An Efficient Approach for State Sharing in Server Pools

Thomas Dreibholz
University of Essen, Institute for Experimental Mathematics
dreibh @ exp-math.uni-essen.de

Abstract

Many Internet services require high availability. Server
pooling provides a high availability solution using redun-
dant servers. If one server fails, the service is continued by
another one. A challenge for server pooling is efficient state
sharing: The new server requires the old one’s state to con-
tinue service. This paper proposes a simple, efficient and
scalable solution, usable for a large subset of applications.

1 Introduction

Server pooling (see [1, 2]) provides high availability for
critical applications using redundant servers. In case of a
server failure, a client can choose another server to con-
tinue operations. This procedure is called failover. A server
usually requires some state for each client (e.g. media file
name and media position for a video server). Therefore, it is
mandatory that for a successful failover the new server has
knowledge about the old server’s state. A trivial solution
would be to synchronize all clients’ states with all servers,
but it lacks of scalability.

This paper presents a simple, efficient and scalable ex-
tended cookie approach to let the client application itself do
the state transfer. Cryptographic methods ensure confiden-
tiality, integrity and authenticity of the state.

This work is part of KING, a research project of Siemens
AG. The work of this project is partially funded by the Bun-
desministerium fiir Bildung und Forschung of the Federal
Republic of Germany (Férderkennzeichen 01 AKO045).

2 Client-Based State Sharing

For better understandability, it is first necessary to de-
scribe an example scenario: an electronic shop with 3D user
interface. Customers connect to a shop server using spe-
cial client software allowing the user to move within the 3D
shop scenario and select products into a virtual shopping
cart. In case of server failure, a failover to another server is

made. In this case, it is necessary to transfer the server state
containing position and rotation angle of the user within
the 3D scenario, quality setting for the 3D scenario (e.g.
from modem connection to T1), shopping cart content in-
cluding discounts granted by shop assistants to the specific
customer and customer identification and accounting infor-
mation (e.g. the customer’s credit rating).

An observation of these sub-states leads to application-
specific classifications: Some of them change very fre-
quently (called short-term sub-states), e.g. position and
rotation angle. Others usually remain constant (called long-
term sub-states), e.g. the customer identification. Further-
more, states may be confidential from the client (called pri-
vate sub-states), e.g. internal accounting information and
customer’s credit rating or not confidential (called public
sub-states), e.g. quality setting, position and rotation angle.
For public sub-states, a sub-grouping is possible: A muta-
ble sub-state may be changed during failover within a well-
defined range. For example, quality g; may be requested
from the first server but at failover to another server, it may
be changed to g». On the other side, immutable sub-states
may not be changed during failover, e.g. the content of the
shopping cart (containing special discounts).

Now, a server state can be formally described as S =
(SET, S5T) with long-term sub-state SY7 = (S§T SET | SET)
and short-term sub-state 57 = (837, ST, S3T'), where S57 /
S3T are the mutable, S¥7 / S57 the immutable and S5 / 37
the private sub-states.

For client-based state sharing, the server state S now has
to be transmitted to the client on every change. Since it
would be very inefficient to transmit the complete state in-
cluding unchanged parts on every change, long-term and
short-term part are handled separately: On every change
of a long-term part, the complete state S is transmitted as
so called full state cookie. But on changes restricted to
the short-term part, only S57 is transmitted as partial state
cookie.

To avoid replay attacks and ensure correct recombina-
tion, both parts (SL7 and §57) require validity range v
and v3Tand sequence numbers 67 and ¢57. The validity
range gives the time range for which the state is valid (e.g.



"29-Sep-2002 10:05 to 29-Sep-2002 10:10 CET"). The se-
quence number differentiates sub-states having the same va-
lidity range. Using validity range and sequence number, it is
always possible to reconstruct the correct order of the state
cookies. The partial state cookie further requires a reference
P! to the long-term part it belongs to. This could simply
be the tuple pt = (VLT otT).

Now, it is possible to transmit the state S to the client and
keep it up-to-date there. On failover, it can be transmitted
to the new server and restored. But confidentiality for pri-
vate sub-states and a check for integrity and authenticity at
the new server are still missing. These functionalities can
be realized easily using a digital signature and encryption.
That is, all servers of a pool need the same pool key K, e.g.
arandom value that is changed every 3 hours to increase se-
curity. Assuming that a full state cookie is sent on every key
change, only the full state cookie has to store a key reference
A. That is a key ID that states which key to use (still the old
or already the new one during a key change phase). All im-
mutable sub-states, validity ranges, sequence numbers and
references can now be digitally signed using a signature
function ¢, to ensure their authenticity and integrity. An
encryption function y; additionally ensures confidentiality
of the private sub-states. Note, that mutable sub-states are
not signed or encrypted, since changes within well-defined
ranges are allowed.

Client-based state sharing is usable for all applications
that can cope with the following two limitations: First, it
allows reverting to an older state within its validity range.
That is, server A changes from state S; to state S, but the
client sends S to the new server B during failover. Then, B
restores the older state S} as long as its validity range is still
accepted. This prevents applications like money transfer
from using client-based state sharing but most applications
like media streaming (e.g. older media position) or the ex-
ample 3D shop (older position, rotation angle or shopping
cart content) are uncritical. The second restriction is possi-
ble forking. That is, the client can send a valid state to more
than one server and create multiple new sessions. Note, that
a malicious user can be prevented easily from forking a ses-
sion using a sniffed state by requiring the client to authenti-
cate to the server. Therefore, forking is usually not critical,
too. Since these restrictions are acceptable in most cases,
scalable, simple and efficient client-based state sharing is
applicable for a large subset of server pooling applications.

3 Optimizations

Some optimizations to client-based state sharing are pos-
sible to reduce bandwidth requirements and state transmis-
sion effort, depending on application requirements:

State Splitting: Analogous to the separation of sub-states
into long-term and short-term ones, a finer classifica-

tion depending on their change frequency is possible.
This leads to a sub-state hierarchy having the most fre-
quently changed sub-states in the lowest and the rarely
changed ones in the highest group. Anytime a state in
an upper group changes, all lower groups also have to
be transmitted to ensure correct references for recom-
bination.

State Derivation: The client may be able to derive public
mutable states directly from the user data (e.g. a media
position from the RTP timestamp) instead of requir-
ing its separate transmission. In the public/mutable-
only case with all states derivable, no separate server
to client transmission of states is necessary at all!

State Approximation: Depending on the application, an
approximation of states may be sufficient. For example
for a video server using 25 frames per second, the me-
dia position changes 25 times per second and requires
the same number of transmissions of the short-term
sub-state. Reducing this to once per second would only
lead to a repetition of at most one second in the rare
case of a server failure (e.g. once per week or month).
Since the failover is visible to the user anyway (e.g. as
a short picture freeze), this should be no problem.

4 Summary and Conclusions

This paper has presented an efficient, simple and scal-
able approach for state sharing in server pools, applicable
to a large subset of applications. The server state is trans-
mitted to the client using an extended cookie mechanism
and is kept up-to-date there. On failover, the client itself
can provide the state to the new server. Integrity, authen-
ticity and confidentiality of the state are ensured using dig-
ital signature and encryption. Finally, optimizations to re-
duce bandwidth and state transmission effort have been pre-
sented. Further work will include the formal definition of a
state sharing protocol and finally its standardization by the
IETE.

References

[1] RSerPool Introduction
http://tdrwww.exp-math.uni-essen.de/dreibholz/
rserpool/index.html

[2] Architecture for Reliable Server Pooling
draft-ietf-rserpool-arch-03.txt



