A Powerful Tool-Chain for Setup, Distributed Processing,
Analysis and Debugging of OMNeT++ Simulations’

Thomas Dreibholz
University of Duisburg-Essen
Institute for Experimental Mathematics
Ellernstrasse 29, 45326 Essen, Germany

dreibh@iem.uni-due.de

ABSTRACT

In this paper, we introduce our Open Source tool-chain pro-
viding the parametrization, distributed execution, results
post-processing and debugging for OMNET++-based simu-
lations. While the initial motivation of these tools has been
the support of our simulation model of the Reliable Server
Pooling (RSerPool) framework, it has been particularly de-
signed with model-independence in mind. That is, it can
be easily adapted to other simulation models and therefore
may be useful for other users of OMNET++-based simula-
tion models as well.

Keywords: Simulation Model, Parametrization, Simula-
tion Run Distribution, Plotting, Analysis

1. INTRODUCTION

Reliable Server Pooling (RSerPool) is the IETF’s upcom-
ing standard for an application-independent, light-weight
framework for the management of server pools [8,11] and ses-
sions [13]. It has been designed in order to ensure the avail-
ability of critical services. An important sub-topic of RSer-
Pool is server selection within pools. As proof of concept for
RSerPool, we have started the development of the RSPLIB [3]
Open Source prototype implementation [2] in 2001. How-
ever, in order to analyse, evaluate and optimize the RSer-
Pool approach in detail, a prototype has been insufficient
and a simulation model was needed.

After comparing OMNET 4+ [33], NS2 [21] and the com-
mercial OPNET [22] frameworks, we have finally chosen OM-
NET++ as the foundation of our RSerPool simulation model
RSPSIM [9]: in comparison to NS2, the object-oriented struc-
ture of OMNET++ is clearer and easier to understand — and
the NED and message object generation tools save a lot of
time. The commercial OPNET package has been found too
complicated and furthermore it is also extremely expensive.

In order to efficiently perform simulations using our RSP-
siM model, we have also developed a model-independent,

*Parts of this work have been funded by the German Re-
search Foundation (Deutsche Forschungsgemeinschaft).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OMNeT++ 2008 March 3, 2008, Marseille, France

Copyright 2008 ACM 978-963-9799-20-2 ...$5.00.

Erwin P. Rathgeb
University of Duisburg-Essen
Institute for Experimental Mathematics
Ellernstrasse 29, 45326 Essen, Germany

rathgeb@iem.uni-due.de

0 1 | simu- ||
Parametrization

Distributed g,) n

Run u
RSerPooI
Execution iz

[Results Post-Processing]
Plotting é]

Figure 1: An Overview of Our Tool-Chain

)

flexible and powerful tool-chain for the setup, parallel run
execution, results aggregation, data analysis and debugging
— completely based on Open Source software. The goal of
this paper is to present our tool-chain — which is illustrated
in figure 1 — in detail to show how the challenges of sim-
ulation execution can be solved efficiently. Now, we apply
this tool-chain not only for our RSerPool model RSPSIM, but
also for two other projects. Due to its independence of a
specific model, it may also be useful for many more users of
OMNET++. Our tools have been released as Open Source
under GPLv3 license and are freely downloadable from our
web site’.

2. THE RSERPOOL ARCHITECTURE

Before describing our tool-chain itself, we first have to
introduce RSerPool, since it will also be used for the sim-
ulation run distribution later in section 5. Figure 2 illus-
trates the RSerPool architecture [3,20] which contains three
types of components: servers of a pool are called pool el-
ements (PE), a client is denoted as pool user (PU). The
handlespace — which is the set of all pools — is managed
by redundant pool registrars (PR). Within the handlespace,
each pool is identified by a unique pool handle (PH).

