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ABSTRACT
In this paper, we introduce our Open Source simulation
tool-chain for OMNeT++ simulations: SimProcTC. This
model-independent tool-chain has been designed to perform
the common and frequently recurring tasks of simulation
work – which are the parametrization of runs, the distributed
run processing and the results visualization – in an efficient
and easy to use manner. It is already successfully deployed
for several OMNeT++-based research projects.
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1. INTRODUCTION
OMNeT++ [1] is a powerful simulation package. During

the past few years, we have applied it for multiple research
projects. One of these projects is the research on Reliable
Server Pooling (RSerPool), the IETF’s new framework for
server pool and session management to support load dis-
tribution and high availability. Our simulation model rsp-
sim [2,3] provides about 120 parameters, so it had become a
rather time-consuming task to parametrize simulations, pro-
cess them and finally visualize their results. This challenge
has lead to the development of our model-independent Open
Source tool-chain SimProcTC (“Simulation Processing To-
ol-Chain”) [2], which takes care of these tasks. SimProcTC
is Open Source under GPLv3 license and freely download-
able from our web site1. Our tool-chain works with OM-
NeT++ version 3.x as well as the new version 4.0.

The goal of this paper is to introduce SimProcTC, with
focus on using this tool-chain as a basis for own simulation
processing. An overview of SimProcTC can be found in
figure 1: its core is a GNU R [4] script which parametrizes
simulations runs (section 2). Using GNU Make, the runs
are processed (section 3) – either on the local machine or in
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Figure 1: An Overview of Our Tool-Chain

an RSerPool-based computation pool. The post-processing
stage prepares the results for their visualization (section 5).

Up until now, SimProcTC has been successfully deployed
for research on RSerPool using the rspsim model (e.g. the
papers [5–12]), for examining Quality of Service (QoS) en-
hancements by flow routing (e.g. the papers [13, 14]), for
evaluating the SCTP protocol using [15] as well as for sim-
ulating sensor networks.

2. SIMULATION PARAMETRIZATION
In order to perform simulation runs by using a simulation

model, the first step is to parametrize the simulation by cre-
ating appropriate .ini files. Clearly, manually writing such
files becomes extremely time-consuming for larger models –
which can easily contain more than 100 parameters2. The
core of SimProcTC is therefore a script which is responsible
for performing the simulation parametrization.

2.1 Formal Definitions
For describing the simulation parametrization, it is useful

to introduce some formal definitions first: let a simulation
model have n parameters p1, . . . , pn; P̂1, . . . , P̂n are the
corresponding parameter spaces which contain all possible

values. That is, pi ∈ P̂i for all i ∈ {1, . . . , n}. Then, the

model parameter space is P̂ = P̂1× P̂2× . . .× P̂n. Using this

definition, a simulation S ⊂ P̂ simply contains all parameter
combinations s ∈ S for which a run has to be performed. We
assume for simplicity reasons that a run number correspond-
ing with a certain random number generator seed is simply

2For example, the rspsim RSerPool simulation model [2, 3,
16] has almost 120 parameters.
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another input parameter. The simulation binary itself con-
stitutes a simulation function f : S → R, which maps a run
sj ∈ S to a result f(sj) ∈ R (scalars and vectors; we omit a
formal definition here). We can further assume that for the
same setting of s, always the same output is generated (or
at least differences do not falsify the results3).

2.2 Realization
Clearly, the initial step of performing a simulation S is

to parametrize it. An example from the rspsim model is
presented in listing 1: simulationConfigurations is a list
containing sub-lists. Each sub-list includes the parameter
name (as first item) and all values to be used (as further
items).

The following step is the generation of .ini files and their
processing by the simulation model. This step has to meet
the following two goals, in order to achieve an appropriate
level of efficiency:

Extensibility It must be possible to add more values for
some parameters, without having to re-process already
performed runs.

Parallelizing It must be possible to process several runs
in parallel – either on the same system (i.e. on multi-
CPU and multi-core machines) or on different systems
(using our RSerPool-based run distribution approach
described in section 4).

