
High Availability using Reliable Server Pooling

Thomas Dreibholz (dreibh@exp-math.uni-essen.de)

University of Essen, Institute for Experimental Mathematics

Ellernstraße 29, 45326 Essen, Germany

Michael Tüxen (Michael.Tuexen@siemens.com)

Siemens AG, ICN CP SE C 7

81359 Munich, Germany

December 15, 2002

Abstract

Providing fault tolerancy is crucial for a growing number ofIP-based applications. There exist a lot
of proprietary solutions for this problem, but free alternatives are rare.

Currently, the IETF RSerPool working group is standardizing a protocol suite for Reliable Server
Pooling, which copes with the challenge of providing high availability by using redundant servers.
Servers for the same service are grouped into a server pool. Aserver in a pool is called pool element (PE),
a user of a pool is called pool user (PU). When a PE fails, its PUs simply select another one from the
pool and initiates an application-specific failover procedure. This fail-over is supported by the RSerPool
protocol suite. Each PE registers at a name server and is thencontinously supervised by that specific
name server. All name servers of an operational scope provide a redundant system for name resolution
from pool handles to transport addresses of pool elements topool users. RSerPool uses SCTP to provide
network fault tolerance and address scoping functionality.

The RSPLIB is a prototype implementation of the RSerPool protocol suite, developed under the GNU
Public License in cooperation between Siemens and the Computer Networking Technology Group of the
University of Essen. It currently runs under Linux, FreeBSDand Darwin.

Our paper covers aspects of designing and implementing highly available applications using RSer-
Pool with our RSPLIB implementation. First, we will give an introduction to the RSerPool protocol suite
and an overview of the RSPLIB components. Then, we describe the RSPLIB API, especially focussing
on the implementation of pool element and pool user programsto provide high reliability. Furthermore,
we show our current implementation status and future plans.This will be followed by a short look on
the problems that can arise when the RSerPool architecture is used. Finally, we give an example how
RSerPool can be used to realize highly available services. And last but not least, we show how distributed
computing architectures can make use of the RSerPool architecture.

This work is part of KING, a research project of Siemens AG. The work of this project is partially
funded by the Bundesministerium für Bildung und Forschung of the Federal Republic of Germany (För-
derkennzeichen 01AK045).

1 Introduction to Reliable Server Pooling

The SIGTRAN working group [1] of the Internet Engineering Task Force (IETF) is developing a protocol
suite for transporting telephony signaling over IP-based networks. The Signaling System No. 7, the proto-
col suite used for telephony signaling in the TDM world, provides a very high degree of redundancy and
availability. The same service is also desirable for an IP-based solution.

Therefore, it was decided to develop a network fault tolerant transport protocol which is used for all
adaptation layers of the SIGTRAN protocol suite. This transport protocol is called the Stream Control
Transmission Protocol (SCTP). However, using SCTP does notprovide any help if a server fails. Server
failures can only be handled by having multiple servers providing the same functionality. All SIGTRAN
adaptation layers provide some sort of server pooling usingmultiple Application Server Processes (ASPs)

1

1 INTRODUCTION TO RELIABLE SERVER POOLING

in one Application Server (AS). It was decided that having a generic and common solution for the server
pooling functionality would be helpful and usable also outside SIGTRAN. Therefore, the Reliable Server
Pooling (RSerPool) working group [12] has been founded.

The RSerPool protocol suite focuses on providing server redundancy using server pools. In combina-
tion with the network fault tolerant transport protocol SCTP, it is possible to build systems without single
points of failure.

The RSerPool architecture uses three classes of elements:

Pool Elements (PEs)These are the servers being part of a pool and providing the same service within a
pool.

Pool Users (PUs)These are the clients being served by one PE.

Name Servers (NSs)These nodes provide a translation service and supervise thePEs.