2.1 Components and Protocols

PRs of an operation scope synchronize their view of the
handlespace using the Endpoint haNdlespace Redundancy

"Mttp://www.iem.uni-due.de/~dreibh/omnetpp/.

mailto:dreibh@iem.uni-due.de
mailto:rathgeb@iem.uni-due.de
http://www.iem.uni-due.de/~dreibh/omnetpp/

Server Pool

Registrars

ENRP

AL

V a— -]
.t

Other Clients

Yo
Proxy Pool Userd /=5

Figure 2: The RSerPool Architecture

Protocol (ENRP [35]), transported via SCTP [19]. An op-
eration scope is restricted to a single administrative domain
(e.g. an organization or department), which keeps the man-
agement complexity small [8,11]. Being “light-weight” is the
fundamental property of RSerPool [3]: it must also be usable
on low-performance devices (e.g. routers or embedded sys-
tems). Therefore, the duty of RSerPool is the management
of pools and sessions only, but it allows for a very efficient
realization [11]. Nevertheless, PEs may be distributed glob-
ally, so that their service can survive localized disasters [12]
(e.g. an earthquake or flooding). PRs can announce them-
selves to PEs, PUs and other PRs via UDP-based multicast
messages. This functionality allows for the automatic con-
figuration of all components.

PEs choose an arbitrary PR of the operation scope to
register into a pool by using the Aggregate Server Access
Protocol (ASAP [29]), again transported via SCTP. Within
its pool, a PE is characterized by its PE ID, which is a ran-
domly chosen 32-bit number. Upon registration at a PR,
the chosen PR becomes the Home-PR (PR-H) of the newly
registered PE. A PR-H is responsible for monitoring its PEs’
availability by keep-alive messages (to be acknowledged by
the PE within a given timeout) and propagates the infor-
mation about its PEs to the other PRs of the operation
scope via ENRP updates. PEs re-register regularly (in an
interval denoted as registration lifetime) and for information
updates.

In order to access the service of a pool given by its PH, a
PU requests a PE selection from an arbitrary PR of the op-
eration scope, using ASAP transported via SCTP. The PR
selects the requested list of PE identities by applying a pool-
specific selection rule, called pool policy. A basic set of adap-
tive and non-adaptive pool policies is defined in [30]. For
this paper, only Least Used (LU) is relevant: LU selects the
least-used PE, according to up-to-date application-specific
load information. Round robin selection is applied among
multiple least-loaded PEs [8]. Details on other policies can
be found in [3].

The PU writes the list of PE identities selected by the

PR into its local cache (denoted as PU-side cache). From
this cache, the PU selects — again using the pool’s policy
— one element to contact for the desired service. The PU-
side cache constitutes a local, temporary and partial copy of
the handlespace. Its contents expire after a certain timeout,
denoted as stale cache value. In many cases, the stale cache
value is simply Os, i.e. the cache is used for a single handle
resolution only [9].

2.2 Application Scenarios

Although the main motivation to define RSerPool has
been the availability of SS7 (Signalling System No. 7 [18])
services over IP networks, it is intended to be a generic
framework. There has already been some research on the
performance of RSerPool usage for applications like SCTP-
based mobility [6,7], VoIP with SIP [1], web server pools [3],
IP Flow Information Export (IPFIX) [5,24], real-time dis-
tributed computing [3,4,9,10,14,36-39] and battlefield net-
works [31]. A further application is the scripting service,
which we will introduce later in section 5.

3. THE SIMULATION MODEL

An overview of our RSPSIM simulation model [3] is pre-
sented in figure 3: each setup has one Controller module
which takes care of simulation startup, shutdown and col-
lection of global statistics. The actual RSerPool network
setup is provided by an array of LAN modules. Each LAN
consists of arrays of Registrar, PoolElement and PoolUser
modules — all interconnected by a switch. The PU and PE
modules realize a generic application model to evaluate the
load balancing and failover features of RSerPool. Details on
this application model can be found in [3,9].