In order to fulfill the above requirements, our simulat-
ion script first creates a separate run directory for each run
s ∈ S. The initial version of SimProcTC has named the
directory using a textual representation of s. However, this
approach has easily reached the path length limit of the
system – and directory names requiring several screen lines
were really unhandy. Our solution has been to use an SHA1
hash [17] over s instead – resulting in appropriately small
and usable directory names.

For each run s, a separate .ini file is generated in the cor-
responding run directory. It also specifies its own scalar and
vector files, which will be placed in the same directory. A
model-specific function writes the parameter section of the
.ini file. That is: for each s ∈ S, the core script sets GNU R
variables – the names are given by the parameter names –
to the actual values defined by s. Then, a model-specific
function called “simCreatorWriteParameterSection()” can
write them as parameters in the .ini file. The example
from the rspsim model shown in listing 1 uses a param-
eter calcAppPoolElementServiceCapacityVariable which
defines a server capacity. In the scenario setup (for details,
see [2]), there is actually an array of servers in an array
of interconnected LAN networks. Therefore, the model-
specific parametrization function actually writes the param-
eter line “gammaScenario.lan[*].calcAppPoolElementAr-
ray[*].calcAppServer.serviceCapacity=1e7” into the si-
mulation run’s .ini file (for calcAppPoolElementService-
CapacityVariable=1e7). Of course, more sophisticated pa-
rametrization – like writing multiple entries or even com-
puting the actual values to be used in the .ini file – are
possible as well.

Furthermore, the core simulation script will create a Make-
file for GNU Make for the whole simulation S. Each s ∈ S
leads to an entry performing the following tasks:

3For example, the rspsim model also writes the actual run
execution time as a scalar to allow for profiling.

1. Old output files (vector, scalar and log) are deleted.

2. The simulation model binary is executed by using the
corresponding .ini file for s. It will write a log file as
well as probably scalar and vector files.

3. The output files are compressed by BZip2 [18]. Since
these files contain plain text, a significant disk space
gain is herewith achieved.

4. Finally, a time-stamp file – denoted as status file – is
written after successfully processing all former steps.

A re-run of the simulation script will update existing sta-
tus files defaultly. That is, already executed runs will not
be re-processed again – since their result would not change
(due to our assumption for f above). If the simulation func-
tion f changes, the update step can be skipped and the runs
will be executed again.

Since run directories are kept until being manually re-
moved, this mechanism results in the desired caching be-
haviour: if the simulation is modified from S to S′ ⊂ P ,
S′ 6= S, it is only necessary to process the new runs s ∈ S′\S.
Note, that the runs s ∈ S \ S′ are still kept on disk. They
may be reused again after further modification of the si-
mulation, e.g. after having made some small tests with a
reduced number of parameters.

2.3 Handling Model Enhancements
During simulation-based research, it is a quite common

task to enhance the functionalities of the existing simulat-
ion model. That is, new functionalities are added. Also, to
actually use these new functionalities, new parameters are
introduced – which have to be set to run the simulation. In
the usual case, the new functionalities and behaviours of the
model can be turned on by some parameter settings (e.g.
the model for a component is enhanced by a countermea-
sure mechanism against Denial of Service attacks). Having
already created a set of simulations by using the paramet-
rization approach described in subsection 2.2, this leads to
a problem: simply running these scripts results in the lack
of parameter specifications for the new functionalities. That
is, it would be necessary to modify all these scripts to set
the new parameters appropriately to turn the new function-
alities off (i.e. to get the old behaviour of the model).

Our approach to cope with this problem is quite simple:
for the simulation model, a global default configuration D
is specified – in the same way the simulation S is defined
(see listing 2 for an example). Each time a new parameter
is added to the model, a default for the new parameter is set
here. Clearly, a good setting is to turn the new functional-
ity off by default, i.e. using the default, the model behaves
as before the change. Clearly, the default setting should
contain exactly one value for each parameter.

