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Abstract—With the growing complexity of software applica-
tions, there is an increasing demand for solutions to distribute
workload into server pools. Grid Computing provides powerful –
but also highly complex – mechanisms to realize such tasks. Also,
there is a steadily growing number of downtime-critical applica-
tions, requiring redundant servers to ensure service availability
in case of component failures.
To cope with the demand for server redundancy and service
availability, the IETF has recently standardized the lightweight
Reliable Server Pooling (RSerPool) framework, which is a com-
mon architecture for server pool and session management. In
this paper, we first introduce the concept of RSerPool and then
present the modeling thoughts of RSPLIB and the underlying
general groupware design. Based on RSPLIB, we will illustratively
show how to easily develop applications on top of RSerPool. We
will also offer an application evaluation example for a proof-
of-concept setup to distribute ray-tracing computation workload
into a compute pool.1
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I. INTRODUCTION AND RELATED WORK

Service availability is becoming increasingly important in
today’s Internet. But – in contrast to the telecommunications
world, where availability is ensured by redundant links and
devices [1] – there had not been any generic, standardized
approaches for the availability of Internet-based services. Each
application had to realize its own solution and therefore to re-
invent the wheel. This deficiency – once more arisen for the
availability of SS7 (Signalling System No. 7) services over
IP networks – had been the initial motivation for the IETF
RSerPool WG to define the Reliable Server Pooling (RSer-
Pool) framework. The basic ideas are not entirely new (see [2],
[3]), but their combination into one application-independent
framework is.

Server redundancy must lead to the issues of load distri-
bution and load balancing [4], which are also covered by
RSerPool [5]–[7]. But unlike solutions in the area of GRID and
high-performance computing [8], the RSerPool architecture is
designed into a lightweight system. That is, RSerPool may
only introduce a small computation and memory overhead for
the management of pools and sessions [6], [9]. In particular,
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Figure 1. A Multi-Homed SCTP Association

this means the limitation is to a single administrative domain
and only takes care of pool and session management – but
not for higher-level tasks like data synchronization, locking
and user management. These tasks are considered to be
application-specific. On the other hand, these restrictions allow
for RSerPool components to be situated on low-end embedded
devices like routers or telecommunications equipment.

The goal of this paper is to first introduce the protocols
related to RSerPool – which include the underlying SCTP
protocol, the RSerPool architecture and its protocol stack, ses-
sion failover handling and application scenarios. Furthermore,
we will present our software modeling’s thought of RSerPool.
Third, this paper analyzes the RSerPool API’s functions –
the basic mode API and the enhanced mode API – and
shows a practical example how to respectively invoke the
enhanced mode API of RSerPool at client side as well as
server side in user applications. Finally, we show how to use
the scripting service – a service provided by the RSerPool
reference implementation RSPLIB – for distribution of POV-
RAY-based ray-tracing image computations in a compute pool.

II. THE RSERPOOL ARCHITECTURE

RSerPool is based on the SCTP transport protocol. There-
fore, it is necessary to first introduce this protocol and its link
failure handling features.



A. The SCTP Protocol

The Stream Control Transmission Protocol (SCTP, see [10])
is a general purpose, reliable, connection-oriented, unicast
transport protocol which provides reliable transport of user
messages. A connection between two SCTP endpoints is
called association. Each SCTP endpoint can use multiple
IPv4 and/or IPv6 addresses to provide network fault tolerance.
The addresses used by the endpoints are negotiated during
association setup, a later update is possible by using dynamic
address reconfiguration (Add-IP, see [11]). Add-IP can also be
applied to allow for endpoint mobility. This link redundancy
feature is called multi-homing [12] and illustrated in Figure 1.
A path is a unidirectional network route between associated
SCTP endpoints; SCTP endpoints can use multiple redundant
paths through the network. One of the paths is selected as
so-called primary path. This path is used for the transport of
user data. The other paths are backup paths, which are used for
retransmissions only. Upon failure of the primary path, SCTP
selects a new primary path from the set of possible backup
paths. That is, as long as there is at least one usable path in
each direction, the association remains usable in spite of link
failures.

