High Availability using Reliable Server Pooling

Thomas Dreibholz (dreibh@exp-math.uni-essen.de)
University of Essen, Institute for Experimental Mathesti
Ellernstrale 29, 45326 Essen, Germany
Michael Tiixen (Michael. Tuexen@siemens.com)
Siemens AG,ICNCPSEC7
81359 Munich, Germany

December 15, 2002

Abstract

Providing fault tolerancy is crucial for a growing numberlBfbased applications. There exist a lot
of proprietary solutions for this problem, but free alteives are rare.

Currently, the IETF RSerPool working group is standardizanprotocol suite for Reliable Server
Pooling, which copes with the challenge of providing highaikability by using redundant servers.
Servers for the same service are grouped into a server pa#rver in a pool is called pool element (PE),
a user of a pool is called pool user (PU). When a PE fails, its Bithply select another one from the
pool and initiates an application-specific failover prased This fail-over is supported by the RSerPool
protocol suite. Each PE registers at a name server and isctir@mously supervised by that specific
name server. All name servers of an operational scope pavicdundant system for name resolution
from pool handles to transport addresses of pool elememsdbusers. RSerPool uses SCTP to provide
network fault tolerance and address scoping functionality

The RSRIB is a prototype implementation of the RSerPool protocoksuieveloped under the GNU
Public License in cooperation between Siemens and the Cemidetworking Technology Group of the
University of Essen. It currently runs under Linux, FreeB&fl Darwin.

Our paper covers aspects of designing and implementingyhaytailable applications using RSer-
Pool with our RSRIB implementation. First, we will give an introduction to th&&Pool protocol suite
and an overview of the RSB components. Then, we describe the R&PAPI, especially focussing
on the implementation of pool element and pool user progranpsovide high reliability. Furthermore,
we show our current implementation status and future pldiss will be followed by a short look on
the problems that can arise when the RSerPool architectwsed. Finally, we give an example how
RSerPool can be used to realize highly available serviced.l&st but not least, we show how distributed
computing architectures can make use of the RSerPool ecthit.

This work is part of KING, a research project of Siemens AGe Tork of this project is partially
funded by the Bundesministerium fiir Bildung und Forschufithe Federal Republic of Germany (For-
derkennzeichen 01AK045).

1 Introduction to Reliable Server Pooling

The SIGTRAN working group [1] of the Internet Engineeringska-orce (IETF) is developing a protocol
suite for transporting telephony signaling over IP-basetivorks. The Signaling System No. 7, the proto-
col suite used for telephony signaling in the TDM world, pd®s a very high degree of redundancy and
availability. The same service is also desirable for andBell solution.

Therefore, it was decided to develop a network fault toleteansport protocol which is used for all
adaptation layers of the SIGTRAN protocol suite. This tpors protocol is called the Stream Control
Transmission Protocol (SCTP). However, using SCTP doepmatde any help if a server fails. Server
failures can only be handled by having multiple servers fliog the same functionality. All SIGTRAN
adaptation layers provide some sort of server pooling usioliiple Application Server Processes (ASPs)

1 INTRODUCTION TO RELIABLE SERVER POOLING

in one Application Server (AS). It was decided that havingeagyic and common solution for the server
pooling functionality would be helpful and usable also @easSIGTRAN. Therefore, the Reliable Server
Pooling (RSerPool) working group [12] has been founded.

The RSerPool protocol suite focuses on providing servaumdency using server pools. In combina-
tion with the network fault tolerant transport protocol STt is possible to build systems without single
points of failure.

The RSerPool architecture uses three classes of elements:

Pool Elements (PEs)These are the servers being part of a pool and providing the s#rvice within a
pool.

Pool Users (PUs)These are the clients being served by one PE.