To generate the actual simulation S∗ from a simulation
definition S and default settings D, the following merging
rules are applied:

1. It is allowed that some parameter values in S are not
specified. Formally, this could be reached by having

each parameter space P̂i containing an “undefined” en-
try ∅. However, we neglect a formal definition here,
since the idea should be clear.

2. If a parameter value in S is missing, the corresponding
value is taken from the default D. That is: if there is
no setting, the default is used.



Listing 1 An Example Simulation Configuration from the rspsim Model

1 s imu la t i onCon f i gu ra t i on s <− l i s t (
2 # ====== Variab le S e t t i n g s =====================================================
3 l i s t ( ” t a r g e tSy s t emUt i l i z a t i on ” , 0 . 70 , 0 . 9 0 ) ,
4 l i s t ( ”puToPERatio ” , 1 , 2 , 3 , 4 , 5 , 7 , 10 , 15 , 20) ,
5

6 # ====== Pool Element S e t t i n g s =================================================
7 l i s t ( ”ca lcAppPoolElementServiceCapacityVar iable ” , 1000000) ,
8 l i s t ( ”ca lcAppPoolElementSe lect ionPol i cy ” , ”LeastUsed ” , ”Random” , ”RoundRobin ”) ,
9

10 # ====== Pool User S e t t i n g s ====================================================
11 l i s t ( ”ca lcAppPoo lUserServ iceJobS izeVar iab le ” , 1e6 , 1e7 , 1 e8 ) ,
12 )

Listing 2 The Defaults Specification from the rspsim Model

1 r sps imDefau l tCon f i gura t i on <− l i s t (
2 # ====== Variab le S e t t i n g s =====================================================
3 l i s t ( ” t a r g e tSy s t emUt i l i z a t i on ” , 0 . 8 0 ) ,
4 . . .
5

6 # ====== Pool Element S e t t i n g s =================================================
7 l i s t ( ”ca lcAppPoolElementServiceCapacityVar iable ” , 1 e6 ) ,
8 l i s t ( ”ca lcAppPoolElementSe lect ionPol i cy ” , ”RoundRobin ”) ,
9 . . .

10 l i s t ( ”calcAppPoolElementServerCookieMaxCalculat ions ” , 1 e7 ) ,
11 l i s t ( ”calcAppPoolElementServiceMinCapacityPerJob ” , 1 e5 ) ,
12 . . .
13

14 # ====== Pool User S e t t i n g s ====================================================
15 l i s t ( ”ca lcAppPoo lUserServ iceJobS izeVar iab le ” , 1 e7 ) ,
16 . . .
17

18 . . .
19 )

3. If there is a setting for a parameter pi, it is used and
the default value is simply ignored.

4. If there is a parameter setting in S but no default

in D, an error will appear. Since S ∈ P̂ and D ∈ P̂ ,
this cannot happen in theory – but for the simulation
script, it has shown to be very useful to avoid this kind
of problem – which is caused by typos in the parameter
specifications.

An example is provided by the simulation configuration
simulationConfigurations S in listing 1 and the default
configuration rspsimDefaultConfiguration D in listing 2:
according to rule #3, the parameter values for target-
SystemUtilization are taken from S (i.e. 0.70 and 0.90).
The simulation parameter calcAppPoolElementServerCoo-
kieMaxCalculations is not defined in S. It is therefore
taken from the defaults D (i.e. using the value 1e7) accord-
ing to rules #1 and #2. If there would be a parameter
thisIsATypo in S – which is not defined in the defaults D
– this would cause an error due to rule #4.

A positive side effect of the default configuration mecha-
nism is that the actual simulation configuration S may re-
main small. In a usual simulation setup, there are only a few
parameters which actually get modified – while most param-
eters stay at their default value. In particular, this keeps the
simulation file for S also easily understandable (e.g. by users
having only limited knowledge of the simulation model’s full
set of configurable parameters).