CMT-SCTP [13], [14] is a Concurrent Multipath Trans-
fer (CMT) extension for SCTP. Unlike standard SCTP [10],
it utilizes all paths for data transport (not just a designated
primary path). Combined with Resource Pooling (RP), the
CMT/RP-SCTP [15] extension allows for TCP-friendly CMT
transport over the Internet.

The multi-streaming feature of SCTP is the multiplexing
of several independent message streams within one SCTP
association. Since the message sequence integrity only has
to be ensured within its own stream, SCTP multi-streaming
avoids the “Head of Line Blocking” problem. Furthermore,
SCTP also introduces security features like a 4-way handshake
and a verification tag (see [10], [12], [16] for details), which
make SCTP significantly less susceptible to Denial of Service
attacks in comparison to TCP.

However, multi-homing and multi-streaming both cannot
protect a service against endpoint failures. To cope with this
problem, the IETF has defined the RSerPool architecture on
top of SCTP.

B. The RSerPool Architecture

Figure 2 illustrates the RSerPool architecture, as defined
in [17]. It consists of three major component classes: servers
of a pool are called pool elements (PE). Each pool is identified
by a unique pool handle (PH) in the handlespace, i.e. the set of
all pools. The handlespace is managed by pool registrars (PR),
which are also shortly denoted as registrars. PRs of an oper-
ation scope synchronize their view of the handlespace using
the Endpoint haNdlespace Redundancy Protocol (ENRP [18]),
transported via SCTP. An operation scope has a limited range,
e.g. a company or organization; RSerPool does not intend to
scale to the whole Internet. This restriction brings the benefit
of a very small pool management overhead (see also [6]),
allowing for hosting a PR service even on routers or embedded
systems. Nevertheless, PEs may be distributed worldwide, for
their service to survive localized disasters [19].

Figure 2. The RSerPool Architecture

Figure 3. Automatic Configuration by ASAP Announces

A client is called pool user (PU) in RSerPool terminology.
To use the service of a pool given by its PH, a PU requests a PE
selection from an arbitrary PR of the operation scope, using the
Aggregate Server Access Protocol (ASAP [20], [21]). The PR
selects the requested list of PE identities using a pool-specific
selection rule, called pool policy. Adaptive and non-adaptive
pool policies are defined in [22]. The most important policies
are the non-adaptive policies Round Robin and Random and
the adaptive policy Least Used. Least Used selects the least-
used PE, according to up-to-date load information. The actual
definition of load is application-specific: for each pool the
corresponding application has to specify the actual meaning of
load (e.g. CPU utilization or storage space usage) and present
it to RSerPool in form of a numeric value. Among multiple
least-loaded PEs, Least Used applies Round Robin selection
(see also [6]).

A PE can register into a pool at an arbitrary PR of the
operation scope, again using ASAP transported via SCTP. The
chosen PR becomes the Home PR (PR-H) of the PE and is also
responsible for monitoring the PE’s health by ASAP Endpoint
Keep-Alive messages. If not acknowledged, the PE is assumed
to be dead and removed from the handlespace. Furthermore,
PUs may report unreachable PEs; if the threshold MAX-BAD-
PE-REPORT of such reports is reached, a PR may also remove
the corresponding PE. The PE failure detection mechanism of
a PU is application-specific.

C. Automatic Configuration
RSerPool components need to know the PRs of their oper-

ation scope. While it is of course possible to configure a list



Figure 4. Client-Based State Sharing

of PRs into each component, RSerPool also provides an auto-
configuration feature: PRs may send so called ANNOUNCES,
i.e. special ASAP and ENRP messages which are regularly
sent over UDP via IP multicast. Unlike broadcasts, multicast
messages can also be transported over routers (at least, within
LANs this is easily possible). The announces of the PRs can
be heard by the other components, which can maintain a list
of currently available PRs. That is, RSerPool components are
usually just turned on and everything works automatically.

An example is provided by Figure 3 for the PU/PE config-
uration: all PEs and PUs within the multicast domain (e.g. a
company LAN) can learn the identity of the PE automatically.
Components outside of this domain (e.g. off-site systems in
the Internet) need manual configuration.