Name Servers (NSs)These nodes provide a translation service and superviseghe

A pool is identified by a pool handle, which is a byte vectorfitrary length. If a server wants to become
a PE for a specific pool, it just registers itself with the pbahdle of the pool at one of the name servers.
The protocol used between the PEs and the NSs is called theedatg Server Accesss Protocol (ASAP),
currently being defined in [4]. This name server will supsevihis PE to make sure that it is working and
informs the other NSs about the new PE. The pool handle is\allgl in its operational scope. All NSs
within an operational scope have information about all PEkiwthe operational scope. This means that
the namespace used by RSerPool is flat. The protocol usecely3k to exchange their information is
called the Endpoint Name Resolution Protocol (ENRP), aulyebeing defined in [5]. If the IP network
provides multicast capabilities, the NSs can send out s@mweouncement messages using IP-multicast.
This allows PUs, PEs and other NSs to detect NSs.

If a client wants to be served by a PE belonging to a pool ifiedtby a specific pool handle, it sends
a name resolution request to a NS. The NS will respond wittbaestuof all transport addresses, which can
be used to access the PEs. This communication is also usiA§.A%ie selection of the PE is realized in
two steps: In the first step, the NS can select a subset of allRE their transport addresses in the pool.
This selection can be based on the requested transportitégsilnd/or the pool policy. In the second
step, the PU has to select one of the PEs in the given subsist.cdim also be based on the pool policy.
Examples for pool policies are round robin or least used.eOpiolicies are also available in RSerPool; it
is furthermore easily possible to add new ones.

Whenever a PU detects that a PE cannot be reached, one of this NSormed. This information,
combined with the ongoing supervision, is used to removefRias the pool if they are out of service.

In contrast to the Domain Name System (DNS), RSerPool

uses a flat namespace,
allows arbitrary pool handles,

provides a high probability that only PEs are announceidiware in service and

P w0 D

allows dynamic registration and deregistration.

In case of a failure of a PE, the PU can fail-over to a diffeRfaf the same pool. The grade of intervention
of the RSerPool upper layer depends on the required senliceequires no intervention if the upper
layer is always using pool handles for sending and allowsesorassages to be dropped during the fail-
over. If a message loss during fail-over is not acceptalble,upper layer has to use application-level
acknowledgements and its own buffering.

The communication between PU and PE consists of two channels

data channel This channel is used for the service related traffic.

control channel This channel is used for RSerPool related traffic.

2 THE IMPLEMENTATION

The control channel is used for different kinds of RSerPeolises. First of all, it is allowed that a PU is
also a PE of some pool. To provide also redundancy for thattReJpeer of the PU must know the pool
handle of the pool the PU belongs to. This information is seitig ASAP as part of a so called business
card from the PU to the PE. Another usage of the control cHasmiee last will. A PE can send a last will
to the PU, containing a list of specific PEs of its pool to ugddd-over in case of its failure. A third usage
of the control channel are the cookies. A PE can send a cookieetPU whenever it wants. The PU stores
only the latest received cookie. In case of a fail-over tofeedBnt PE, it sends the stored cookie to the new
PE first. This very simple method can be used to transfer &tae the failed PE to the new PE. See also
[9] for more information. However, this does not provide angec method for state sharing between the
PEs, which is out of scope of the RSerPool working group.

The data channel and the control channel have to be tiedtegét SCTP is the transport protocol for
the data channel, the control channel and the data chanmeiseathe same transport connection, called
an SCTP association. SCTP supports the multiplexing ofipl@ltpper-layer protocols by using different
payload protocol identifiers (PPID). Messages for the adrdhannel will use the registered PPID for
ASAP, the data channel the PPID for the specific service.

If UDP is the transport protocol of the data channel, the @channel cannot be multiplexed with the
data channel for at least two reasons: One would have to delig®-friendly congestion control algorithm
for the ASAP traffic and provide reliable transport withiretASAP layer. Both would make ASAP much
more complex. Therefore, it is currently being suggestad tiiie control channel is transported over TCP
or SCTP. Since all ASAP messages use a Tag-Length-Value)(3tt\cture, both transport protocols can
be used. The control channel and the data channel are tiethergby sending first a message on the
control channel describing the transport layer endpoifte@data channel.

If TCP is the transport protocol of the data channel, theestao possible solutions. One can use a
separate TCP connection for the control channel and useathe smechanism as for the UDP-based data
channelto tie the control and data channel together. Tharadge of this method is that the service related
traffic, the data channel, is not modified. The second salusido multiplex the control and data channel
on one TCP connection. In this case, the multiplexing lagedefined in [6] has to be used.