3. SIMULATION PROCESSING

In order to actually process a simulation which has been
parametrized by our script introduced in section 2, it is suffi-
cient to run GNU Make on the generated Makefile. This is
realized by the simulation script itself. In particular, the si-
mulation script also counts the number of CPUs/cores4 the
system provides and lets GNU Make execute the appro-
priate number of runs simultaneously5. That is, a system
containing two dual-core CPUs should perform four runs si-
multaneously. However, this approach is still limited to a
single PC only.

To allow for parallel simulation processing in our net-
working lab and on some spare PCs, we have first consid-
ered Akaroa, the proprietary X Grid [19] and the Grid
compution system Condor. However, we preferred a more
“lightweight”, easy to use and in particular Open Source ap-
proach – something like RSerPool. This has led to the idea
of actually using RSerPool for this task – in the form of our
prototype implementation rsplib.

4. SIMULATION DISTRIBUTION
Since we apply RSerPool for our simulation distribution

approach, it is first necessary to shortly introduce its archi-
tecture.

4.1 Reliable Server Pooling (RSerPool)
4Using the CPU information provided by the Linux kernel
in /proc/cpuinfo.
5Using the GNU Make parameter -j [jobs].



Figure 2: The RSerPool Architecture

The Reliable Server Pooling (RSerPool) architecture is
the IETF’s new standard for a lightweight server redun-
dancy and session failover framework to support availability-
critical applications as well as load balancing. It has be-
come an international standard by publication as RFCs in
September 2008. Figure 2 illustrates the RSerPool archi-
tecture [3, 20] which contains three types of components:
servers of a pool are denoted as pool elements (PE), a client
is called pool user (PU). The handlespace – which is the set
of all pools – is managed by redundant pool registrars (PR).
Within the handlespace, each pool is identified by a unique
pool handle.

PRs of an operation scope (e.g. a LAN or company net-
work) synchronize their view of the handlespace using the
Endpoint haNdlespace Redundancy Protocol (ENRP [21]),
transported via SCTP [22]. An operation scope is restricted
to a single administrative domain (e.g. an organization or
department), which reduces management complexity [23].
Being “lightweight” is the fundamental property of RSer-
Pool [3]: it must also be usable on low-performance devices
(e.g. routers or embedded systems). Therefore, the duty of
RSerPool is the management of pools and sessions only, but
it allows for a very efficient realization [23]. Nevertheless,
PEs may be distributed globally, so that their service can
survive localized disasters [10] (e.g. an earthquake or flood-
ing). PRs can announce themselves to PEs, PUs and other
PRs via UDP-based multicast messages. This functionality
allows for the automatic configuration of all components.

PEs choose an arbitrary PR of the operation scope to
register into a pool by using the Aggregate Server Access
Protocol (ASAP [24]), again transported via SCTP. Within
its pool, a PE is characterized by its PE ID, which is a ran-
domly chosen 32-bit number. Upon registration at a PR,
the chosen PR becomes the Home-PR (PR-H) of the newly
registered PE. A PR-H is responsible for monitoring its PEs’
availability by keep-alive messages (to be acknowledged by
the PE within a given timeout) and propagates the informa-
tion about its PEs to the other PRs of the operation scope
via ENRP updates. PEs re-register regularly as well as for
information updates.

In order to access the service of a pool given by its PH, a

PU requests a PE selection from an arbitrary PR of the op-
eration scope, using ASAP transported via SCTP. The PR
selects the requested list of PE identities by applying a pool-
specific selection rule, called pool policy. A basic set of adap-
tive and non-adaptive pool policies is defined in [25]. For this
paper, only the adaptive Least Used policy is relevant: Least
Used selects the least-loaded PE, according to up-to-date
application-specific load information. Round robin selection
is applied among multiple least-loaded PEs [16]. Details on
other possible policies can be found in [3].