The implementation of the switch is actually realized by
a TransportNode module, which is also a sub-module of the
PR, PE and PU modules. A TransportNode is an abstrac-
tion of the Network and Transport Layers. It provides the
forwarding of data packets using addresses and port num-
bers, actually realized using OMNET++’s cTopology class
and shortest-path algorithm. This is already sufficient for
our research on RSerPool functionality. However, in the fu-
ture, the simple TransportNode could be easily replaced by
a full-featured SCTP/IP stack like [26].

Handlespace management — which means the storage and
maintenance of a handlespace — is an important task of RSer-
Pool. While the naive solution would simply use a list of
pools and store each pool as a list of PE identities, this so-
lution would not scale to large handlespaces (i.e. hundreds or
thousands of PUs and PEs). In order to achieve reasonable
execution times, a sophisticated solution based on red-black
trees has been developed. Details can be found in [8,11].
Since the task of handlespace management is identical for
simulation model and prototype implementation, we use our
approach for both. But since the prototype uses ANSI C
as implementation language, it also had to be used for the
handlespace management. Due to opp_makemake’s lack of
support for .c files, we have applied a very simple trick: for
each .c file, there is also a . cc file which simply contains an
#include statement for the corresponding C code file.

4. THE PARAMETRIZATION

The latest version of the RSPSIM model’s network contains
almost 120 parameters. So, manually writing .ini files for

simulationScenario ey -,
(‘ lanArray[0]
)

s

)
lanArray[n]
)

S

simulationScenario.lanArray[0]

gistrarArray[k]
LN)

registrarArray[1]

A

registrarArray[0]

poolUserArray[0] poolUserArray[1] poolUserArray[2] poolUserArray[n]

Figure 3: An Overview of the Simulation Model

the model is quite inefficient. In order to cope with this
challenge, we have developed a simulation execution script
in GNU R [25]. The GNU R package contains a powerful
script language and a huge number of extensions for statis-
tical analysis and plotting.

In order to explain the first step of model-independent
simulation processing — the parametrization — it is useful to
introduce some formal definitions: let a simulation model
have n parameters pi, ..., pn, with Pi, ..., P, the cor-
responding parameter spaces. That is, p; € B for all i €
{1,...,n}. Then, the model parameter space is P = P, X
13’2 X ... X I:"’n Using this definition, a simulation S C P
simply contains all parameter combinations s € S for which
a run has to be performed. We assume for simplicity rea-
sons that a run number corresponding to a certain random
number generator seed is simply another input parameter.
The simulation binary itself constitutes a simulation func-
tion f : S — R, which maps a run s; € S to a result
f(sj) € R (scalars and vectors; we omit a formal definition
here). We further assume that for the same setting of s,
always the same output is generated (or differences do not
falsify the results?).

Clearly, the first step to parametrize a simulation model
is to define the simulation S. Listing 1 presents a simple
example from RSPSIM: simulationConfigurations is a list
containing sub-lists. Each sub-list includes the parameter
name (as first item) and all values to be used.

In order to generate input for the model, .ini files have
to be written. For efficiency reasons, our simulation script
has to meet two goals:

Extensibility It must be possible to add more values for
some parameters, without having to re-process already
performed runs.

Parallelization There must be support for executing dif-
ferent runs simultaneously, using our run distribution
approach described in section 5.

To fulfil these requirements, our simulation script first cre-
ates a separate run directory for each run s € S. The name
of the directory is computed using the SHA1 hash [15] over s,

2For example, the RSPSIM model also writes the actual run
execution time as a scalar, in order to allow for profiling.

which avoids overly long names. For each run s, a separate
.ini file is generated. It also uses its own scalar and vector
files. Furthermore, a Makefile for GNU MAKE [17] is writ-
ten for the whole simulation S. Each s € S leads to an entry
performing the following tasks:

e Removal of old vector, scalar and log files.

e Execution of the simulation model binary using the
corresponding .1ini file for s. It will write a log file as
well as — probably — scalar and vector files.

e Compression of output files using BZ1p2 [27]. Since the
output files are simply ASCII text, this can achieve a
huge space reduction.

e Creation of a time-stamp file after successfully process-
ing all former steps.