A pool is identified by a pool handle, which is a byte vector of arbitrary length. If a server wants to become
a PE for a specific pool, it just registers itself with the poolhandle of the pool at one of the name servers.
The protocol used between the PEs and the NSs is called the Aggregate Server Accesss Protocol (ASAP),
currently being defined in [4]. This name server will supervise this PE to make sure that it is working and
informs the other NSs about the new PE. The pool handle is onlyvalid in its operational scope. All NSs
within an operational scope have information about all PEs within the operational scope. This means that
the namespace used by RSerPool is flat. The protocol used by the NSs to exchange their information is
called the Endpoint Name Resolution Protocol (ENRP), currently being defined in [5]. If the IP network
provides multicast capabilities, the NSs can send out server announcement messages using IP-multicast.
This allows PUs, PEs and other NSs to detect NSs.

If a client wants to be served by a PE belonging to a pool identified by a specific pool handle, it sends
a name resolution request to a NS. The NS will respond with a subset of all transport addresses, which can
be used to access the PEs. This communication is also using ASAP. The selection of the PE is realized in
two steps: In the first step, the NS can select a subset of all PEs and their transport addresses in the pool.
This selection can be based on the requested transport capabilities and/or the pool policy. In the second
step, the PU has to select one of the PEs in the given subset. This can also be based on the pool policy.
Examples for pool policies are round robin or least used. Other policies are also available in RSerPool; it
is furthermore easily possible to add new ones.

Whenever a PU detects that a PE cannot be reached, one of the NSs is informed. This information,
combined with the ongoing supervision, is used to remove PEsfrom the pool if they are out of service.

In contrast to the Domain Name System (DNS), RSerPool

1. uses a flat namespace,

2. allows arbitrary pool handles,

3. provides a high probability that only PEs are announced which are in service and

4. allows dynamic registration and deregistration.

In case of a failure of a PE, the PU can fail-over to a differentPE of the same pool. The grade of intervention
of the RSerPool upper layer depends on the required service.It requires no intervention if the upper
layer is always using pool handles for sending and allows some messages to be dropped during the fail-
over. If a message loss during fail-over is not acceptable, the upper layer has to use application-level
acknowledgements and its own buffering.

The communication between PU and PE consists of two channels:

data channel This channel is used for the service related traffic.

control channel This channel is used for RSerPool related traffic.

2

2 THE IMPLEMENTATION

The control channel is used for different kinds of RSerPool services. First of all, it is allowed that a PU is
also a PE of some pool. To provide also redundancy for that PU,the peer of the PU must know the pool
handle of the pool the PU belongs to. This information is sentusing ASAP as part of a so called business
card from the PU to the PE. Another usage of the control channel is the last will. A PE can send a last will
to the PU, containing a list of specific PEs of its pool to use for fail-over in case of its failure. A third usage
of the control channel are the cookies. A PE can send a cookie to the PU whenever it wants. The PU stores
only the latest received cookie. In case of a fail-over to a different PE, it sends the stored cookie to the new
PE first. This very simple method can be used to transfer statefrom the failed PE to the new PE. See also
[9] for more information. However, this does not provide a generic method for state sharing between the
PEs, which is out of scope of the RSerPool working group.

The data channel and the control channel have to be tied together. If SCTP is the transport protocol for
the data channel, the control channel and the data channel can use the same transport connection, called
an SCTP association. SCTP supports the multiplexing of multiple upper-layer protocols by using different
payload protocol identifiers (PPID). Messages for the control channel will use the registered PPID for
ASAP, the data channel the PPID for the specific service.

If UDP is the transport protocol of the data channel, the control channel cannot be multiplexed with the
data channel for at least two reasons: One would have to definea TCP-friendly congestion control algorithm
for the ASAP traffic and provide reliable transport within the ASAP layer. Both would make ASAP much
more complex. Therefore, it is currently being suggested that the control channel is transported over TCP
or SCTP. Since all ASAP messages use a Tag-Length-Value (TLV) structure, both transport protocols can
be used. The control channel and the data channel are tied together by sending first a message on the
control channel describing the transport layer endpoints of the data channel.