4.2 Distributing Simulation Runs
The “scripting service” (SS) is an example service of our

RSerPool implementation rsplib [26]. It is included in the
rsplib package itself. Using this service, a PU can establish
a session with a pool and upload a Tar/GZip-packed archive
to a PE. The selected PE unpacks the archive into a tempo-
rary directory and executes a script included in the archive.
This script can write an output archive, which is finally
downloaded to the PU. The scripting pool can use the Least
Used policy. Each PE can handle up to SSMaxThreads ses-
sions simultaneously [12]; a PE’s load value is set according
to its actual number of sessions. Obviously, the scripting
service can be applied for distributed simulation process-
ing: instead of invoking the simulation model binary in the
Makefile itself, it is provided by a PU to a PE and processed
there. Finally, the received results are stored into the simu-
lation directory. Using GNU Make to start multiple PU
instances simultaneously, parallelizing is achieved.

The run distribution is performed by two scripts: the first
one, called ssdistribute, is invoked by the Makefile. It calls
the SS PU application with a Tar/GZip package consisting
of:

• The .ini file and all NED files of the project (plus
optionally other files),

• The simulation binary, all shared libraries required by
the simulation binary, the shared library loader6 as
well as

• The script ssrun.

Packaging NED and other files as well as the simulation bi-
nary, shared libraries and the shared library loader is only
performed once, before the runs are processed by the Make-
file. This achieves a significant efficiency improvement, since
these files remain the same for all runs. Note, that the sys-
tem working as SS PE does not even have to run the same
Linux distribution as the system having compiled the simu-
lation model. Since the simulation binary as well as all of
its shared libraries are provided by the SS PU, the only re-
quirement is a compatible CPU architecture. That is, if the
simulation binary is compiled on x86, the SS PEs can use an
x86 or x86 64 CPU (64-bit systems can run 32-bit binaries).
For a 64 bit PU, and therefore for a 64-bit binary, all PEs
would have to be 64-bit machines.

The ssrun script, which is part of the package provided by
the SS PU to a PE, is executed on the remote machine and
calls the simulation binary with the corresponding input file.
Afterwards, it collects scalar, vector and log files, performs
BZip2-compression and puts them together into an archive.
This archive is downloaded by the PU and stored in the cor-
responding simulation directory. If a PE rejects a session
(since already serving SSMaxThreads sessions), or if it goes

6On a current Linux system, this is /lib/ld-linux.so.2.



out of service (e.g. the PC is turned off), the session is sim-
ply restarted from scratch (“abort and restart” principle [9])
after a short delay (e.g. 5s). This delay avoids overloading
the network with reject-and-retry floods [12] when there are
too few PEs available.

4.3 Our Pool Setup

Figure 3: Our Simulation Computation Pool

Figure 3 presents our lab setup at Hainan University:
36 PCs (Linux systems with single-core Pentium 4 CPU)
run a SS PE service. These machines only need a basic
installation of rsplib – it is not necessary to install OM-
NeT++, GNU R, the simulation model itself, etc. on these
systems. The only system requiring these installations is
the 4-core Xeon server running Kubuntu Linux 8.04. It con-
tains the SimProcTC tool-chain as well as the simulation
model. This machine is used to distribute the simulation
runs. In order to fully utilize its CPU power, it furthermore
also runs an SS PE (with reduced process priority). The
pool therefore has the ability to process 40 runs in parallel.

5. RESULTS VISUALIZATION
The goal of a simulation is to obtain results, which have

to be visualized in an appropriate form for easy analysis
and interpretation. The focus of SimProcTC is currently
to visualize the scalars. The scalars of a simulation are dis-
tributed over the scalar files located in the simulation direc-
tories. Therefore, it is first necessary to bring the scalars
into an appropriate form to visualize them.