A re-run of the simulation script will update existing time-
stamp files by default. That is, already executed runs will
not be re-processed again — since their result would not
change (due to our assumption for f above). If the sim-
ulation function f changes, the update step can be skipped
and the runs will be executed again. Since run directories are
kept until manually deleted, we also get caching behaviour:
if the simulation is modified from S to S’ C P, S’ # S, it
is only necessary to process the new runs s € S’ \ S. Note,
that the runs 5 € S\ S’ are still kept. They may be reused
again after further modification of the simulation.

In order to make the simulation script reusable, it is sep-
arated into a model-independent part (for generating all
s € S, creating directories and files as well as writing the
contents of the Makefile) and a model-specific part. The
model-specific functionality consists of writing the parame-
ter section of the .ini file.

5. DISTRIBUTING SIMULATION RUNS

5.1 Overview

The execution of a simulation S simply consists of process-
ing the generated Makefile by GNU MAKE. This is realized
as last step of the simulation script. In particular, the simu-
lation script also finds out the number of CPUs/cores® and

3By using the CPU information from /proc/cpuinfo.

Listing 1 An Example Simulation Configuration

simulationConfigurations <— list (

=—————= Variable Setltings

list ("targetSystemUtilization”, 0.80),

list ("puToPERatio”, 1, 2, 3, 4, 5, 7, 10, 15, 20),

=—==== Pool FElement Settings

list (?calcAppPoolElementServiceCapacityVariable”,
?LeastUsed”, ”"Random”, ”RoundRobin”),

list (?calcAppPoolElementSelectionPolicy”,

1000000),

Pool User Settings

list (?calcAppPoolUserServiceJobSizeVariable”, 1e6, 1le7, 1e8),

lets GNU MAKE execute the appropriate number of runs in
parallel*. That is, a dual-core machine should perform two
runs simultaneously. However, this approach is still limited
to a single PC only.

In other to allow for parallel simulation processing in our
networking lab and on some spare PCs, we have first con-
sidered AKAROA. However, the configuration in our quite
heterogeneous network (different Linux versions, different
subnets, downtime when PCs are used for student exercises
or projects, etc.) has been challenging and a “light-weight”
approach for simulation distribution has been desired. But
RSerPool itself is a light-weight framework for request dis-
tribution in server pools. Furthermore, we have developed
our prototype implementation RSPLIB and it is even installed
on our PCs. So, it has been quite straight-forward to utilize
RSerPool to do this job!

5.2 Using the Scripting Service

The RSPLIB [2] package already contains the “scripting ser-
vice” (SS) as application demo. For this service, a PU can
establish a session with a pool and upload a TAR/GZIp-
packed archive to a PE. The selected PE unpacks the archive
into a temporary directory and executes a script included
in the archive. This script can write an output archive,
which is finally downloaded to the PU. The scripting pool
can use the Least Used policy. Each PE can handle up
to SSMaxThreads sessions simultaneously [36]; a PE’s load
value is set according to its actual number of sessions.

Using the scripting service for our simulation processing
is easy: instead of invoking the simulation model binary in
the Makefile itself, the script ssdistribute is called. This
script simply packs the .ini file and a script called ssrun
into a TAR/GZIP archive and provides it to the scripting ser-
vice PU. The PU will distribute this archive to a PE in the
simulation computation pool and the PE will execute ssrun.
ssrun will actually call the simulation model binary, collect
scalar, vector and log files and put them together into an
archive. This archive is downloaded by the PU and stored
in the corresponding simulation directory. If a PE rejects a
session (since already serving SSMaxThreads sessions), or if
it goes out of service (e.g. the PC is turned off), the session
is simply restarted from scratch (“abort and restart” princi-
ple [13]) after a short delay (e.g. 5s). This delay avoids over-
loading the network with reject-and-retry floods [37] when

4Using the parameter -j [jobs].

there are too few PEs available.