If TCP is the transport protocol of the data channel, there are two possible solutions. One can use a
separate TCP connection for the control channel and use the same mechanism as for the UDP-based data
channel to tie the control and data channel together. The advantage of this method is that the service related
traffic, the data channel, is not modified. The second solution is to multiplex the control and data channel
on one TCP connection. In this case, the multiplexing layer as defined in [6] has to be used.

This handling of data channel and control channel is currently being discussed in the RSerPool working
group. The support of other transport layers, for example DCP, or protocols not using a transport layer but
running directly on top of IP is currently not being discussed. But the RSerPool protocol suite can be easily
extended to support them in the future.

It should be noted that the ASAP communication between the PEand the NS (i.e. registration, deregis-
tration, supervision) must be transported over SCTP. The communication between the PU and the NS (i.e.
name resolution) can be transported over TCP or SCTP. This does not force PUs, which only want to access
TCP-based services, to implement SCTP as an additional transport protocol just for simple name queries.
It is required, that the PU side implementation of the RSerPool suite can be very light-weighted. The com-
munication between the name servers can be SCTP-based or IP multicast based, if this is supported by the
IP layer. The IP layer can be based on IP version 4 and/or IP version 6.

Using SCTP for handling network failures and the RSerPool protocol suite for handling server or host
failures, one can provide a system without a single point of failure. However, to provide a highly reliable
service it is also required that no one can modify the name system without being authorized. That is, a PE
communicating to a NS should be authenticated. Security is avery important part of RSerPool. Threats
have been analyzed and the protocol design of the RSerPool suite ensures that existing protocols, e.g.
Transport Layer Security (TLS) and IP-Security (IPSec), are applicable. Defining own solutions is out of
the scope of RSerPool.

2 The Implementation

Our implementation of the RSerPool protocol suite has been released under the GNU Public License (GPL)
and can be downloaded under [13] and [11]. A key requirement for our implementation has been the
portability to different platforms, especially also non-Unix ones. While currently only Linux, FreeBSD and
Darwin are supported, there are also plans to use it for devices like mobile phones or PDAs. Applications
for such devices especially include highly available e-commerce and mobile commerce. The portability

3

2 THE IMPLEMENTATION 2.1 The Dispatcher Class

requirement has leaded to our decision not to assume the availability of threads (even single-task operating
systems like FreeDOS or M$-DOS should be supported). Furthermore, C instead of C++ has been chosen
as implementation language for the reason that ANSI-C compilers are more widespread than C++ ones;
although an object-oriented language would have advantages for implementation effort and maintainability
of the code. However, our implementation’s core has been realized in an object-oriented scheme. IPv6 has
been fully supported from the beginning of the project.

rsplib API Layer

Pool Namespace

HashTable <Pool>

HashTable <PoolElement>

List <Timer>

List <FDEvent>

Dispatcher

ASAP Instance ASAP Cache

ServerTable

ASAP Message ASAP Parser

ASAP Creator

Figure 1: The RSPLIB implementation overview

An overview of our implementation can be found in figure 1. We describe the parts shown there in the
following.

2.1 The Dispatcher Class

The Dispatcherclass manages timers and events on sockets. That is, file descriptors (here, especially
for sockets) can be registered at aDispatcherobject for the events read, write and/or exception. Further-
more,Timer objects can be registered. Both, sockets and timers, have toprovide a callback function that
is invoked when a registered event occurs or a timer has expired. Waiting for events and invoking the
callback function have been implemented as two separate parts of theDispatcherclass: First, the method
dispatcherGetSelectParameters()obtains the parameters for the Unix-standard functionselect(); that is,
fdsets for read, write and exception on file descriptors and atimevalstructure containing the maximum
timeout. The user of theDispatcherobject may now add additional file descriptors to thefdsets or decrease
the timeout. Then,select()can be called, followed by invoking theDispatchermethoddispatcherHandle-
SelectResult(), which finally handles possible socket or timer events.

Note, that theDispatcherclass itself does not require that the operating system has some form of
select()function. Since waiting for events has to be realized outside of theDispatcherclass, a wrapper
function may be realized which takes the select parameters (fdsets and timeout) and implements the desired
functionality using an OS-specific system call.