5.1 Scalars Summarization
For the task of collecting the scalar values from the various

scalar files, a C++-written program called createsummary
has been developed. While this task would also be possible
using GNU R itself, the requirements on memory and CPU
power have quickly led to this external program.
createsummary is called as last step of the Makefile and

iterates over all scalar files of the simulation S. Each file
is read – with on-the-fly BZip2-decompression – and each
scalar value as well as the configuration s ∈ S having led to
this value – are stored in memory. Depending on the number
of scalars, this in-memory storage can result in huge memory
requirements (e.g. multiple GiB). But in the usual case, not
all scalars of a simulation are required for analysis. Consider
for example the statistics results of a TCP/IP application.
If only the statistics (i.e. scalars) of the application itself
are of interest, it is not necessary to write e.g. IP, TCP or
Ethernet statistics as well. Therefore, createsummary can
use an exclusion list denoted as “summary skip list”. Scalars
matching the exclusion pattern are simply skipped. Note,

that the scalars are still stored in the scalar files themselves.
That is, should these values be required later, it is possible
to simply re-run createsummary – with updated skip list –
to also process them.

Listing 3 An Example GNU R Data File

1 S i z e I n t e r v a l ID System Speed
2 0001 1 100 Test Alpha 39 .21
3 0002 20 150 Test Beta 48 .20
4 0003 20 152 Test Beta 96 .03
5 0004 20 155 Test Beta 12 .62
6 0005 50 140 Test Alpha 139 .23
7 0006 75 180 Test Beta 45 .34
8 0007 80 120 Test Alpha 73 .28
9 0008 90 145 Test Alpha 59 .29

10 . . . . . . . . . . . . . . . . . .

Having all relevant scalars stored in memory, it is easily
possible to write each scalar into a separate data file. Such
a data file – which can be processed with GNU R or other
programs – is simply a table in text form, containing the
column names on the first line. Each following line contains
the data, with line number and an entry for each column
(all separated by spaces). That is, each line consists of the
settings of all parameters and the resulting scalar value. An
example data file is shown in listing 3; it contains the pa-
rameters Size, Interval, ID and System as well as the scalar
Speed. Since most model parameters do not change in a
simulation S – i.e. their value is constant and their table
column therefore contains the same value on each line (e.g.
ID=Test in the example) – there would be a huge waste of
storage and memory space as well as CPU power. There-
fore, such columns are simply not written unless explicitly
requested (e.g. if needed for post-processing later). Further-
more, the resulting data files are also BZip2-compressed on
the fly.

5.2 Plotting
Using the scalar output files written by createsummary (or

alternatively other output data) the results can be presented
visually. Since we have already used GNU R [4] for the pa-
rametrization, it is quite straight-forward to also use it for
plotting as it also contains a rich set of graphics functions.
In particular, it allows for a very fine-granular control of the
output plots to adapt the presentation to special require-
ments (e.g. labels, grids, colours, line styles, etc.). However,
it would also be possible to apply other tools – e.g. GNU
Octave and GNU Plot or even Microsoft Excel – for
visualizing the results.

For results analysis, it is crucial that the impact (i.e. the
scalar value) for variations of multiple parameters can be
presented in an easy-to-understand form. In our plotting
approach, we apply the idea of axes, onto which parameters
and scalars can be mapped:

• X-axis and Y-axis are obvious: the main parameter is
displayed on the X-axis, the result (i.e. a scalar) on the
Y-axis.

• There can be multiple lines per plot: the Z-axis iden-
tifies a line. For readability, we map a different colour
or shade to each line.

• The Z-axis can be further subdivided: the V-axis uses
a different line style. Also, the V-axis can be further
subdivided: the W-axis uses a different point style.



Figure 4: A Complex Example Plot using X/Y/Z/V/A/B/P Axes

• On one page, there can be multiple plots: the A-axis
divides the page in horizontal direction, the B-axis in
vertical direction (i.e. a separate plot for each A/B-axis
value).

• Finally, the P-axis creates a separate page for each P-
axis value.

