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Abstract—Reliable Server Pooling (RSerPool) is the
IETF’s new standard for a common server redundancy
and session failover framework to support availability-
critical applications. Server pools are maintained by re-
dundant management components denoted as registrars.
These registrars monitor the availability of servers in the
pool and remove them in case of failure. Furthermore, they
synchronize their view of the pool with other registrars to
provide information redundancy.

In this paper, we first illustrate the implications of regis-
trar redundancy on the performance of RSerPool systems.
After that, we present an optimization approach for the
server pool management, which improves the management
performance in case of registrar problems like hardware
failures or Denial of Service attacks. The performance of
our approach is evaluated in real life using PLANETLAB
measurements.' 2

Keywords: Reliable Server Pooling, Redundancy, Hand-
lespace Management, Takeover, Performance Analysis

I. INTRODUCTION AND SCOPE

Reliable Server Pooling (RSerPool, see [1], [2]) is
the IETF’s new standard for a generic, application-
independent server pool [3], [4] and session manage-
ment [5] framework. While there have already been a
number of publications on the performance of RSerPool
for application load balancing [5]-[9], server failure han-
dling [10]-[12] and the pool management data structures
in general [3], [4], there has been very little research
on the behaviour of the pool management in case of
failures of the redundant management components which
are denoted as registrars. Such failures may occur due
to hardware problems (e.g. network or power failures)
and also due to Denial of Service (DoS) attacks on the
RSerPool setup [13]-[15].

In this paper, we first analyse the implications of
registrar redundancy on the server pool performance by
simulations. Awareness of these implications is essen-
tial for achieving good system performance at reason-
able overhead costs. Next, we present an optimization
approach for the server pool management to enhance
the system performance in case of registrar problems
(which e.g. may be caused by hardware failures or DoS
attacks). We evaluate our approach by using the RSerPool
implementation RSPLIB [5], [13], [16] in a real-world
PLANETLAB [17] setup.
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II. THE RSERPOOL ARCHITECTURE

The three component types of the RSerPool architecture
are depicted in figure 1: servers of a pool are called pool
elements (PE), a client is denoted as pool user (PU). The
handlespace — which is the set of all pools — is managed
by redundant pool registrars (PR) (shortly denoted as
registrars). Within the handlespace, each pool is identified
by a unique pool handle (PH).

A. Components and Protocols

The PRs of an operation scope synchronize their
view of the handlespace by using the Endpoint haNd-
lespace Redundancy Protocol (ENRP) [18], transported
via SCTP [19]. Unlike Grid Computing [20], an operation
scope is restricted to a single administrative domain. That
is, all of its components are under the control of the
same authority (e.g. a company). This property results in
a small management overhead [3], [4], which also allows
for RSerPool usage on devices providing only limited
memory and CPU resources (e.g. embedded systems like
routers). Nevertheless, PEs may be distributed globally
to continue their service even in case of localized disas-
ters [16].

PEs choose an arbitrary PR of the operation scope to
register into a pool by using the Aggregate Server Access



Protocol (ASAP) [21], again transported via SCTP and us-
ing TLS or IPSEC. Within its pool, a PE is characterized
by its PE ID, which is a randomly chosen 32-bit number.
Upon registration at a PR by using an ASAP Registration
message, the chosen PR becomes the Home-PR (PR-
H) of the newly registered PE. A PR-H is responsible
for monitoring its PEs’ availability by ASAP Endpoint
Keep-Alive messages (to be acknowledged by the PE
within a given timeout) and propagates the information
about its PEs to the other PRs of the operation scope
via ENRP Handle Update messages [18]. PEs re-register
regularly (again using an ASAP Registration message) in
an interval denoted as registration lifetime as well as for
information updates. Figure 2 illustrates the context of a
PE’s registration at its PR-H and the synchronization with
another PR.

In order to access the service of a pool given by its PH,
a PU requests a PE selection from an arbitrary PR of the
operation scope by using ASAP again. The PR selects the
requested list of PE identities by applying a pool-specific
selection rule, called pool policy. RSerPool supports two
classes of load distribution policies: non-adaptive and
adaptive algorithms [6]. While adaptive strategies make
their assignment decisions based on the current status of
the processing elements (which of course requires up-to-
date states), non-adaptive algorithms do not need such
status data. A basic set of adaptive and non-adaptive
pool policies is defined in [22]. Relevant for this paper
are the non-adaptive policies Round Robin (RR) and
Random (RAND) as well as the adaptive policy Least
Used (LU).