The Dispatcherclass provides two methods,dispatcherLock()and dispatcherUnlock(). Their only
functionality is to invoke the callback functionslock()andunlock(), which have to be specified to theDis-
patcherconstructor. These callbacks can realize obtaining and releasing a recursive mutex in the case that
the used operating system (e.g. Linux) supports threading (e.g. usinglibpthread). The current default is to

4

2 THE IMPLEMENTATION 2.2 The ASAPInstance Class

uselibpthreadwhen it is available (Linux, FreeBSD, Darwin). TheDispatcherclass uses thedispatcher-
Lock()anddispatcherUnlock()functions everywhere where exclusive access to its structures is necessary.
Of course, classes derived fromDispatchermay use this functionality, too. Using these two functions,
system-independent thread-safety is realized in our implementation.

2.2 The ASAPInstance Class

TheASAPInstanceclass takes care for locating a name server and maintaining aconnection to it. Further-
more, it provides registration and deregistration of pool elements, name resolution and policy-based pool
element selection. Finally, it maintains the name resolution cache. It consists of three classes:ServerTable,
ASAPCacheandASAPMessage.

2.2.1 ServerTable

A ServerTableobject is responsible for creating multicast sockets to listen for server announces. Received
announces are added to the server table. Furthermore, static entries may be added when the underlying
network does not support or prohibits multicasts. The dynamic entries in the table are flushed when they
are not refreshed within a certain configured interval.

TheServerTableclass furthermore provides the establishment of a connection to one of the announced
name servers. To make this process as fast as possible, especially for the case that some servers of the list
have just become unreachable, it is tried to connect to several name server addresses from the server table
simultaneously. The first successfully established connection is taken as new name server connection. To
increase speed, the connection trial timeout does not use the system’s default. Instead, it uses a configured,
lower value (e.g. 5 to 10 seconds).

2.2.2 ASAPCache

An ASAPCacheobject contains aPoolNamespaceobject, which contains the part of the name server’s
namespace cached by name resolutions. A timer realizes purging pool elements and pools that have not
been refreshed within a certain configured interval. ThePoolNamespaceobject contains hash tables for
Pool objects andPoolElementobjects. APool object contains a list of ownedPoolElements. A pool
element selection by a pool policy (e.g. least used or round robin) specified in aPoolPolicyobject is also
realized within thePoolclass.

2.2.3 ASAPMessage

TheASAPMessageclass is responsible for the creation of outgoing ASAP messages (ASAPCreatormod-
ule) and parsing incoming ones (ASAPParsermodule).

2.3 The RSPLIB API layer

Due to portability reasons, no core class uses global variables. Therefore, all of these classes are reentrant.
Using an operating system with MMU-based memory management, a shared library can be loaded once
and then mirrored to the programs’ memory spaces. On writes,the affected memory pages can simply be
duplicated, creating an exclusive copy for the program. Having no MMU, which is usually the case for
mobile phones, PDAs and also routers, this is impossible. But having a reentrant library, it may be loaded
once into the global memory and accessed by all programs. An excellent example for such a realization is
the good old AmigaOS operating system.

The RSPLIB API layer provides a simple and small wrapper for the core classes. While the core
classes have been designed for portability and reusability, the RSPLIB wrapper should make the usage
of the RSerPool functionality as simple as possible. This especially includes providing a programming
interface as similar as possible to the current non-RSerPool socket and name resolution API.

While the RSerPool protocol suite is currently still under standardization at the IETF and functionality
may be heavily changed, added or removed, the programming API should be as stable as possible and only

5

3 THE RSPLIBAPI

changed when it is absolutely necessary. A changed API requires recompiling the applications while a
binary-compatible one simply allows to update a shared library. To allow introducing new parameters and
skipping obsolete ones, the RSPLIB API has been inspired by a simple but effective idea from the good old
AmigaOS 2.04, the so called tag items. Such tag items are simple arrays containing (Tag, Data) tuples.Tag
is an at least function-unique number denoting a certain parameter; theDatafield contains the parameter’s
value (e.g. an integer value or a pointer to a structure). Thespecial tagTAG_DONEdenotes the end of the
tag item array.