To make our plot idea clear, figure 4 shows an example7

plot from the rspsim model: The X-axis presents the param-
eter PU:PE ratio r and the Y-axis shows the scalar value of
the system utilization (in %). The Z-axis represents the pool
policy: i.e. each policy gets its own colour (colour plot) or
shade (gray scale plot). The V-axis presents the Request
Size:PE Capacity ratio s: each value – s=1 and s=100 – is
marked by a different line style. There is no W-axis in this
plot. The A-axis displays the Request Size Distribution δ
and the B-axis shows plots for each PE MTBF value M .
Using the P-axis, a separate page is created for each Tar-
get System Utilization setting ϑ. The plot shown here is
for ϑ=90% (this information can be found in the box below
the plot title).

The further features of our GNU R-based plot script are
as follows:

1. If there are multiple values per plot (e.g. from runs
with different seeds), the average value is taken for
plotting. Furthermore, the confidence intervals (usu-
ally 95%) are computed and displayed.

7A detailed parameter description can be found in [3].

2. It is possible to define a mapping from an axis label to
a variable (e.g. r → PU : PE ratio – to simplify writing
a description).

3. The output can optionally be in black and white, grey
scale or colour.

4. All plots are written as PDF files (i.e. a vector format),
for efficient inclusion into pdfLATEX documents. If nec-
essary, the PDF files could be converted into raster
formats like PNG or GIF (e.g. for inclusion into Mi-
crosoft Office).

5.3 Plotting Templates
To speed up the definition of plots to be created, the Sim-

ProcTC plotter script allows for the definition of templates
describing the mapping of table columns to axes. These tem-
plates are used to write the actual plot definitions. Listing 4
provides an example for two plots: system utilization (this
plot is shown in figure 4) and request handling speed. The
plot configuration in plotConfigurations simply consists
of a list of plot definitions: the first line of each definition
provides the simulation directory (i.e. where to find the re-
sults data) and the PDF output file name (created using the
directory name). In the second line, the plot title, optional
ranges for X-axis and Y-axis (NA denotes automatic choice)
and the legend position (X and Y position from 0.0 to 1.0)
are provided. The following definitions set the templates to
be applied for the axes (X, Y, Z, V, W, A, B and P) and an



Listing 4 An Example Plot Definition

1 s imu la t i onDi r e c to ry <− ”wp1−hom−puToPERatioI ”
2 . . .
3

4 # ====== Templates ====================================================================
5 p l o tVa r i ab l e s <− l i s t (
6 # −−−−−− System U t i l i z a t i o n Template −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 l i s t ( ” c o n t r o l l e r . SystemAverageUt i l i zat ion ” ,
8 ”Average U t i l i z a t i o n [%] ” ,
9 ”100 .0 ∗ data1$ c o n t r o l l e r . SystemAverageUt i l i zat ion ” ,

10 ”blue4 ” ,
11 l i s t ( ”con t r o l l e rSy s t emAve rageUt i l i z a t i on ” ) ) ,
12 . . .
13 )
14 . . .
15

16 # ====== Plo t s ========================================================================
17 p l o tCon f i gu ra t i on s <− l i s t (
18 f i l t e r <− ”data1$ t a r g e tSy s t emUt i l i z a t i on >= 0.80 ”
19

20 # −−−−−− System U t i l i z a t i o n Plot −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 l i s t ( s imu la t i onDi rec to ry , paste ( sep=”” , s imu la t i onDi rec to ry , ”−Ut i l i z a t i o n−P%d . pdf ”) ,
22 ”Provider ’ s Pe r spec t i v e ” , NA, NA, l i s t ( 1 , 0 ) ,
23 ”puToPERatio ” , ” c o n t r o l l e r . SystemAverageUt i l i zat ion ” ,
24 ”ca lcAppPoolElementSe lect ionPol i cy ” , ”jsToSC” , ”” ,
25 ”ca l cAppPoo lUse rSe rv i c eJobS i zeDi s t r ibut i on ” ,
26 ”calcAppPoolElementComponentUptimeVariable−MTBF” , ” t a r g e tSy s t emUt i l i z a t i on ” ,
27 f i l t e r ) ,
28