Using the scripting service of RSerPool is a quite simple
way for the simulation distribution: ssdistribute and ss-
run each consist of about 50 lines of shell code. Setting up a
simulation computation pool now gets rather easy: figure 4
illustrates our group’s setup consisting of 27 cores provided
by 15 PCs. On each computation PC, it is only necessary
to start a PE with SSMaxThreads set to the system’s num-
ber of CPUs/cores. Each PE will automatically find a PR,
therefore no configuration is required. Of course, it is pos-
sible to dynamically add or remove PEs. That is, when
the PCs of our student lab are required for other tasks, the
scripting PE may be stopped. On the PU side, GNU MAKE
has to be called with an appropriate number of simultane-
ous processes. Then, there will be up to the given number
of parallel simulation run sessions.

In fact, it would only be necessary to install the script-
ing PE on the computation PCs. However, for our RSPSIM
model, we also provide the simulation model binary on the
PCs themselves — instead of providing it in the TAR/GZIP
archive sent by the PU. This saves some bandwidth and fur-
thermore allows mixed pools of x86 and x86_64 machines
and different Linux distributions.

5.3 Work in Progress

At the moment, we are testing further improvements of
the distribution service: first, we would like to use transpar-
ent application checkpointing [23] to regularly create snap-
shots of the running OMNET++-based simulation model.
So, instead of applying “abort and restart” upon PE fail-
ure, it would be possible to resume a run from the latest
checkpoint. Another point of improvement is security: the
scripting service executes arbitrary scripts sent from a re-
mote instance. This is fine for our lab PCs, but prevents
application on other systems. So, instead of running such
scripts as regular processes, we would like to use a XEN-
based virtual machine. Our long-term objective is to run a
virtual machine-based scripting service on user PCs, in or-
der to let them safely provide their capacity to simulation
processing (or some other useful tasks) when idle.

6. THE RESULTS ANALYSIS

After processing of a simulation S, the simulation direc-
tory contains a BZ1p2-compressed scalar and/or vector file
in the sub-directory of each run s € S. Clearly, the results

[

© 0w N o o

i
p e {

//’ \\\
__/ Group LAN \
L ~(:
Pool User

1 2x AMD Athlon
||

Registrars

Pentium 1V, l

|

\ /
\\ \ 11x Pentium IV Dual-Cy

m=eem Gigabit Ethernet

Fast Ethernet AN S

Core Il 64-bit Dual Core

Figure 4: Our Scripting Service Setup for Simulation Run Distribution

Listing 2 An Example GNU R Data File

Size Interval ID System Speed
0001 1 100 Test Alpha 39.21
0002 20 150 Test Beta 48.20
0003 20 152 Test Beta 96.03
0004 20 155 Test Beta 12.62
0005 50 140 Test Alpha 139.23
0006 75 180 Test Beta 45.34
0007 80 120 Test Alpha 73.28

145 Test

0008 90 Alpha 59.29

from these files have to be collected and summarized in order
to perform an analysis. For the RSPSIM model, we mainly
use scalar files, therefore we omit vector file handling in this
description. Since we have already used GNU R for our
simulation script, it has been straight-forward to also apply
this program for the post-processing of the results. How-
ever, the mechanisms we describe in the following could be
easily adapted to other tools — e.g. GNU OCTAVE [16] and
GNU Prort [34] — as well.

6.1 The Summarization Tool

As first part of the scalar post-processing, all scalar files
are read (with BZip2-decompression on the fly) and the
information is stored in memory. Since this task can re-
quire a lot of memory, it is realized by a C++-written pro-
gram called createsummary. In order to simplify the post-
processing, the run configuration s and the corresponding
directory name are remembered at Makefile generation (see
section 4).

