacities, we now have a look at heterogeneous scenarios.
In all scenarios, we vary the composition of server capacities
in the system but keep the overall system capacity constant.
That is, the capacities are always normalized; in case of
”good” load distribution, we expect the utilization not to decay
when the capacity distribution differs more and more from the
homogeneous case.

We ran simulations for a PU:PE ratio r ranging from 1 to 10
and a request size:average PE capacity ratio s ranging from 1
to 100. Our utilization curves show a carefully chosen subset
of our results that presents the essential effects.

a) Linear Capacity Distribution: In our first capacity
distribution scenario, we linearly vary the PE capacities using
the factor γ. This factor γ defines the capacity ratio between
the PE of least capacity and the PE of maximum capacity,
i.e. for γ = 3 the fastest server has three times more
capacity than the slowest one. The capacities of the other
servers are linearly distributed between the minimum and
maximum capacity. Such linear capacity scenarios are likely
when different generations of servers are used in a pool.

Figure 4 presents the utilization results for a PU:PE ratio
r of 1 (left part), 3 (middle part) and 10 (right part). The
solid lines represent s = 1, the dotted lines s = 100. As
expected, the utilization results for LU and WRAND are
almost unaffected by changes of γ. Furthermore, only the
small gap between the curves for s = 1 and s = 100 as already
explained in section V-A can be observed. The utilization of
RR and RAND decreases with γ, since for these policies the
selection decision is not based on the PEs’ capabilities (i.e.
capacity or current load).

For rising r, the difference between the four policies be-
comes significantly smaller: as explained in section V-A, the
penalty on ”bad” selection decisions becomes smaller with r.
At r = 10, the utilization difference between the four policies
is less than 10% until γ = 5; for higher values of γ it increases
for RR and RAND.

Clearly, a linear capacity scenario is simple, due to the
systematic distribution of capacities. A PU being served by
a slow PE will be served by a fast one soon; in average, the
difference to a homogeneous scenario becomes small. While
LU clearly achieves the best utilization, the difference to the
other policies becomes small for higher r; the performance of
RR and RAND decays for increasing γ, due to their lack of
PE capability knowledge. Nevertheless, for sufficiently small
γ RR provides a better performance than WRAND.

b) Fast Servers: A more irregular scenario than linear
capacity distribution is to have one or more designated fast
servers. Such a scenario is likely when there are a few high-
capacity servers to do the usual work and a set of older ones
to provide failure protection by redundancy. The utilization
results for using one powerful PE (1 of 10) is presented in
figure 5 for the PU:PE ratio r = 1 (left part), r = 3 (middle
part) and r = 10 (right part); the utilization of one third of
the servers (3 of 9) being powerful ones is shown in figure 6.
The solid lines represent s = 1, the dotted lines s = 100.
We varied the capacity ratio κ between fast and slow PEs,
e.g. κ = 5 means a fast PE has five times the capacity of a
slow one. Note, that the capacities are normalized to keep the
system capacity constant.



Fig. 4. Linear Capacity Distribution Scenario

Fig. 5. One Fast Server Scenario

Fig. 6. One Third Fast Servers Scenario

Analysing the results for r = 1, the utilization for LU at
s = 1 stays constant for rising κ for both, one fast PE and
one third fast PEs. But for s = 100, a significant decay can be
observed: LU bases its selection decision on PE load rather
than capacity. That is, a slow but lightly-loaded PE is preferred
over a faster but higher-loaded one. If a long-lasting request
(i.e. s large) is mapped to a slow PE, this PE ”holds” the PU,
resulting in a lower system utilization. Clearly, the utilization
decay is stronger in the one third fast servers scenario: due to
capacity normalization, more capacity is incorporated in the
set of fast PEs. That is, the negative effect of mapping a PU
to a slow PE becomes more visual.

While the utilization for WRAND is hardly affected by

increasing κ, RR and RAND show a significant decrement.
Unlike linear distribution, the PU’s penalty on using a slow
PE becomes more significant: in the fast server scenarios the
chance for getting mapped to a fast PE the next time is much
lower. Due to the fact that more capacity is clustered in the set
of fast servers of the one third fast PEs scenario than in the
one fast server scenario, the utilization decay becomes more
visible in a scenario of multiple fast PEs.

As expected for rising PU:PE ratio r, the utilization differ-
ence between the policies becomes smaller. But unlike linear
capacity distribution, the utilization improvement for RR and
RAND remains small: due to the highly uneven capacity
distribution of the fast servers scenarios, the penalty on making



inappropriate selection decisions remains high. Only for very
small settings of κ RR provides a slightly better utilization
than WRAND.

In summary, only LU and WRAND are suitable in scenarios
having designated fast servers. RR only achieves a perfor-
mance gain when κ is sufficiently small, i.e. the scenario is
nearly homogeneous.