This handling of data channel and control channel is culrér@ing discussed in the RSerPool working
group. The support of other transport layers, for examplé’D&E protocols not using a transport layer but
running directly on top of IP is currently not being discussBut the RSerPool protocol suite can be easily
extended to support them in the future.

It should be noted that the ASAP communication between tharffEhe NS (i.e. registration, deregis-
tration, supervision) must be transported over SCTP. Thengonication between the PU and the NS (i.e.
name resolution) can be transported over TCP or SCTP. Tleis Wot force PUs, which only want to access
TCP-based services, to implement SCTP as an additionalteanprotocol just for simple name queries.
Itis required, that the PU side implementation of the RSelBoite can be very light-weighted. The com-
munication between the name servers can be SCTP-based aiftiPast based, if this is supported by the
IP layer. The IP layer can be based on IP version 4 and/or I&tore6.

Using SCTP for handling network failures and the RSerPoelqmol suite for handling server or host
failures, one can provide a system without a single pointdfife. However, to provide a highly reliable
service it is also required that no one can modify the nameesysvithout being authorized. That is, a PE
communicating to a NS should be authenticated. Securitywisraimportant part of RSerPool. Threats
have been analyzed and the protocol design of the RSerPilelensures that existing protocols, e.g.
Transport Layer Security (TLS) and IP-Security (IPSecg, @pplicable. Defining own solutions is out of
the scope of RSerPool.

2 The Implementation

Our implementation of the RSerPool protocol suite has beleased under the GNU Public License (GPL)
and can be downloaded under [13] and [11]. A key requiremenbiir implementation has been the
portability to different platforms, especially also nomid ones. While currently only Linux, FreeBSD and
Darwin are supported, there are also plans to use it for devike mobile phones or PDAs. Applications
for such devices especially include highly available e-gwrce and mobile commerce. The portability

2 THE IMPLEMENTATION 2.1 The Dispatcher Class

requirement has leaded to our decision not to assume thialaiiay of threads (even single-task operating
systems like FreeDOS or M$-DOS should be supported). Furthies, C instead of C++ has been chosen
as implementation language for the reason that ANSI-C clemgpare more widespread than C++ ones;
although an object-oriented language would have advasfaganplementation effort and maintainability
of the code. However, our implementation’s core has bedizeghin an object-oriented scheme. IPv6 has
been fully supported from the beginning of the project.

Dispatcher
List <Timer>
List <FDEvent>

ASAP Instance ASAP Cache

Pool Namespace
HashTable <Pool>
HashTable <PoolElement>

ServerTable

ASAP Creator |
ASAP Parser

ASAP Message

rsplib API Layer

Figure 1: The RSBB implementation overview

An overview of our implementation can be found in figure 1. Veésatibe the parts shown there in the
following.

2.1 The Dispatcher Class

The Dispatcherclass manages timers and events on sockets. That is, fileptess (here, especially
for sockets) can be registered aD@&patcherobject for the events read, write and/or exception. Further
more, Timer objects can be registered. Both, sockets and timers, hgwetide a callback function that
is invoked when a registered event occurs or a timer has edpiWaiting for events and invoking the
callback function have been implemented as two separate pitheDispatcherclass: First, the method
dispatcherGetSelectParametersftains the parameters for the Unix-standard functelect() that is,
fdses for read, write and exception on file descriptors artireevalstructure containing the maximum
timeout. The user of thBispatcherobject may now add additional file descriptors to ttiges or decrease
the timeout. Thenselect()can be called, followed by invoking thHispatchermethoddispatcherHandle-
SelectResult(which finally handles possible socket or timer events.

Note, that theDispatcherclass itself does not require that the operating system biae Sorm of
select()function. Since waiting for events has to be realized oetsifitheDispatcherclass, a wrapper
function may be realized which takes the select paramdtissi and timeout) and implements the desired
functionality using an OS-specific system call.