3 The RSPLIB API

3.1 Initialization and Clean-up

Before any other function of the RSPLIB library can be used, it has to be initialized using therspInitialize()
function. This will create globalDispatcherandASAPInstanceobjects. The tag items forrspInitialize()
allow specifying customlock() andunlock() functions for theDispatcherobject to ensure thread-safety
by a specific operating system’s functionality (e.g.libpthreador GNU pth for Unix-clones or Semaphore
functions for AmigaOS). After the initialization, the RSPLIB is ready for usage. Note, that at this point
no connection to a name server has been established. The RSPLIB only listens for server announces. A
connection will be established when it is required for the first time. The reason is simple: Depending on
the name servers’ announce interval, it may take a few seconds until the first announce is received. Until
this happens, the program can probably do more useful thingsthan waiting.

To remove all objects created during initialization and runtime of the RSPLIB , the functionrsp-
CleanUp()has to be called. It will free all resources allocated by the RSPLIB . Such a functionality is
mandatory under all operating systems without resource tracking (e.g. DOS or AmigaOS). That is, only
the program itself remembers which memory blocks, file descriptors, etc. have been allocated or opened;
the program itself is responsible to free or close them before exiting. Any non-freed memory block or
non-closed file descriptor would be allocated or opened until the next reboot.

But the clean-up functionality is also useful for debuggingpurposes under Linux. The Valgrind [2]
memory debugger completely interprets the x86 assembler code of programs and is therefore able to track
the usage of every bit. If there are any remaining memory blocks allocated by the RSPLIB after rsp-
CleanUp(), there must be a memory leak. Due to the tracking functionality of Valgrind, the location of the
lost allocation is displayed and can be corrected easily. During development of the RSPLIB , Valgrind has
shown to be an excellent tool for identifying and correctingall kinds of memory problems.

3.2 The Event Loop

The RSPLIB functions register timer events (e.g. pool element cache and server table maintenance) and
socket events (e.g. the name server connection or the multicast sockets for server announces) at the global
Dispatcherobject. To wait for such events usingselect(), the dispatcherGetSelectParameters()anddis-
patcherHandleSelectResult()have to be used. This is encapsulated in therspSelect()function. This func-
tion could replace theselect()function in the program’s main loop or be called within an ownthread,
depending on the program structure and the operating system’s capabilities.

3.3 The Pool User API

As stated before, the RSPLIB ’s API should be as compatible to the "normal" programming interface for
network applications as possible. Before we explain the pool user functionality of the API, let us first
have a short look at the usual program structure of a client application shown in algorithm 1: A given
hostname or IP address is resolved or converted into asockaddrstructure by the functiongetaddrinfo().
Alternatively, the older functiongethostbyname()can be used; but here, thread-safety and IPv6 support are
not ensured. The next step is to create a socket and connect tothe peer. Finally, theaddrinfo structure
created bygetaddrinfo()has to be freed usingfreeaddrinfo().

6

3 THE RSPLIBAPI 3.3 The Pool User API

Algorithm 1 Network client program flow
struct addrinfo* ai = NULL;
...
getaddrinfo("linux.conf.au", ..., &ai);
...
sd = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
if(sd >= 0) {

if(connect(sd, ai->ai_addr, ai->ai_addrlen) {
...

}
freeaddrinfo(ai);
...

}

Algorithm 2 Pool user program flow
struct EndpointAddressInfo* eai;
...
rspInitialize();
...
poolHandle = "DownloadPool";
rspNameResolution(poolHandle, strlen(poolHandle), &eai);
...
sd = socket(eai->ai_family, eai->ai_socktype, eai ->ai_protocol);
if(sd >= 0) {

if(connect(sd, eai->ai_addr, eai->ai_addrlen) {
...
if(failure) {

rspFailure(poolHandle, strlen(poolHandle), eai->ai_identifier);
...