When all results are in memory, it is easily possible to
write them into data files for GNU R. Such a data file is
simply a text file containing the column names in the first
line. Each following line contains the data, with line number
and an entry for each column (all separated by spaces). An
example data file is shown in listing 2; it contains the pa-
rameters Size, Interval, ID and System as well as the scalar

Speed. Since the RSPSIM model contains about 120 parame-
ters, there would be the same number of columns. However,
most parameters are actually fixed for a realistic simula-
tion S. Therefore, such columns are simply not written un-
less explicitly requested (e.g. if needed for post-processing
later). Furthermore, the resulting data files will be BZ1p2-
compressed on the fly, in order to reduce storage space.

6.2 Plotting

The final step of results post-processing is the graphical
representation. For each scalar, there is a BZ1p2-compressed
data file containing the scalar values as well as the parameter
settings used to obtain a corresponding value. Since we have
already used GNU R [25] for the parametrization, it is quite
straight-forward to also use it for plotting — GNU R also
provides powerful graphics functions. In particular, it allows
for a very fine-granular control of the output plots to adapt
the presentation to special requirements (e.g. labels, grids,
colours, line styles, etc.). However, it would also be possible
to apply other tools like GNU OcTAVE and GNU PLoT
for plotting in a similar way. The requirements to our plot
function are as follows:

1. There must be support for multiple lines per plot (Z-
axis). Furthermore, lines should be sub-dividable by
further parameters (V-axis, W-axis).

2. It must be possible to compute and display confidence
intervals.

3. The output should optionally be black and white, grey
scale our colour.

4. All plots should be stored in PDF files, for inclusion
into pdfIXTEX documents.

The first requirement is achieved by appropriately subset-
ting the obtained results table. Figure 5 presents an example
taken from [3]: on the X-axis, the number ratio between PUs
and PEs is varied (PU:PE ratio r), the Y-axis shows the re-
sulting system utilization (which is the value of a scalar).

Provider's Perspective

Pool Policy p / Request Size:PE Capacity Ratio s [s]

0 |
©
3 BT T 2R
N
c
o
= o _|
© ~
N
E
o g _
£
9]
a &
2 8 | —6— p=RoundRobin, s=1
(7] -4- p=RoundRobin, s=100
0 _|
[Te]
—— p=LeastUsed, s=1
-v- p=LeastUsed, s=100
Q|
[re)

T T I T T
0 5 10 15 20

PU:PE Ratio r [1]

Figure 5: An Example Results Plot

Each X-axis point r is sub-divided by the pool policy p (Z-
axis) and furthermore by the request size:PE capacity ra-
tio s° (V-axis). For each parameter combination, there have
been 24 runs with different seeds. That is, for each X-axis/Z-
axis/V-axis parameter combination, there are 24 utilization
values in the data table. Our plotter script simply takes
these 24 values and computes the average value as well as
the 95%-confidence interval. The confidence interval is dis-
played by thin lines, the average value is used for the actual
curves. The colour of each curve (or shade on a black and
white printout) is given by the value of the Z-axis (here:
pool policy p; colours are automatically chosen for high con-
trast), the line style (solid, dotted, etc.) by the value of the
V-axis (here: request size:PE capacity ratio). That is, we
try to present the results as descriptively as possible.

In order to speed up the definition of plots to be created,
our script allows for the definition of templates for the map-
ping of table columns to axes. These templates are used to
write the actual plot definitions. Listing 3 provides an ex-
ample from [3] for two plots: system utilization (this plot is
shown in figure 5) and request handling speed. The plot con-
figuration in plotConfigurations simply consists of a list
of plot definitions; the first line of each definition provides
the simulation directory (i.e. where to find the results data)
and the PDF output file name (created using the directory
name). In the second line, the plot title, optional ranges
for X-axis and Y-axis (NA denotes automatic choice) and
the legend position are provided. The following definitions
provide the template names for the values of the axes (X,
Y, Z, V, W).