The Dispatcherclass provides two methoddjspatcherLock(jand dispatcherUnlock() Their only
functionality is to invoke the callback functiohsck() andunlock() which have to be specified to tiss-
patcherconstructor. These callbacks can realize obtaining amésaig a recursive mutex in the case that
the used operating system (e.g. Linux) supports threading (isindibpthread). The current defaultis to

2 THE IMPLEMENTATION 2.2 The ASAPInstance Class

uselibpthreadwhen it is available (Linux, FreeBSD, Darwin). Tibéspatcherclass uses thdispatcher-
Lock()anddispatcherUnlock(junctions everywhere where exclusive access to its strestis necessary.
Of course, classes derived frobispatchermay use this functionality, too. Using these two functions,
system-independent thread-safety is realized in our impteation.

2.2 The ASAPInstance Class

The ASAPInstancelass takes care for locating a name server and maintainiogmection to it. Further-
more, it provides registration and deregistration of pdeheents, name resolution and policy-based pool
element selection. Finally, it maintains the name resotutiache. It consists of three class8serverTable
ASAPCachandASAPMessage

2.2.1 ServerTable

A ServerTabl®bject is responsible for creating multicast sockets tetigor server announces. Received
announces are added to the server table. Furthermore, etdties may be added when the underlying
network does not support or prohibits multicasts. The dyinantries in the table are flushed when they
are not refreshed within a certain configured interval.

TheServerTablelass furthermore provides the establishment of a conmreti one of the announced
name servers. To make this process as fast as possiblejalypfiec the case that some servers of the list
have just become unreachable, it is tried to connect to akmame server addresses from the server table
simultaneously. The first successfully established cotimeds taken as new name server connection. To
increase speed, the connection trial timeout does not esgy/8tem’s default. Instead, it uses a configured,
lower value (e.g. 5 to 10 seconds).

2.2.2 ASAPCache

An ASAPCach@bject contains &@oolNamespacebject, which contains the part of the name server’s
namespace cached by name resolutions. A timer realizesnguprgol elements and pools that have not
been refreshed within a certain configured interval. PoelNamespacebject contains hash tables for
Pool objects andPoolElementobjects. APool object contains a list of owneHoolElemerg. A pool
element selection by a pool policy (e.g. least used or roobéh) specified in @oolPolicyobject is also
realized within thePool class.

2.2.3 ASAPMessage

The ASAPMessagelass is responsible for the creation of outgoing ASAP ngass#ASAPCreatomod-
ule) and parsing incoming oneA$APParsemodule).

2.3 The RSRIB API layer

Due to portability reasons, no core class uses global Masafherefore, all of these classes are reentrant.
Using an operating system with MMU-based memory managenaestiared library can be loaded once
and then mirrored to the programs’ memory spaces. On witesaffected memory pages can simply be
duplicated, creating an exclusive copy for the program. ifkamo MMU, which is usually the case for
mobile phones, PDAs and also routers, this is impossiblé hBuing a reentrant library, it may be loaded
once into the global memory and accessed by all programsxéellent example for such a realization is
the good old AmigaOS operating system.

The RSRIB API layer provides a simple and small wrapper for the corssda. While the core
classes have been designed for portability and reusalitieyRSRIB wrapper should make the usage
of the RSerPool functionality as simple as possible. Thieewmlly includes providing a programming
interface as similar as possible to the current non-RSdtmiket and name resolution API.

While the RSerPool protocol suite is currently still underglardization at the IETF and functionality
may be heavily changed, added or removed, the programmihgh#dRld be as stable as possible and only

3 THERSPLIBAPI

changed when it is absolutely necessary. A changed APInesjaecompiling the applications while a
binary-compatible one simply allows to update a share@itiprTo allow introducing new parameters and
skipping obsolete ones, the RSB API has been inspired by a simple but effective idea from thadgpld
AmigaOsS 2.04, the so called tag items. Such tag items ardeimnfays containingliag, Data) tuples.Tag

is an at least function-unique number denoting a certaiarpater; theéDatafield contains the parameter’s
value (e.g. an integer value or a pointer to a structure). sSffeeial tagTAG_DONEdenotes the end of the
tag item array.