D. Session Failover Handling
While RSerPool allows the usage of arbitrary mechanisms

to realize the application-specific resumption of an interrupted
session on a new server, it contains only one built-in mecha-
nism: Client-Based State Sharing. This mechanism has been
proposed by us in our paper [23] and it is now part of the
ASAP standard [20]. Using this feature, which is illustrated
in Figure 4, a PE can send its current session state to the PU in
form of a state cookie. The PU stores the latest state cookie and
provides it to a new PE upon failover. Then, the new PE simply
restores the state described by the cookie. For RSerPool itself,
the cookie is opaque, i.e. only the PE-side application has to
know about its structure and contents. The PU can simply
handle it as a vector of bytes (However, as described in [7],
a more complex handling concept may improve application
efficiency). Cryptographic methods can ensure the integrity,
authenticity and confidentiality of the state information. In the
usual case, this can be realized easily by using a pool key
which is known by all PEs (i.e. a “shared secret”).

III. THE SOFTWARE MODELING OF RSPLIB

A. Overview of the Modeling Scheme
Our implementation of RSerPool – called RSPLIB – has been

developed at the Computer Networking Technology Group of
the Institute for Experimental Mathematics at the University
of Duisburg-Essen, Germany. In order to support research and
the ongoing RSerPool standardization process of the IETF,
RSPLIB has been publicly available as Open Source under GPL

Figure 5. The Dispatcher Groupware Model

Figure 6. The RSPLIB Registrar Model

license from the beginning. Meanwhile, it has also become the
reference implementation of the IETF RSerPool WG. Source
packages can be found on the project homepage [24], binary
packages have already been included in Ubuntu Linux since
December 2008. RSPLIB consists of three separate parts: a PR
implementation, a library for the development of PUs and PEs
and a set of example applications.

In order to support an easy portability of RSPLIB to different
platforms, all components are built on top of an abstraction
layer denoted as Dispatcher, a reusable groupware. The build-
ing blocks of the Dispatcher are illustrated in Figure 5. It
consists of sub-components responsible for timer management
(Timer Mgt), event handling (Event Callback) and an abstrac-
tion of the system’s transport protocol API. Even though RSP-
LIB currently already supports Linux, FreeBSD, MacOS X and
Solaris, an interface to other systems – particularly Microsoft
Windows – should be relatively straightforward.

B. The Registrar Modeling

Clearly, the PR is the key component of an RSerPool
system. The building blocks of the PR provided by RSPLIB are
shown in Figure 6. The foundation of the PR is the Dispatcher.
The central element of a PR is the handlespace management.
Efficient handlespace management is crucial for the perfor-
mance of the system and its scalability to a large number of
PEs and PUs. Therefore, a significant research effort has been
made on the data structures and algorithms to operate on the
handlespace. Realistically, our PR implementation can manage
up to many thousands of PEs and PUs. Details on the used
data structures and algorithms, which are based on red-black
trees, can be found in [6].



Figure 7. The RSPLIB PU/PE Library Model

In addition to the ENRP and PR-side ASAP protocols, the
PR implementation furthermore features some security im-
provements suggested by us in [25], [26] to reduce the impact
of Denial of Service (DoS) attacks on the deployed RSerPool
systems. For the support of data integrity, authenticity and
confidentiality, the PR currently relies on IPsec [27]. However,
adding support for SCTP-aware TLS is an intended feature for
a future version.

C. The PU/PE Library Modeling
The implementation of the PE and PU functionalities has

been realized as a function library, which can be linked stati-
cally or dynamically to corresponding programs. The building
blocks of the PU/PE library are presented in Figure 7: again
the Dispatcher component is reused to encapsulate the system-
dependent functionalities. On top of the Dispatcher, the ASAP
Instance component realizes the core ASAP functionalities
on the PU and PE sides. It consists of the following sub-
components:

1) ASAP Protocol: This sub-component realizes the PU
and PE side of the ASAP protocol, including message
encapsulation and decapsulation.

2) Registrar Table: PR identities – configured statically
by the administrator or learned by listening to the
corresponding PRs’ multicast ASAP Announces – are
stored into the Registrar Table. The Registrar Table sub-
component also takes care of flushing expired entries
and to pick a randomly selected PR when needed.