C. Randomized Heterogeneous Scenarios

After having examined deterministic heterogeneous capacity
scenarios, we now have a look at two randomized ones. In
our first randomized capacity distribution scenario, the server
capacities are uniformly randomized in an interval described
by the factor ϑ. This factor ϑ gives the ratio between the
minimum and maximum capacity, e.g. a setting of ϑ = 2
results in a uniform capacity selection

c ∈R [minCapacity, ϑ ∗minCapacity] ⊂ N.

The resulting capacities are normalized by using an appro-
priate minimum capacity, i.e. the average system capacity
remains constant for all settings of ϑ.

In our second randomized capacity distribution scenario,
we use PE capacities randomly chosen using a normal dis-
tribution for a given average capacity (106 calculations/s)
and standard deviation given by η ∗ average capacity (i.e.
η ∗ 106). Obviously, capacities cannot be negative, therefore
we truncated the capacity selection by enforcing a lower
limit (104 calculations/s). Finally, the PE capacities have been
normalized to keep the system capacity constant.

The utilization results for the uniform distribution scenario
are shown in figure 7 for a PU:PE ratio r of 1 (left side) and
3 (right side). The solid lines represent s = 1, the dotted lines
s = 100. Figure 8 shows the corresponding results for the
truncated normal capacity distribution scenario.

Mainly, the results reflect the observations of the determin-
istic distribution scenarios of section V-B: the utilizations of
RR and RAND decay while WRAND is hardly affected by
changing the distribution parameters ϑ or η. For scenarios suf-
ficiently near to homogeneous distribution (i.e. the distribution
parameter is small) RR achieves a slightly better performance
than WRAND. However for LU, a stronger variance of the
utilization can be observed in the form of larger confidence
intervals for r = 1. The reason is that although the average
system capacity remains constant due to normalization, it can
differ from this average due to randomization. LU may use
low-capacity PEs when their load value is low and r = 1 is
the most critical setting due to highest per-PU load. Therefore,
the observed effect is strongest here.

In summary, randomized capacities do not induce significant
changes to the system’s behaviour in comparison to determin-
istic scenarios.

D. Weighted Round Robin Policy

The RSerPool policies draft [18] defines the Weighted
Round Robin (WRR) policy. Since RR provides a performance
gain over RAND, one might expect that WRR results in a
performance gain over WRAND in heterogeneous scenarios.
Unfortunately, this assumption is wrong for the following
reasons. The first problem is the systematic selection. Consider
3 PEs with weights wPE1 = 2, wPE2 = 3 and wPE3 = 10. In

this case, the selection order of a round robin round could be
as follows:

PE1 ⇒ PE2 ⇒ PE3︸ ︷︷ ︸
2 times

⇒ PE2 ⇒ PE3︸ ︷︷ ︸
once

⇒ PE3︸ ︷︷ ︸
7 times

Obviously, after PE1 and PE2 have been selected the given
number of times, WRR hammers PE3. That is, when a PR
selects PE3 for 8 different PUs, 8 PUs simultaneously use
PE3 while other PEs may remain idle.

The second problem of WRR is that the weights have to
be integers: let PE4 have 3.5 times the capacity of PE5 and
PE6 1.75 times the capacity of PE4. In this case, the resuling
weights could be wPE4 = 4, wPE5 = 7 and wPE6 = 14. In
the end of the selection round, PE6 would be consecutively
selected 8 times. Clearly, the higher the factor to extend the
weights to integers, the more worse becomes the selection
problem described above.

Simulations for the heterogeneous scenarios described in
section V-B and section V-C have shown that WRR’s perfor-
mance is much worse than the results for RR and even RAND
(except for the homogeneous case where WRR is equal to RR).
Since WRR is completely useless in the described scenarios,
we omitted curves for this policy.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have first quantified the basic workload
parameters of RSerPool systems (PU:PE ratio, request size
and interval) and defined system utilization as the performance
metric for our analysis. We then provided a simulative anal-
ysis of the general effects on workload parameter changes
for a scenario of equal server capacities. Here, the PU:PE
ratio describing the parallelism in request handling has been
identified as the most critical parameter. Low parallelism
implies high per-PU load, therefore the penalty for ”wrong” PE
selection decisions becomes high, leading to decreased system
utilization.

After examining the general system behaviour, we have
analysed the load distribution performance of multiple deter-
ministic and randomized server capacity distribution scenarios
and provided fundamental insights into the properties of the
LU, RR, WRAND and RAND selection policies. Finally,
we reasoned why the WRR policy is unusable for realistic
scenarios.

The next step of our work is to verify our simulation results
in real-life network scenarios. Based on our prototype imple-
mentation of RSerPool [6], [9], [25], we are going to build a
lab test scenario and finally also want to analyse large-scale
scenarios using the PLANETLAB [26]. Our goal is to transfer
the theoretical insights of our simulations to reality, providing
guidelines for designing and tuning RSerPool systems and
promoting standardization and deployment of RSerPool.
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