3 The RSR.iB API

3.1 Initialization and Clean-up

Before any other function of the R&R library can be used, it has to be initialized using s nitialize()
function. This will create globabDispatcherand ASAPInstancebjects. The tag items fasplnitialize()
allow specifying custontock() and unlock() functions for theDispatcherobject to ensure thread-safety
by a specific operating system’s functionality (elippthreador GNU pth for Unix-clones or Semaphore
functions for AmigaOS). After the initialization, the RBIB is ready for usage. Note, that at this point
no connection to a name server has been established. TheiR8Rly listens for server announces. A
connection will be established when it is required for thstfiime. The reason is simple: Depending on
the name servers’ announce interval, it may take a few secontil the first announce is received. Until
this happens, the program can probably do more useful thiragswaiting.

To remove all objects created during initialization andtmne of the RSPRiB, the functionrsp-
CleanUp()has to be called. It will free all resources allocated by tH&PRB. Such a functionality is
mandatory under all operating systems without resourakiing (e.g. DOS or AmigaOS). That is, only
the program itself remembers which memory blocks, file dpsars, etc. have been allocated or opened;
the program itself is responsible to free or close them le#xiting. Any non-freed memory block or
non-closed file descriptor would be allocated or opened tirginext reboot.

But the clean-up functionality is also useful for debuggmgposes under Linux. The Valgrind [2]
memory debugger completely interprets the x86 assembtir obprograms and is therefore able to track
the usage of every bit. If there are any remaining memoryKksdadlocated by the RSB after rsp-
CleanUp() there must be a memory leak. Due to the tracking functityafiValgrind, the location of the
lost allocation is displayed and can be corrected easilyinguevelopment of the RSIs, Valgrind has
shown to be an excellent tool for identifying and correctitigkinds of memory problems.

3.2 The Event Loop

The RSRIB functions register timer events (e.g. pool element cacliesanver table maintenance) and
socket events (e.g. the name server connection or the mstisockets for server announces) at the global
Dispatcherobject. To wait for such events usirsglect() the dispatcherGetSelectParameterafyd dis-
patcherHandleSelectResullgve to be used. This is encapsulated inrfpSelect(function. This func-
tion could replace theelect()function in the program’s main loop or be called within an othnead,
depending on the program structure and the operating sisstapabilities.

3.3 The Pool User API

As stated before, the R&B’s API should be as compatible to the "normal" programmingriface for
network applications as possible. Before we explain thd pser functionality of the API, let us first
have a short look at the usual program structure of a clieptiegtion shown in algorithm 1: A given
hostname or IP address is resolved or converted irdockaddrstructure by the functiogetaddrinfo()
Alternatively, the older functiogethostbyname@an be used; but here, thread-safety and IPv6 support are
not ensured. The next step is to create a socket and connttet feer. Finally, theddrinfo structure
created bygetaddrinfo()has to be freed usinigeeaddrinfo()

3 THERSPLIBAPI 3.3 The Pool User API

Algorithm 1 Network client program flow
struct addrinfo* ai = NULL;

getaddrinfo("linux.conf.au", ..., &ai);

sd = socket(ai->ai _famly, ai->ai_socktype, ai->ai_protocol);
if(sd >=0) {
i f(connect (sd, ai->ai_addr, ai->ai_addrlen) {

}

freeaddrinfo(ai);

Algorithm 2 Pool user program flow
struct Endpoi nt Addr essl nf o* eai;

rsplnitialize();

pool Handl e = " Downl oadPool ";
rspNaneResol uti on(pool Handl e, strl en(pool Handl e), &eai);

sd = socket(eai->ai _famly, eai->ai_socktype, eai ->ai_protocol);
if(sd >= 0) {
i f(connect (sd, eai->ai_addr, eai->ai_addrlen) {

if(failure) {
rspFai | ure(pool Handl e, strlen(pool Handl e), eai->ai _identifier);

}

r spFr eeEndpoi nt Addr essArray(eai);

rspC eanUp();