B. Registrar Redundancy

Since a single PR would constitute a single point of
failure — which RSerPool should avoid — there must
be multiple PRs in an operation scope. Each PR in
the operation scope is identified by a PR ID, which
is — similar to the PE ID — a randomly chosen 32-
bit number. PRs monitor the availability of each other
PR by using ENRP Presence messages, which are sent
in an interval denoted as PeerHeartbeatCycle (default
is 30s [18]). If there is no ENRP Presence within a
timeout MaxTimeLastHeard (default is 61s [18]), the
peer is assumed to be dead and a so-called takeover
procedure [18] initiated for the PEs managed by the dead
PR: from all PRs having started this takeover procedure,
the PR with the highest PR ID takes over the ownership of
these PEs. The PEs are informed about their takeover by
their new PR-H by using an ASAP Endpoint Keep-Alive
with Home-flag set.

As soon as PEs and PUs detect the failure of their PR
(i.e. their request is not answered within a given timeout),
they simply try another PR of the operation scope for
their registration or handle resolution requests. Note, that
the takeover procedure for PEs is intended as a double
safeguarding: for the case the PE does not immediately
detect its PR-H failure (in particular when using a long
re-registration interval in case of non-adaptive policies).

ITI. QUANTIFYING AN RSERPOOL SYSTEM

For our quantitative performance analysis, we use the
application model from [5]: the service provider side of
an RSerPool system consists of a pool of PEs. Each PE
has a request handling capacity, which we define in the
abstract unit of calculations per second®. Each request

3An application-specific view of capacity may be mapped to this
definition, e.g. CPU cycles.
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consumes a certain number of calculations; we call this
number request size. A PE can handle multiple requests
simultaneously — in a processor sharing mode as provided
by multitasking operating systems.

On the service user side, there is a set of PUs. The
number of PUs can be given by the ratio between PUs
and PEs (PU:PE ratio), which defines the parallelism of
the request handling. Each PU generates a new request
in an interval denoted as request interval. Requests are
queued and sequentially assigned.

The total delay for handling a request dpandling 1S
defined as the sum of queuing delay dqueuing, Startup
delay dstartup (dequeuing until reception of acceptance
acknowledgement) and processing time dprocessing (ac-
ceptance until finish):

dHandling = dQueuing + dStartup + dProceSSing- (1)

That is, diandling NOt only incorporates the time required
for processing the request, but also the latencies of
queuing, server selection and message transport. The user-
side performance metric is the handling speed, which is
defined as:

HandlingSpeed = M.

dHandling
For convenience, the handling speed (in calculations/s) is
represented as % of the average PE capacity.

Using the definitions above, it is possible to calculate
the average system utilization U (for NumPEs servers
and total pool capacity PoolCapacity) as:

RequestSize

U = NumPEs * puToPERatio # —eduestinterval =5y
PoolCapacity

Obviously, the primary provider-side performance metric
is the system utilization, since only utilized servers gain
revenue. In practise, a well-designed client/server system
is dimensioned for a certain target system utilization of
e.g. 50%. By setting any two of the parameters (PU:PE ra-
tio, request interval and request size), the value of the
third one can be calculated using equation 2 (see also [5]).
A provider’s secondary performance metric is of course
the handlespace management overhead [3], [4] (i.e. CPU
resources and network bandwidth).

IV. SYSTEM SETUP

In order to evaluate the performance, we have used
the OMNET++-based RSerPool simulation model RSP-
SIM [6], [23], [24] as well as the implementation RSP-
LIB [5], [16] (which is also the IETF’s reference im-
plementation, see [1, chapter 5]) for measurements in



a PLANETLAB setup. Both — simulation model and
implementation — contain the protocols ASAP [21] and
ENRP [18], a PR module and PE as well as PU modules
for the request handling scenario defined in section III.

The PLANETLAB [17] setup distributes the components
to different machines in the U.S.A.. This country provides
a sufficient number of PLANETLAB nodes and a country-
wide setup is also realistic for an RSerPool setup in a
large company — for protecting a critical service against
e.g. earthquakes, power failures or terrorist attacks. By
ping-based tests, we have observed inter-node network
delays of about 20ms to 30ms.