The templates are defined in rspsimbPlotVariables. A
template does not only correspond to a certain data ta-
ble column, it can furthermore also apply data modifica-
tion. For example, we plot the system utilization in the
first plot — which is provided as values from 0.0 to 1.0 in
the data file. For readability reasons, we have configured
the template (controller.SystemAverageUtilization) to
multiply it by 100 to obtain a value in %. A template fur-

®A detailed parameter description can be found in [3].

thermore defines the axis label and the files(s) from which
an axis vector is actually read. Using our template-based
definitions, plots can be created very easily.

GNU R is already capable of writing its plots into PDF
files. However, there are two limitations: the output can
use the latin encoding only, i.e. without special characters
of non-English languages. Furthermore, no fonts are embed-
ded into the PDF file. That is, when included into pdfXTEX,
the resulting file will contain non-embedded fonts. Such files
are e.g. not allowed for the camera-ready versions of most
conference papers, since wrong font mappings lead to print-
ing problems. While it is unfortunately not possible to solve
the restriction to latin characters without modifying GNU R
itself, the embedding of fonts can be solved easily: the plot
PDF file simply has to be processed by GHOSTSCRIPT using
pdfwrite as output device. The resulting new PDF file will
get all required fonts embedded. Furthermore, the resulting
file will also be compressed.

7. DEBUGGING

A non-trivial source code almost certainly contains bugs.
For debugging of the RSPSIM model’s implementation, we
have made intensive use of VALGRIND [28,32]. In short, VAL-
GRIND is a x86/x86_64 binary code interpreter that actually
executes a program and keeps track of all memory accesses.
Especially, it does not only remember which bit belongs to
an allocated chunk of memory but also remembers which bit
is still uninitialized.

That is, VALGRIND does not only detect accesses to in-
valid or already deallocated memory blocks but also warns
when an uninitialized bit is used e.g. in a conditional branch.
This category of errors is otherwise extremely difficult to dis-
cover: for example, a 16-bit variable is uninitialized, i.e. it
contains a random value. While the probability is 65,535:1
that it contains a non-zero value, it may just contain 0 in
an inappropriate moment and lead to a severe and almost
untraceable (since difficult to reproduce) malfunction of the
program. Furthermore, since VALGRIND keeps track of all
memory allocations, it can also easily detect memory leaks.
All errors found by VALGRIND are printed with function call
stack trace as well as the corresponding source code file
names and line numbers. So, it gets very easy to locate
problems in the implementation of the model.

8. CONCLUSIONS

The goal of this paper has been an introduction to our
Open Source tool-chain for the parametrization, distributed
run execution, results post-processing and debugging of sim-
ulation models based on OMNET++. Although initially
being motivated by our RSerPool simulation model RSPSIM,
it has been designed with model-independence in mind and
is therefore applicable to arbitrary models.

RSerPool is a light-weight framework for server pool man-
agement, load balancing and failover handling. Since we
have also developed the Open Source RSerPool prototype
implementation RSPLIB as part of our research on RSer-
Pool, our run distribution approach simply utilizes the in-
frastructure which is already provided by RSerPool. That
is, it gets quite easy to efficiently parallelize simulation runs
— RSerPool handles the pool maintenance, load balancing,
session management and failover procedure. The tasks of
parametrizing simulation runs as well as post-processing and