To adapt the application for the usage of RSerPool, it is fiestessary to replace the resolution of a
hostname by an RSerPool name resolution. It has to resolixea gool handle to a list of one or more
pool elements and then select one of them by the given poalyp(d.g. the least used). Then, it can
try to connect to the pool element’s address (or one of theesdds). In case of failure, pool element
selection or even the name resolution can be repeated. Totkeechanges to the application as small as
possible, the RSEB's rspNameResolutionfakes arguments similar etaddrinfo() But instead of a
hostname, the pool handle and its length are specified héxe sffuctureaddrinfohas been extended by
a field with the pool element identifier of the returned poelaént i_identifier). This structure is called
EndpointAddressinfand has to be freed after usage fispFreeEndpointAddressArray()The program
structure of the pool user, that is how the client is now dedd RSerPool terminology, looks as shown in
algorithm 2. Note, that repetition loops for the case of anemtion failure during establishment or usage
are not shown for simplicity.

When the connection to a pool element fails during estafvlestit or usage, the pool user may inform
the name server about this failure using tepFailure() call. The name server may then decide to remove
the pool element from its namespace.

4 PROBLEMS OF APPLICATION 3.4 The Pool Element API

3.4 The Pool Element API

The ASAP functionality of a pool element consists of regisg itself at a name server, renewing this
registration regularly and finally deregistering itselfirfhermore, a pool element has to answer keep-alive
messages from the name server (supervision functionality)

To register a pool element, the functimpRegister()s used. It takes the pool handle, pool handle size
and the pool element’s addresses in form oEadlpointAddressinfstructure and additional parameters as
tag items. The policy type (e.g. least used or weighted raobiah) and policy parameters (e.g. load for
least used and weight for weighted round robin) are defingd@s This allows adding more types and
parameters without affecting the API. To finally deregist@ool element, the functiaspDeregister(has
to be called.

TherspRegister(function also has to be called to re-register a pool elenibat,is renewing its reg-
istration. During re-registration, the pool element’s eeldes and policy settings may be changed. If the
name server fails, that is the connection breaks or there @swer within a certain configured interval, a
new name server will be searched and the pool element wikgistered there.

The reason for not implementing an automatic re-registratiinctionality e.g. using a timer in the
ASAPInstance class, is that such a function may block foreateamount of time when the name server
connection fails: The failure has to be detected, a new nameshas to be searched, a new connection
established and all pool element have to be registered.thetle rspSelect(function is invoked from
the main loop of a single-threaded server application wiuisld block the service! A recommendation for
pool elements is therefore to use an own thread or proceskdd®SerPool functionality.

3.5 Implementation Status and Future Plans

The current implementation status of the R8Pis as follows: ASAP has been implemented conforming
to version 05 of the ASAP draft [4]. Currently, control chafsare not supported, because the methods
for tying together the control and data channel are curyesitll under discussion at the IETF RSerPool
working group [12]. Therefore, business cards, last witld aookies have not been implemented yet. But
it is expected that this functionality, based on SCTP asrdresport protocol, can be realized during the
next few weeks. Our name server currently does not supparirghits data with others. Since the ENRP
draft [5], which describes the name server communicati@s, teen heavily changed and is still under
discussion, no implementation effort has been investee, lyet. Since the draft seems to stabilize now, a
full-featured name server is our project’'s next major step.

As explained in the introduction, the RSerPool architexigrstrongly related to the SCTP protocol.
Currently, our project uses our SCTP userland implememmegicTpLIB [13] for Linux, FreeBSD and
Darwin with its standard-compliant socket API [14]. This BZimplementation is another successful
cooperation project between the University of Essen anth&ies. Since our socket API conforms to the
standard, almost no changes should be necessary to makeStAgsRrun with kernel SCTP, e.g. the
Linux-SCTP implementation [15] of the upcoming kernel 2r&lee SCTP implementation being part of
the KAME stack [16] for FreeBSD. Tests with kernel SCTP inmpéntations have been planned for the
next few weeks.

To keep up-to-date with our development, see the news seatifi 1] and/or subscribe to our mailing
list under [10] or [11]. Our mailing list archive can be foundder [11].