For our simulation and measurement setup, which is
depicted in figure 3, we use the following parameter
settings unless otherwise specified:

o The target system utilization is 50%. Request size
and request interval are randomized using a negative
exponential distribution (in order to provide a generic
and application-independent analysis [5], [6]). There
are 25 PEs; each one provides a capacity of 10° cal-
culations/s.

o A PU:PE ratio of 3 is used (i.e. a non-critical setting
as explained in [6]).

o We use a request size:PE capacity setting of 10; i.e.
being processed exclusively, the average processing
takes 10s — see also [6].

o There is only a single PR, since we do not examine
PR failure scenarios here (see [6] for such scenarios).
PEs re-register every 2s (re-registration interval) and
on every load change of the adaptive LU policy.

o ASAP requests are transmitted once. If there is no
reply within 5s, the PR is assumed to be dead and a
random other PR is contacted.

« ENRP uses the default parameters
of PeerHeartbeatCycle=30s and
MaxTimeLastHeard=61s (as in RFC [18]).

e For the simulation, the simulated real-time
is 120min; each simulation run is repeated at
least 24 times with a different seed in order to
achieve statistical accuracy. The inter-component
network delay is 25ms, which corresponds to our
PLANETLAB setup.

o Each measurement run takes 15min; each run is
repeated at least 19 times.

For statistical post-processing of the results, GNU R [23],
[24] is used. Each resulting plot shows the average values
and their 95% confidence intervals.

V. IMPLICATIONS OF REGISTRAR REDUNDANCY

Usually, an RSerPool setup contains multiple PRs to
avoid a single point of failure. The existence of multiple
PRs affects the performance. Knowledge of the resulting
performance implications is therefore necessary to provi-
sion efficient systems. The important effects are demon-
strated by the simulation results (based on our paper [25])
in figure 4 for increasing the number of PRs NumPRs for
a varying number of PEs NumPEs and inter-component
network delay d. The left-hand side presents the results
for the LU policy: Obviously, increasing NumPRs leads
to a lower handling speed, in particular for a high inter-
component network delay d (here: 150ms). The latency
leads to somewhat inaccurate load state information in the
handlespace, which results in a reduced PE selection qual-
ity. Furthermore, for a large pool (here: NumPEs=100),
the impact of a higher number of PRs is stronger: simply,
the higher the corresponding number of PUs (here: the

PU:PE ratio is 3, i.e. 300 PUs for 100 PEs), the higher the
probability of nearly-simultaneous requests. This results
in the usage of inaccurate load information, because PEs
just having accepted new requests are selected again for
more PUs — since their increased load states have not
yet reached the selecting remote (i.e. non-PR-H) PRs.
In view of RSerPool setups mostly covering a restricted
geographical area*, the delay d is usually low (e.g. Sms
to 15ms [16] within Europe or North America). Therefore,
the resulting impact on the performance of the LU policy
is usually quite small.

The handling speed results for the RR and RAND
policies at d=150ms are presented on the right-hand side
of figure 4: while the RAND policy keeps unaffected
by the latency, there is a small performance decrease
for RR: because different PRs perform their round robin
selection independently [6], [22], the global view of RR
selection differs from a selection in turn. The selection
order is therefore less optimal. Since both policies are
non-adaptive, there is — in contrast to the adaptive LU
policy — no impact of the number of PEs NumPEs.
Note that the request handling speed of the LU policy,
which is presented with a different y-axis scale in the
left-hand plot, still has a significantly higher performance
than RR and RAND - regardless of the delay effect de-
scribed above. For real-world RSerPool depolyments, e.g.
for simulation processing pools using the SIMPROCTC
toolchain [23], [24], the number of PRs is assumed to be
in the range of about 2 to 5.
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Figure 5. Registrar Failure Handling

Registrar redundancy is necessary to handle registrar
failures. Handling speed simulation results showing the
effectiveness of the RSerPool PR failure handling pro-
cedures (which are described in subsection II-B) are
presented in figure 5. In this scenario, the average Mean
Time Between Failures (MTBF) M of the 5 PRs has been
varied from 200s to 1000s — using an average downtime
of 100s (both parameters have negative exponential distri-
bution). As intended, the RSerPool system is able to cope
with the PR failures: as long as there is at least one usable
PR, the service performance is only slightly degraded.
PUs and PEs use another PR when a request to their
original PR fails. Also, the remaining PRs themselves
perform takeovers for the PEs of failed PRs. Only in case