29 # −−−−−− Handling Speed Plot −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 l i s t ( s imu la t i onDi rec to ry , paste ( sep=”” , s imu la t i onDi rec to ry , ”−HandlingSpeed−P%d . pdf ”) ,
31 ”User ’ s Pe r spec t i v e ” , NA, NA, l i s t ( 0 , 1 ) ,
32 ”puToPERatio ” , ” c o n t r o l l e r . SystemAverageHandlingSpeed ” ,
33 ”ca lcAppPoolElementSe lect ionPol i cy ” , ”jsToSC” , ”” ,
34 ”ca l cAppPoo lUse rSe rv i c eJobS i zeDi s t r ibut i on ” ,
35 ”calcAppPoolElementComponentUptimeVariable−MTBF” , ” t a r g e tSy s t emUt i l i z a t i on ” ,
36 f i l t e r )
37 )

optional filter expression (to be explained below).
The templates are defined in plotVariables. A template

does not only correspond to a certain data table column,
it can furthermore also apply data modification. For ex-
ample, we plot the system utilization in the first plot –
which is provided as values from 0.0 to 1.0 in the data
file. For readability reasons, we have configured the tem-
plate (controllerSystemAverageUtilization) to multiply
it by 100 to obtain a value in %. The template further-
more defines the axis label. Using template-based defini-
tions, plots can be defined very easily.

The Y-axis template also specifies the input file (here:
“controllerSystemUtilization”) from which the data is actu-
ally read. Its data table in GNU R is referenced by the
variable data1. For purposes like creating plots for a paper,
it is often not desired to plot all data. That is, a useful
parameter subset has to be extracted. This is achieved by
using a filter expression (given as string): in the example,
“data1$targetSystemUtilization >= 0.80” selects only the
table rows which have the “targetSystemUtilization” entry
set to a value greater or equal 0.80. Since the filter expres-
sion is simply a GNU R expression, it is of course possible
to specify more complex filters here – in particular, the OR
“|” or AND “&” operators can be used to combine conditions
and the NOT “!” operator can be used for negation.

GNU R is already capable of writing its plots into PDF
files. However, no fonts are embedded into the output file.
That is, when included into pdfLATEX, the resulting file will
contain non-embedded fonts; the PDF file simply references

fonts installed on the local system. Since wrong font map-
pings lead to problems for printing and displaying, such files
are e.g. disallowed for the camera-ready versions of confer-
ence papers. This problem can be solved easily by a PDF
post-processing step: the plot file simply has to be processed
by Ghostscript using pdfwrite as output device. The re-
sulting new PDF file will have all required fonts embedded.
Furthermore, the resulting file will even be compressed –
which can significantly reduce its size.

6. CONCLUSIONS AND OUTLOOK
In this paper, we have introduced design and realization

of SimProcTC – our Open Source tool-chain to perform
the parametrization, distributed run execution and results
visualization in OMNeT++-based simulations. By using
SimProcTC, these frequently recurring tasks of simulation
work can be performed in an efficient and easy to use man-
ner. Our tool-chain is already successfully deployed for a
number of simulation projects.

Currently, we are evaluating the usage of Xen-based vir-
tualization for distributed run processing. This approach
not only provides enhanced security but also allows for check-
pointing simulation runs. That is, when a processing node
goes out of service, a run can be resumed on another system.
This can significantly improve the performance in unreliable
simulation computation pools (e.g. PCs in a student lab).
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[25] T. Dreibholz and M. Tüxen. Reliable Server Pooling
Policies. RFC 5356, IETF, September 2008.

[26] T. Dreibholz. Thomas Dreibholz’s RSerPool Page,
2008.


	Introduction
	Simulation Parametrization
	Formal Definitions
	Realization
	Handling Model Enhancements

	Simulation Processing
	Simulation Distribution
	Reliable Server Pooling (RSerPool)
	Distributing Simulation Runs
	Our Pool Setup

	Results Visualization
	Scalars Summarization
	Plotting
	Plotting Templates

	Conclusions and Outlook
	References