}
...

}
...

}
...
rspFreeEndpointAddressArray(eai);
...
rspCleanUp();

To adapt the application for the usage of RSerPool, it is firstnecessary to replace the resolution of a
hostname by an RSerPool name resolution. It has to resolve a given pool handle to a list of one or more
pool elements and then select one of them by the given pool policy (e.g. the least used). Then, it can
try to connect to the pool element’s address (or one of the addresses). In case of failure, pool element
selection or even the name resolution can be repeated. To keep the changes to the application as small as
possible, the RSPLIB ’s rspNameResolution()takes arguments similar togetaddrinfo(). But instead of a
hostname, the pool handle and its length are specified here. The structureaddrinfohas been extended by
a field with the pool element identifier of the returned pool element (ai_identifier). This structure is called
EndpointAddressInfoand has to be freed after usage byrspFreeEndpointAddressArray(). The program
structure of the pool user, that is how the client is now denoted in RSerPool terminology, looks as shown in
algorithm 2. Note, that repetition loops for the case of a connection failure during establishment or usage
are not shown for simplicity.

When the connection to a pool element fails during establishment or usage, the pool user may inform
the name server about this failure using therspFailure()call. The name server may then decide to remove
the pool element from its namespace.

7

4 PROBLEMS OF APPLICATION 3.4 The Pool Element API

3.4 The Pool Element API

The ASAP functionality of a pool element consists of registering itself at a name server, renewing this
registration regularly and finally deregistering itself. Furthermore, a pool element has to answer keep-alive
messages from the name server (supervision functionality).

To register a pool element, the functionrspRegister()is used. It takes the pool handle, pool handle size
and the pool element’s addresses in form of anEndpointAddressInfostructure and additional parameters as
tag items. The policy type (e.g. least used or weighted roundrobin) and policy parameters (e.g. load for
least used and weight for weighted round robin) are defined astags. This allows adding more types and
parameters without affecting the API. To finally deregistera pool element, the functionrspDeregister()has
to be called.

TherspRegister()function also has to be called to re-register a pool element,that is renewing its reg-
istration. During re-registration, the pool element’s addresses and policy settings may be changed. If the
name server fails, that is the connection breaks or there is no answer within a certain configured interval, a
new name server will be searched and the pool element will be registered there.

The reason for not implementing an automatic re-registration functionality e.g. using a timer in the
ASAPInstance class, is that such a function may block for a certain amount of time when the name server
connection fails: The failure has to be detected, a new name server has to be searched, a new connection
established and all pool element have to be registered there. If the rspSelect()function is invoked from
the main loop of a single-threaded server application, thiswould block the service! A recommendation for
pool elements is therefore to use an own thread or process forthe RSerPool functionality.

3.5 Implementation Status and Future Plans

The current implementation status of the RSPLIB is as follows: ASAP has been implemented conforming
to version 05 of the ASAP draft [4]. Currently, control channels are not supported, because the methods
for tying together the control and data channel are currently still under discussion at the IETF RSerPool
working group [12]. Therefore, business cards, last wills and cookies have not been implemented yet. But
it is expected that this functionality, based on SCTP as the transport protocol, can be realized during the
next few weeks. Our name server currently does not support sharing its data with others. Since the ENRP
draft [5], which describes the name server communication, has been heavily changed and is still under
discussion, no implementation effort has been invested here, yet. Since the draft seems to stabilize now, a
full-featured name server is our project’s next major step.

As explained in the introduction, the RSerPool architecture is strongly related to the SCTP protocol.
Currently, our project uses our SCTP userland implementation SCTPLIB [13] for Linux, FreeBSD and
Darwin with its standard-compliant socket API [14]. This SCTP implementation is another successful
cooperation project between the University of Essen and Siemens. Since our socket API conforms to the
standard, almost no changes should be necessary to make the RSPLIB run with kernel SCTP, e.g. the
Linux-SCTP implementation [15] of the upcoming kernel 2.6 or the SCTP implementation being part of
the KAME stack [16] for FreeBSD. Tests with kernel SCTP implementations have been planned for the
next few weeks.