3) ASAP Cache: The ASAP Cache reuses the handle-
space management implementation of the PR to realize
the PU-side cache. Each time a handle resolution is
performed, its results are propagated into this cache
and may be reused for further handle resolutions. For
details on efficient cache usage, see also [5], [28]; an
appropriate configuration of the cache may reduce PR
query overhead.

4) Main Loop Thread: The Main Loop Thread is an event
loop that handles timer events (e.g. flushing out-of-date
PR entries in the Registrar Table) and socket events
(e.g. answering ASAP Endpoint Keep-Alives). In order
to simplify the usage of the RSerPool functionalities,

the Main Loop Thread has been realized as a separate
thread. That is, it runs in the background so that the
application using the PU/PE library does not have to
take care of the RSerPool event processing.

The ASAP Instance cannot be directly accessed by the
application itself. Instead, the application access is provided
by the RSerPool API on top of the ASAP Instance.

IV. THE RSERPOOL API

The RSerPool API is a very important part of RSPLIB,
another reusable groupware. It provides a method for existing
applications to access RSerPool. The API consists of two API
layers: the simple Basic Mode API and the powerful Enhanced
Mode API.

A. The Basic Mode API

In order to let RSerPool support existing applications which
do not require the support of the ASAP Session Layer (i.e.
the Control Channel between PU and PE), the Basic Mode
API offers the core RSerPool functionalities: registration,
reregistration and deregistration for PEs, as well as handle
resolution and failure reporting for PUs.

A non-RSerPool client application usually connects to a
server by first resolving its hostname into a transport address
using DNS and then creating and connecting a socket. The
Unix function to resolve a hostname into a transport address
is called getaddrinfo()2. Therefore, the Basic Mode PU-side
API mimics the DNS resolution API of Unix for the handle
resolution call: the RSPLIB function call rsp getaddrinfo() re-
solves a PH into the transport address of a policy-selected PE.
The structures including the transport addresses are compatible
to the standard getaddrinfo() call. In case of a PE failure, the
PU can report this failure to its PR using the rsp pe failure()
function call.

On the PE side, the function call rsp pe register registers a
PE into a pool. RSPLIB automatically takes care of answering
ASAP Endpoint Keep-Alives by the PR. For deregistration,
the function call rsp pe deregister() is provided.

Due to space limitations, the basic mode API is not ex-
plained in detail here; more information can be found in [29].
Instead, we focus on the more interesting Enhanced Mode
API.

B. The Enhanced Mode API

The Enhanced Mode API offers the full RSerPool Session
Layer functionalities, i.e. it takes care for connection establish-
ment and maintenance as well as for triggering an application-
specific failover procedure in case of PE failure.

1) Pool User Side: In a non-RSerPool client application,
a connection to a server is usually established by resolving
the server’s hostname into a transport address by using DNS,
creating a socket (using the Unix socket() call) and connecting
this socket to the resolved transport address (using the Unix
connect() call). After that, the calls send() and recv() can be
used to send and receive data via the socket. Finally, the socket
is removed by a call to close(). For more details, see [30].

2The deprecated gethostbyname() call is similar.



Algorithm 1 A Pool User using the Enhanced Mode API

1 / / Cr ea t e RSerPool s e s s i o n
2 s e s s i o n = r s p s o c k e t ( 0 , SOCK STREAM, IPPROTO SCTP ) ;
3 r s p c o n n e c t ( s e s s i o n , ” S t r eamingMediaPoo l ” , . . . ) ;
4

5 / / Run a p p l i c a t i o n : r e q u e s t r a d i o s t r e am
6 r s p s e n d ( s e s s i o n , ”GET / s t r e a m s / music . ogg ”
7 ”&r a t e =44100& bps=16&ch =2 HTTP / 1 . 0 \ r \n\ r \n ” ) ;
8 whi le ( ( l e n g t h = r s p r e c v ( s e s s i o n , b u f f e r , . . . ) ) > 0) {
9 doSomething ( b u f f e r , l e n g t h , . . . ) ;

10 }
11

12 / / C lose RSerPool s e s s i o n
13 r s p c l o s e ( s e s s i o n ) ;

In order to make it easy for a programmer to write an
RSerPool-based application, the approach for the Enhanced
Mode API is to mimic the Unix sockets API. Listing 1 shows
an example: First, a session is created by using the rsp socket()
call in line 2 (a session is also denoted as RSerPool Socket for
compatibility reasons). After that, the session is connected to
a pool by calling rsp connect() in line 3. The pool is given
by its PH (here: “StreamingMediaPool”).