4See [16] and [26] for mechanisms to handle high-latency scenarios.
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Figure 4. The Influence of Registrar Redundancy on the Handling Speed

of having no PR usable for a longer duration (here: for
M <500s), the service performance significantly suffers.
However, such small uptimes are very unrealistic for real
setups, where an average PR MTBF can be assumed in
the range of many weeks.

In summary, handling speed will not suffer as long as
there is at least one PR available at any time. That is,
from the perspective of the service user, everything is
fine. However, it is also interesting to have a look at the
service provider’s perspective.

VI. AVOIDING UNBALANCED REGISTRAR
WORKLOADS

For the service provider, it is important to control the
handlespace management overhead. In order to accurately
reflect the reality, we now go from simulation to real-life
PLANETLAB measurements to demonstrate the effects.

A. Management Challenge

In order to depict the management challenge, we again
consider a scenario containing 5 PRs. But at this time,
PR #1 stays available and only PR #2 to PR #5 discover
e.g. network problems and their MTBF is varied. Over
time, PR #2 to PR #5 will fail and their PEs and PUs
have to choose and contact one of the remaining PRs.
This strategy works well (as described in section V), but
eventually results in all components using PR #1 — since
this PR is always available. In particular, PR #1 will
become PR-H of all PEs and be responsible for their
monitoring (by using ASAP Endpoint Keep-Alives) as
well as propagating their PE entries to the other PRs (by
using ENRP Handle Updates). That is, all management
tasks — which also have a certain computational overhead,
as shown by [3], [4] — are concentrated on a single
PR. Even when the PR problems are solved and all
PRs become available again, the situation is not changed
quickly: PEs using PR #1 have no reason to choose
another PR-H. Therefore, they keep using PR #1. Only a
broken connection between PE and PR leads to a PR-H
change.

B. Our Optimization Approach

One possible approach to distribute PEs among PRs,
which is suggested by [27], is the usage of the P2P algo-
rithm Chord [28]. But the number of PRs is usually rather

small in comparison to P2P nodes due to the restricted
operation scope (as explained in section V). That is, using
a complex P2P algorithm like Chord seems to be a quite
inappropriate approach for the lightweight [3] RSerPool
architecture. Our suggested approach is significantly sim-
pler, but also very effective: on registration of a PE 7, a
PR-H 7, decides whether it is the most “appropriate” PR
for this PE:

o If it is the “best” PR for PE ¢, nothing needs to be
done.

e Otherwise (i.e. there is a PR 7 which is “better”),
this PR 75 is suggested to take over PE 1.

The suggestion to take over a PE is signalled within
the ENRP Handle Update message by setting a bit which
we denote as Takeover Suggestion Flag. Therefore, we
call our approach Takeover Suggestion. For our flag bit,
a currently unused bit in the ENRP Handle Update
message [5], [18] can be used, i.e. no new message types
or additional bandwidth overhead are required.

We now have to specify a metric for which PR 7 is
the most “appropriate” PR-H for PE :. Similar to some
P2P approaches, we simply apply an XOR metric for
this task: PR 7 is the PR of the operation scope where
w7 XOR 1 is maximal. This approach only requires the
identification of the PR 7} upon registration of PE ¢ (from
a PR list containing only very few entries). That is, the
computational overhead of our approach is very small.

C. Experimental Evaluation

In order to evaluate our approach, the MTBF M of
PR #2 to PR #5 has been varied in a PLANETLAB setup,
while PR #1 remains available. The measurement results
are presented in figure 6 for the handling speed (upper
left-hand plot), number of ASAP Endpoint Keep-Alives
(upper right-hand plot), number of ASAP Registrations
(lower left-hand plot) and number of ENRP Updates
(lower right-hand plot). Solid lines represent the results
without using the Takeover Suggestion (7=false, i.e. the
current standard behaviour); dotted lines show the results
for applying our Takeover Suggestion optimization (i.e.
T=true).