To keep up-to-date with our development, see the news section of [11] and/or subscribe to our mailing
list under [10] or [11]. Our mailing list archive can be foundunder [11].

4 Problems of Application

There are many solutions available that provide high reliability. Some of them try to hide the fail-over and
take over the IP-addresses of failed servers to another server. This always results in problems with state
sharing, because you would need to share the transport layerstate if a connection-oriented protocol like
TCP or SCTP is used. But this transport layer state changes quite rapidly. In summary, hiding a fail-over
introduces much more complexity. A comparison and discussion of other techniques can be found in [7].

The RSerPool protocol suite also allows enhancing existingprotocols and building new ones. To en-
hance existing ones, it is important that a node using the enhanced protocol can still interoperate with nodes

8

6 DISTRIBUTED COMPUTING

only implementing the base protocol. This requires, that the packet format of the base protocol on the wire
does not change.

For SCTP-like services, the only point is that all base protocols are specified in a way that all messages
with PPIDs not matching the base protocol are silently discarded. This means, that if a node receives an
ASAP message it does not understand, it simply discards it. For UDP- and TCP-like services this means
that a separate SCTP association or TCP connection is used for the control channel or the control channel
is not used at all. To make it easy to port an application whichdoes not use the control channel to the
RSerPool suite, we decided to mimic the DNS calls. This allows for very easy transition.

Now the application can make use of the RSerPool based name resolution service. On the one hand, this
results in faster lookups and the client only gets transportlayer addresses of servers which are in service.
On the other hand, pool handles are more flexible than DNS names. This is a result of the fact that pool
handles are byte vectors. However, it is out of scope of the RSerPool working group to define how the pool
handles are derived at the PU and/or PE side.

5 Usage Example

Using the RSerPool protocol suite to privide a highly reliable service, multiple servers providing this ser-
vice are running in the network and SCTP should be the transport protocol for handling network failures.
The servers providing the same service register for the samepool handle. Possibly, some of them are able
to do state sharing, some are not. This only has to be known by the servers themselves.

If a client wants to use a specific service, it has to know the pool handle of the pool. This pool handle
can be a result of administration in the network or even a result of a computation. Of course, the PEs and
the PUs then have to use the same algorithm.

After using one NS for name resolution, the PU connects to thePE. The PE can now send a last will,
informing the PU that the PE does state sharing with some other PEs and the PU should fail-over to them
in case of an error. If the PU is also a PE, it can inform the PE about this by sending its pool handle as
part of a business card. It can also send a last will, too. Thisallows for symmetric communication between
pools.

The handling of the control channel can mainly be realized bythe RSerPool implementation, with some
triggers by the upper layer.

With RSerPool the transport layer state and the security state (if you use TLS or IPSec) are not shared.
When a PE fails, a new transport layer connection is used witha new security relation. To shorten the
fail-over time, these connections and security relations can be set up in advance.

It should be noted that the NSs are autonomous systems which normally do not need to be configured
when they are running. They might need some configuration before they are started, but then they get all
the information through ENRP. This is similar to what is needed for routers. Multiple NSs must be used in
an operational scope to avoid single points of failure.

In the basic RSerPool architecture, the PEs are providing the service and are not addressed by IP
addresses anymore, but by pool handles which are most of the time resolved to transport addresses of
servers being up and running. Because the name registrationand deregistration is dynamic and very fast,
RSerPool can also be used for server addressing in environments where transport layer mobility is used to
support mobility. See [8] for more information.