After establishment of the session, it can be used for the
application protocol. In lines 6 to 10, the example application
downloads a file by sending a request (by using rsp send())
and receiving the file (by using a sequence of rsp recv() calls).
Note, that as soon as a PE has received the download request
and sent a cookie including file name and current position to
the PU, the RSPLIB can transparently handle failovers. That is,
no additional application code is necessary. After completion
of the file download, the session is finally removed by using
the rsp close() call (line 13).

2) Pool Element Side: A non-RSerPool server application
usually creates a socket (by again using the socket() call), binds
it to a specific port number (by using the bind() call, e.g. TCP
port 80 for a web server), sets the socket into the “listen” mode
(by using the listen() call) and accepts incoming connections
by using the accept() call. For serving the newly connected
client, a new thread may be created. It handles the application
protocol on the new connection by using send() and recv()
calls. The connection is closed by a call to close(). For more
details, see [30].

As for the PU, the PE-side Enhanced Mode API also mimics
the Unix sockets API. An example is given in Listing 2: first,
a RSerPool socket is created (line 22) and the PE is registered
to a pool given by its PH (here: “StreamingMediaPool”). The
RSPLIB library will automatically take care of re-registrations.
After registering the PE, a loop waits for incoming sessions (by
using rsp poll() in line 28), accepts them (using rsp accept()
in line 32) and creates new threads to serve them.

The thread function handling the session is shown in lines 2
to 17: first, it checks whether the first message received by
rsp recv() (line 4) is a state cookie. In this case, a saved
session state is restored and the first command is read (line 7
to 8). After that, the loop from lines 10 to 15 handles
commands and saves the current session states as state cookies
(using rsp send cookie() in line 13; the RSPLIB library sends

the cookies via ASAP Cookie messages over the Control
Channel to the PU’s Session Layer). Finally, the session is
shut down by using rsp close().

The Enhanced Mode API also provides a UDP-like pro-
gramming model (i.e. one socket handles multiple connec-
tions) and supports poll()/select()-based implementations (i.e.
single-threaded programs). Due to space limitations, these
programming schemes are not explained here. Some more
details can be found at [24].

V. THE SCRIPTING SERVICE

The Scripting Service (SS) is one of the rsplib services
which is based on the Enhanced Mode API. SS is a simple,
useful and strong tool to apply RSerPool for distributing
workload in a computation pool, based on shell scripts. This
service is not “just another demo”, it can be applied for real-
world applications – as we will show in our proof-of-concept
in Section VI. The Scripting Service works as follows: a PU
can establish a session with a pool and upload a TAR/GZIP-
archived workload package to a selected computation PE.
The PE unpacks the archive into a temporary directory. Next,
it runs a script (named ssrun) which is provided by the
archive. This script can do arbitrary work and finally write
an output archive. The output archive (i.e. the results of the
work performed by the PE) is finally downloaded by the PU.

By using the Scripting Service, it becomes very easy to re-
alize workload distribution of an application – e.g. to perform
ray-tracing computations (as we will show in Section VI) or
to process simulation runs. A user of this service just has to
create appropriate workload packages (e.g. by using a small
shell script to assemble them) and to call the Scripting Service
PU – named scriptingclient – which is provided by
RSPLIB. In order to avoid installing e.g. the computation
program on the PEs themselves – which may be difficult
in a heterogeneous pool of different operating system ver-
sions, installed software, etc. – the workload packages could
also contain all needed binary executables and their shared
libraries. Although this would mean an increased bandwidth
requirement (which can be neglected in LAN setups), this
could lead to a significantly reduced deployment effort.