The user’s performance perspective — which is the
handling speed (shown in the upper left-hand plot of
figure 6) — is not affected by the Takeover Suggestion
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Figure 6. Avoiding Unbalanced Registrar Workloads

usage. In particular, it does not decrease the handling
speed for any of the three policies. Also, it does not affect
the system utilization (which is omitted here, due to space
limitations).

The number of ASAP Endpoint Keep-Alives (see upper
right-hand plot of figure 6) is independent of the pool pol-
icy. Obviously, for T=false (i.e. no Takeover Suggestion),
PR #1 (i.e. p=1) is responsible for monitoring almost all
PEs. Therefore, within the 15min of measurement run
time, it has to send about 12,000 messages — while the
other PRs remain idle (represented here by p=5 for PR #5;
the results of PRs #2 to #4 are omitted since they behave
similarly). Note that the number of Endpoint Keep-Alives
depends on pool size and keep-alive interval. The number
would be significantly higher for larger pools with high
intervals (which is useful for certain applications [5],
[10]). Using our Takeover Suggestion optimization (i.e.
T=true), the desired behaviour is achieved: the other PRs
take over some monitoring workload as long as they are
available. In the example simulation at AM=1000s, the
workload of PR #1 decreases from about 12,000 messages
to only about 2,500.

When applying an adaptive policy, there is the need
for a PE to re-register (at its PR-H) as well as for hand-
lespace synchronization to other PRs upon each policy

information update (e.g. changed load state in case of
LU). That is, the number of ASAP Registration and ENRP
Handle Update messages depends on the policy type.
Therefore, the plots for the number of processed ASAP
Registrations (see the lower left-hand plot of figure 6)
and the number of handled ENRP Handle Updates (lower
right-hand plot) only show the results for the LU policy
— i.e. the most labour-intensive case. Obviously, there is
a significant registration workload on PE #1 (i.e. p=1)
when our Takeover Suggestion optimization is turned
off (i.e. T=false), since PR #1 becomes the PR-H of
almost all PEs: about 4,300 registrations within 15min
of measurement run time for M =200s. At the same time,
the registration workload of the other PRs (represented by
PR #5, i.e. p=5; PRs #2 to #4 behave similarly) is quite
small. Measurements in [3] show that the registration
operation is relatively expensive: it not only consists
of the handlespace management itself, but also means
maintaining an SCTP association with each owned PE.
By applying Takeover Suggestion (i.e. 7=true), the regis-
tration workload keeps reasonably balanced: at M >750,
there is no significant difference between PR #1 and the
other PRs.

As expected, the number of ENRP Handle Updates
processed by each PR (see the lower right-hand plot of



figure 6) corresponds to the observations for the ASAP
Registrations: using our Takeover Suggestion optimiza-
tion (i.e. 7=true), the effort gets balanced. On the other
hand, when turning it off (i.e. 7=false), PR #5 (as well
as PR #2 to PR #4, which behave similarly and are
therefore omitted) mostly synchronizes with PR #1 (i.e.
many Handle Updates) and PR #1 mostly handles ASAP
Registrations (i.e. it sends out ENRP Handle Updates, but
it does not have to handle incoming Handle Updates from
other PRs).

In summary, our Takeover Suggestion optimization
leads to a significantly better PR workload balancing (for
ASAP Registrations and ENRP Handle Updates as well
as monitoring by ASAP Endpoint Keep-Alives), while not
influencing the performance of the RSerPool applications.
In particular, unlike for the P2P approach suggested
by [27], it is furthermore very efficiently realizable.

VII. CONCLUSIONS

In this paper, we have examined the PR redundancy
of RSerPool systems. Using the standard PR failure
handling procedure will lead to unbalanced management
workload on the PRs. To overcome this problem, we
have proposed our optimization “Takeover Suggestion”.
By using PLANETLAB measurements, we have shown
that it has efficiently solved the problem. Furthermore, our
optimization is simple and can be realized with small CPU
resources and without the need for additional network
bandwidth.

The results of our RSerPool research are contributed
as an Internet Draft [29] into the IETF’s standardization
process, which has just reached an important milestone
of bringing RSerPool research to application by publica-
tion of its basic protocol documents as RFCs. Our goal
is to provide configuration and optimization guidelines
for application developers and users of the IETF’s new
RSerPool standard.
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