6 Distributed Computing

The basic idea behind RSerPool has been high availability. But the simple and flexible RSerPool architec-
ture can also be used for another interesting application: distributed computing. To explain such an appli-
cation scenario, let us first have a look at a well known distributed computing application:SETI@home
[3]. The goal of this project is to find extraterrestrial lifeby analysing radio data received from a radio
telescope. To efficiently analyse the gigantic amount of data, computer users can contribute processing
power by installing a client software on their computers. This software downloads small fractions of the
data from theSETI@homeserver, processes the calculations on the data when the system is otherwise

9

REFERENCES

idle, and finally uploads the result back to the server. Having a large number of clients results in sufficient
computation power to process the radio data. But when the server is down, the clients’ trial to provide their
computation service to the project fails.

The RSerPool way of realizing distributed computing likeSETI@homeis somewhat different. Here,
the distributed computation clients do not request work. Instead, they register at a name server as pool
elements of a certain pool to advertise their computation service. An appropriate pool policy here would
be e.g. weighted round robin, where the weight is a compositemetric of the pool element’s computation
power and current system load. Now, when somebody requests distributed computation power, he becomes
a pool user of this pool and distributes workload between thepool’s elements according to the pool’s policy.

The advantage of the RSerPool approach is that the computation clients do not have to contact a central
instance and ask for work. Instead, they simply advertise their computation power and are contacted when
somebody has work for them to do. Note, that authentication by public key or certificate may be used
to verify the identity of the pool user. For example, a user may want to provide computation power for
something likeSETI@home, but not for nuclear weapon simulations.

7 Summany and Conclusions

Our paper has coverd aspects of designing and implementing highly available applications using RSerPool
with our RSPLIB implementation. First, we have given an introduction to theRSerPool protocol suite and
an overview of the RSPLIB components. Then, we have described the RSPLIB API, especially focussing
on the implementation of pool element and pool user programsto provide high reliability. Furthermore,
we have shown our current implementation status and future plans. This has been followed by a short look
on the problems that can arise when the RSerPool architecture is used. Finally, we have given an example
how RSerPool can be used to realize highly available services. And last but not least, we have shown how
distributed computing architectures can make use of the RSerPool architecture.

For further information about RSerPool, news about our implementation, download, a mailing list for
discussions and our mailing list archive, have a look at our websitehttp://tdrwww.exp-math.
uni-essen.de/dreibholz/rserpool/.

References

[1] IETF Signaling Transport (SIGTRAN) WG
http://www.ietf.org/html.charters/sigtran-charter.html

[2] Valgrind memory debugger
http://developer.kde.org/~sewardj/

[3] SETI@home: Search for Extraterrestrial Intelligence at home
http://setiathome.ssl.berkeley.edu/

[4] draft-ietf-rserpool-asap-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-rserpool-asap-05.
txt

[5] draft-ietf-rserpool-enrp-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-rserpool-enrp-04.
txt

[6] draft-conrad-rserpool-tcpmapping-01.txt
http://www.ietf.org/internet-drafts/draft-conrad-rserpool-tcpmapping-01.
txt

[7] draft-ietf-rserpool-comp-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-rserpool-comp-05.
txt

10

REFERENCES REFERENCES

[8] draft-riegel-tuexen-mobile-sctp-01.txt
http://www.ietf.org/internet-drafts/draft-riegel-tuexen-mobile-sctp-01.
txt

[9] Thomas Dreibholz
An Efficient Approach for State Sharing in Server Pools
IEEE Local Computer Networks Conference 2002, Tampa/Florida, U.S.A.
http://www.exp-math.uni-essen.de/~dreibh/publications/
StateSharing-Paper-ShortVersion.ps.gz

[10] RSerPool and a prototype implementation
http://www.sctp.de/rserpool.html

[11] Thomas Dreibholz’s Reliable Server Pooling Page
http://tdrwww.exp-math.uni-essen.de/dreibholz/rserpool/

[12] IETF Reliable Server Pooling (RSerPool) WG
http://www.ietf.org/html.charters/rserpool-charter.html

[13] SCTP and a prototype implementation
http://www.sctp.de/sctp.html

[14] draft-ietf-tsvwg-sctpsocket-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-sctpsocket-05.
txt

[15] Linux Kernel SCTP
http://sourceforge.net/projects/lksctp/

[16] SCTP on KAME
http://www.kame.net/

11