The scripting pool can e.g. use the Least Used policy to
achieve a balanced workload among its nodes. Each PE can
handle up to SSMaxThreads sessions simultaneously [31];



Algorithm 2 A Pool Element using the Enhanced Mode API

1 / / S e r v i c e t h r e a d loop f u n c t i o n
2 void s e r v i c e T h r e a d ( s e s s i o n )
3 {
4 r s p r e c v ( s e s s i o n , command , . . . ) ;
5 i f ( command i s a c o o k i e ) {
6 / / Got a c o o k i e −> r e s t o r e s e s s i o n s t a t e
7 R e s t o r e s t a t e ;
8 r s p r e c v ( s e s s i o n , command , . . . ) ;
9 }

10 do {
11 / / Handle commands from poo l u s e r
12 Handle command ;
13 r s p s e n d c o o k i e ( s e s s i o n , c u r r e n t s t a t e ) ;
14 r s p r e c v ( s e s s i o n , command , . . . ) ;
15 } whi le ( s e s s i o n i s a c t i v e ) ;
16 r s p c l o s e ( s e s s i o n ) ;
17 }
18

19 i n t main ( . . . )
20 {
21 / / Cr ea t e and r e g i s t e r poo l e l e m e n t
22 poo lE l emen t = r s p s o c k e t ( 0 , SOCK STREAM, IPPROTO SCTP ) ;
23 r s p r e g i s t e r ( poo lElement , ” S t r eamingMediaPoo l ” , . . . ) ;
24

25 / / Handle incoming s e s s i o n r e q u e s t s
26 whi le ( s e r v e r i s a c t i v e ) {
27 / / Wait f o r e v e n t s
28 r s p p o l l ( poo lElement , . . . ) ;
29

30 i f ( incoming s e s s i o n ) {
31 / / Ac c ep t new s e s s i o n
32 s e s s i o n = r s p a c c e p t ( poo lElement , . . . ) ;
33 C r e a t e s e r v i c e t h r e a d t o h a n d l e s e s s i o n ;
34 }
35 }
36

37 / / D e r e g i s t e r poo l e l e m e n t
38 r s p d e r e g i s t e r ( poo lE lemen t ) ;
39 r s p c l o s e ( poo lE lemen t ) ;
40 }

a PE’s load value is set according to its actual number of
sessions. For example, on a PE having a 4-core CPU, it
is useful to set SSMaxThreads=4 to get all cores utilized.
If a PE rejects a session (e.g. when it is already serving
SSMaxThreads sessions), or if it goes out of service (e.g.
when the PC is turned off), the session is simply restarted
from scratch (i.e. the so-called “abort and restart” principle [7])
after a short delay (e.g. 5s). This delay avoids overloading the
network with reject-and-retry floods [31] when there are too
few PEs available.

Note that the Scripting Service not only provides simple
load balancing: the RSerPool-based service is also highly
available without additional effort (if there are at least 2 PRs
and 2 PEs, of course).

VI. A PROOF OF CONCEPT

A. Introduction
The “Persistence of Vision Ray-Tracer” [32] (POV-RAY)

is a well-known Open Source ray-tracing application, i.e.
it computes 3-D images with realistic lighting. Such image
computations are very time-consuming: for example the image

Figure 8. The Computed POV-RAY Example “landscape.pov”



shown in Figure 8, which is a computation result of the
landscape.pov example provided by the POVRAY pack-
age, needs about 12 minutes to compute in a screen resolution
of 1024×768 on a recent 64-bit, 2.3 GHz AMD Athlon 4400+
system. Clearly, such computations (e.g. as the images of a
movie) are a strong candidate for workload distribution and a
very illustrative example for utilizing the Scripting Service.

B. Applying the Scripting Service for POV-RAY

In order to use the Scripting Service for the POV-RAY
computations, it is first necessary to write an appropriate
ssrun shell script which will be executed on the PEs. Our
working example is presented in Listing 3: it takes the name
of the results archive as its first argument (line 2). In line 4
to line 5, POV-RAY is executed with the input file named
input.pov (this file is a description of the image to be
computed) and the output file named output.png (this is
the completed image, in PNG format). The log output of the
computation is written into a file named output.txt. In
particular, this log output may contain error messages in case
of problems. Therefore, it is useful to also archive this file
– together with the resulting image (line 6) – for debugging
purposes. Finally, the script returns with its status value. For
the case where either the POV-RAY computation (line 4) or
the archiving (line 6) has failed, it will be set to 1. A value
of 0 (line 3) means that the computation has been successfully
completed.