4 Problems of Application

There are many solutions available that provide high réitghSome of them try to hide the fail-over and
take over the IP-addresses of failed servers to anotheeiserhis always results in problems with state
sharing, because you would need to share the transport$égter if a connection-oriented protocol like
TCP or SCTP is used. But this transport layer state changés mgpidly. In summary, hiding a fail-over
introduces much more complexity. A comparison and discussf other techniques can be found in [7].
The RSerPool protocol suite also allows enhancing exiginogocols and building new ones. To en-
hance existing ones, it is important that a node using thameed protocol can still interoperate with nodes

6 DISTRIBUTED COMPUTING

only implementing the base protocol. This requires, thatthcket format of the base protocol on the wire
does not change.

For SCTP-like services, the only point is that all base prot®are specified in a way that all messages
with PPIDs not matching the base protocol are silently diked. This means, that if a node receives an
ASAP message it does not understand, it simply discardit UDP- and TCP-like services this means
that a separate SCTP association or TCP connection is us#tefoontrol channel or the control channel
is not used at all. To make it easy to port an application whichs not use the control channel to the
RSerPool suite, we decided to mimic the DNS calls. This aléav very easy transition.

Now the application can make use of the RSerPool based nawletien service. On the one hand, this
results in faster lookups and the client only gets transiager addresses of servers which are in service.
On the other hand, pool handles are more flexible than DNS saift@s is a result of the fact that pool
handles are byte vectors. However, it is out of scope of therR&ol working group to define how the pool
handles are derived at the PU and/or PE side.

5 Usage Example

Using the RSerPool protocol suite to privide a highly reliiagervice, multiple servers providing this ser-
vice are running in the network and SCTP should be the tramgpotocol for handling network failures.
The servers providing the same service register for the gankhandle. Possibly, some of them are able
to do state sharing, some are not. This only has to be knowhébgdrvers themselves.

If a client wants to use a specific service, it has to know tha pandle of the pool. This pool handle
can be a result of administration in the network or even alrega computation. Of course, the PEs and
the PUs then have to use the same algorithm.

After using one NS for name resolution, the PU connects tdPtheThe PE can now send a last will,
informing the PU that the PE does state sharing with some &Bs and the PU should fail-over to them
in case of an error. If the PU is also a PE, it can inform the P&uathis by sending its pool handle as
part of a business card. It can also send a last will, too. dltasvs for symmetric communication between
pools.

The handling of the control channel can mainly be realizetheyRSerPool implementation, with some
triggers by the upper layer.

With RSerPool the transport layer state and the securitg gifayou use TLS or IPSec) are not shared.
When a PE fails, a new transport layer connection is used avitlew security relation. To shorten the
fail-over time, these connections and security relaticarsloe set up in advance.

It should be noted that the NSs are autonomous systems whiaatly do not need to be configured
when they are running. They might need some configuratioorbehey are started, but then they get all
the information through ENRP. This is similar to what is needor routers. Multiple NSs must be used in
an operational scope to avoid single points of failure.

In the basic RSerPool architecture, the PEs are providiegs#rvice and are not addressed by IP
addresses anymore, but by pool handles which are most ofrtteeresolved to transport addresses of
servers being up and running. Because the name registiatideregistration is dynamic and very fast,
RSerPool can also be used for server addressing in envimoisméere transport layer mobility is used to
support mobility. See [8] for more information.

6 Distributed Computing

The basic idea behind RSerPool has been high availabilitytig simple and flexible RSerPool architec-
ture can also be used for another interesting applicatigtrilobuted computing. To explain such an appli-
cation scenario, let us first have a look at a well known distéd computing applicatiorSETI@home
[3]. The goal of this project is to find extraterrestrial lifiy analysing radio data received from a radio
telescope. To efficiently analyse the gigantic amount o, dedbmputer users can contribute processing
power by installing a client software on their computersisidoftware downloads small fractions of the
data from theSETI@homeserver, processes the calculations on the data when thensystotherwise

REFERENCES

idle, and finally uploads the result back to the server. Ha@targe number of clients results in sufficient
computation power to process the radio data. But when tivesisrdown, the clients’ trial to provide their
computation service to the project fails.