The 6-lined script shown in Listing 3 has already every-
thing necessary to perform the remote POV-RAY runs using
RSerPool/RSPLIB! On the PU side, the only task necessary is
to pack an input file input.pov together with the ssrun
script above into a Tar/GZip archive, provide it to RSPLIB’s
scriptingclient application and finally unpack the re-
sults (The PU-side script is not shown here due to space
limitations; it can be found in our RSerPool tutorial [33]).
That is, the programming effort for such a task – consisting
of just a few lines of shell code – is really small.

C. Experimental Proof-of-Concept Evaluation
In order to show the effectiveness of our script to distribute

POV-RAY runs into a pool, we have set up 5 PCs with a
recent 64 bit, 2.3 GHz AMD Athlon 4400+ CPU running
under FreeBSD 7.1 with RSPLIB version 2.6.4. An old 32-
bit AMD Athlon 1.3 GHz system running under Ubuntu Linux
version 9.04 (“Jaunty Jackalope”) hosts a PR and also executes
the PU-side script to distribute the runs. Note, that we have a
heterogeneous setup, with different operating systems (Linux
and FreeBSD) and CPU architectures (32-bit and 64-bit).
Also, the PC handling pool management (by the PR) and
workload distribution does not need a high CPU power – the
old AMD Athlon system assembled in early 2001 (i.e. almost
9 years ago) is already sufficient for the lightweight RSerPool
architecture! Clearly, the computation PCs must be powerful
to run POV-RAY (while the actual RSerPool PE handling also
requires minimal overhead).

In our pool, we have computed the POV-RAY example
images in resolution 1024×768 for increasing the number of
PEs in our compute pool. Each run has been repeated 5 times.
The results plot – shown in Figure 9 – shows the average

Figure 9. Resulting Runtime for Increasing Number of Compute PEs

runtime in seconds as well as the 95% confidence intervals.
The used pool policy has been Least Used, since it has the best
load balancing quality (see [28], [31] for details on policies).

Having only 1 PE, the computation takes about 47 minutes.
With 2 PEs, the computation duration almost halves (27 min-
utes) and with 5 PEs it is reduced to around 15 minutes. The
reason why it does not reduce to about 1

5 of the runtime
for 1 PE is that the computation work packages are quite
heterogeneous. Some of the example images render in a few
seconds while more complex images (like Figure 8) takes
about 12 minutes. That is, for 5 PEs most of the PEs will
become idle after a few minutes while some PEs still process
the long-running requests. Clearly, this is a property of the
application workload and not an issue of the load distribution
architecture.

In summary, we have shown that the distribution of our
workload to a pool of compute nodes works efficiently. Fur-
thermore, the workload distribution can be realized easily,
with an effort of only a few lines of shell code as introduced
in Subsection VI-B.

VII. CONCLUSIONS

In this paper, we have provided an overview of Reli-
able Server Pooling (RSerPool), a common and lightweight
framework for server pool and session management. We have
introduced how to build up our reusable Dispatcher, RSPLIB
Registrar and RSPLIB PU/PE Library of RSerPool by applying
software engineering modeling theory.

The RSPLIB groupware is the reference implementation of
RSerPool. Its two API layers provide the access to the RSer-
Pool functionalities for applications. From a programmer’s
perspective, these APIs mimic the Unix socket API. These
APIs make it rather easy and convenient to apply RSerPool in
existing and new applications.



Algorithm 3 The ssrun Script for POV-RAY Image Computation Runs

1 # ! / b i n / sh
2 OUTPUT ARCHIVE=$1
3 SUCCESS=1
4 povray −w −h +a0 . 3 −D +FN8 + Ooutpu t . png + I i n p u t . pov \
5 >o u t p u t . t x t 2>&1 | | SUCCESS=0
6 t a r c z v f $OUTPUT ARCHIVE o u t p u t . png o u t p u t . t x t | | SUCCESS=0
7 e x i t $SUCCESS

An application example of RSerPool is the Scripting Ser-
vice. By using an example for the distribution of POV-
RAY ray-tracing computation workload in a compute pool,
we have shown that the application of RSerPool and the
Scripting Service is simple, strong and the effort to realize our
application only needs a few lines of shell script code. Finally,
we have shown the effectiveness of our example approach –
the distribution of image computations – by a proof-of-concept
evaluation.
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