The RSerPool way of realizing distributed computing IKETI@homés somewhat different. Here,
the distributed computation clients do not request workstdad, they register at a name server as pool
elements of a certain pool to advertise their computatioviee. An appropriate pool policy here would
be e.g. weighted round robin, where the weight is a compasétic of the pool element’s computation
power and current system load. Now, when somebody requisstibdted computation power, he becomes
a pool user of this pool and distributes workload betweemt@’'s elements according to the pool’s policy.

The advantage of the RSerPool approach is that the computdiignts do not have to contact a central
instance and ask for work. Instead, they simply advertisg tomputation power and are contacted when
somebody has work for them to do. Note, that authenticatippublic key or certificate may be used
to verify the identity of the pool user. For example, a useymant to provide computation power for
something likeSETI@homgbut not for nuclear weapon simulations.

7 Summany and Conclusions

Our paper has coverd aspects of designing and implemeritihgytavailable applications using RSerPool
with our RSR.IB implementation. First, we have given an introduction toR&erPool protocol suite and
an overview of the RSEB components. Then, we have described the RSRPI, especially focussing
on the implementation of pool element and pool user progtanpsovide high reliability. Furthermore,
we have shown our current implementation status and futiaresp This has been followed by a short look
on the problems that can arise when the RSerPool architeistuised. Finally, we have given an example
how RSerPool can be used to realize highly available sesvikad last but not least, we have shown how
distributed computing architectures can make use of thefR&é¢ architecture.

For further information about RSerPool, news about our engntation, download, a mailing list for
discussions and our mailing list archive, have a look at oabsiteht t p: // t dr ww. exp- mat h.
uni - essen. de/ dr ei bhol z/ rser pool /.

References

[1] IETF Signaling Transport (SIGTRAN) WG
http://ww.ietf.org/htm .charters/sigtran-charter. htn

[2] Valgrind memory debugger
http://devel oper. kde. or g/ ~sewar dj /

[3] SETI@home: Search for Extraterrestrial Intelligentbame
http://setiat hone. ssl . berkel ey. edu/

[4] draft-ietf-rserpool-asap-05.txt
http://ww.ietf.org/internet-drafts/draft-ietf-rserpool-asap- 05.
t xt

[5] draft-ietf-rserpool-enrp-04.txt
http://ww.ietf.org/internet-drafts/draft-ietf-rserpool-enrp-04.
t xt

[6] draft-conrad-rserpool-tcpmapping-01.txt
http://wwv. ietf.org/internet-drafts/draft-conrad-rserpool -tcpmappi ng-01.
t xt

[7] draft-ietf-rserpool-comp-05.txt
http://ww.ietf.org/internet-drafts/draft-ietf-rserpool-conp-05.
t xt

10

REFERENCES REFERENCES

[8] draft-riegel-tuexen-mobile-sctp-01.txt

http://ww.ietf.org/internet-drafts/draft-riegel-tuexen-nobile-sctp-01.
t xt

[9] Thomas Dreibholz
An Efficient Approach for State Sharing in Server Pools
IEEE Local Computer Networks Conference 2002, Tampa/éiéoil.S.A.
http://ww. exp- mat h. uni - essen. de/ ~dr ei bh/ publ i cati ons/
St at eShar i ng- Paper - Short Ver si on. ps. gz

[10] RSerPool and a prototype implementation
http://ww. sct p. de/ rserpool . htm

[11] Thomas Dreibholz’s Reliable Server Pooling Page
http://tdrww. exp- mat h. uni - essen. de/ dr ei bhol z/ r ser pool /

[12] IETF Reliable Server Pooling (RSerPool) WG
http://ww. ietf.org/htm .charters/rserpool-charter. htm

[13] SCTP and a prototype implementation
http://ww. sct p. de/ sctp. ht m

[14] draft-ietf-tsvwg-sctpsocket-05.txt
http://ww.ietf.org/internet-drafts/draft-ietf-tsvwg-sctpsocket- 05.
t xt

[15] Linux Kernel SCTP
http://sourceforge. net/projects/|ksctp/

[16] SCTP on KAME
http://ww. kane. net/

11