© W N ook W N e

I
B W N R O

15

17
18
19
20
21
22
23
24
25
26
27
28
29

Listing 3 An Example Plot Definition

simulationDirectory <— ”wpl-hom—puToPERatiol”
Templates
rspsim5PlotVariables <— list (
————— System Utilization Template
list ("controller.SystemAverageUtilization”,
?Average,_ Utilization [%]”,
”7100.0_ % _datal$controller.SystemUtilization”
”?blued”
list ("controller —SystemUtilization”)),
)
=—=——= Plots

plotConfigurations <— list (

———— Handling Speed Plot

System Utilization Plot

list (simulationDirectory , paste(sep="",

simulationDirectory ,

?—Utilization .pdf”),

?Provider ’s_Perspective”, NA, NA, list(1,0),
?puToPERatio” , "controller.SystemAverageUtilization”,
?calcAppPoolElementSelectionPolicy”, ?jsToSC”, 77),

list (simulationDirectory , ”»

?User’s_Perspective”, NA, NA,
”"puToPERatio” ,

paste (sep=
list (0,1),

simulationDirectory ,

?—HandlingSpeed . pdf”),

?controller.SystemAverageHandlingSpeed”,

?calcAppPoolElementSelectionPolicy”, ”jsToSC”, 77)

plotting the results are handled by scripts based on GNU R.
Finally, VALGRIND is utilized for debugging.

Currently, we are evaluating application checkpointing ap-
proaches for the suspension and resumption of long-time

runs.

Furthermore, we are also testing a XEN-based vir-

tualization approach for security.

9.
1

]

REFERENCES

CONRAD, P., JUNGMAIER, A., Ross, C., Stm, W.-C.,
AND TUXEN, M. Reliable IP Telephony Applications
with SIP using RSerPool. In Proceedings of the State
Coverage Initiatives, Mobile/Wireless Computing and
Communication Systems II (Orlando, Florida/U.S.A.,
July 2002), vol. X. ISBN 980-07-8150-1.

DRrEIBHOLZ, T. Thomas Dreibholz’s RSerPool Page,
2006.

DrEIBHOLZ, T. Reliable Server Pooling — Evaluation,
Optimization and Extension of a Novel IETF
Architecture. PhD thesis, University of
Duisburg-Essen, Faculty of Economics, Institute for
Computer Science and Business Information Systems,
Mar. 2007.

DRrEIBHOLZ, T. Applicability of Reliable Server
Pooling for Real-Time Distributed Computing.
Internet-Draft Version 04, IETF, Individual
Submission, Jan. 2008.
draft-dreibholz-rserpool-applic-distcomp-04.txt, work
in progress.

DrEeiBHOLZ, T., COENE, L., AND CONRAD, P.
Reliable Server Pooling Applicability for IP Flow
Information Exchange. Internet-Draft Version 05,
IETF, Individual Submission, Jan. 2008.
draft-coene-rserpool-applic-ipfix-05.txt, work in

[6]

[7]

8]

[9]

(10]

(11]

progress.
DREIBHOLZ, T., JUNGMAIER, A., AND TUXEN, M. A
new Scheme for IP-based Internet Mobility. In
Proceedings of the 28th IEEE Local Computer
Networks Conference (LCN) (Kénigswinter/Germany,
Nov. 2003), pp. 99-108. ISBN 0-7695-2037-5.
DREIBHOLZ, T., AND PULINTHANATH, J. Applicability
of Reliable Server Pooling for SCTP-Based Endpoint
Mobility. Internet-Draft Version 03, IETF, Individual
Submission, Jan. 2008.
draft-dreibholz-rserpool-applic-mobility-03.txt, work
in progress.

DRrEIBHOLZ, T., AND RATHGEB, E. P. Implementing
the Reliable Server Pooling Framework. In Proceedings
of the 8th IEEFE International Conference on
Telecommunications (ConTEL) (Zagreb/Croatia, June
2005), vol. 1, pp. 21-28. ISBN 953-184-081-4.
DREIBHOLZ, T., AND RATHGEB, E. P. On the
Performance of Reliable Server Pooling Systems. In
Proceedings of the IEEE Conference on Local
Computer Networks (LCN) 30th Anniversary
(Sydney/Australia, Nov. 2005), pp. 200-208. ISBN
0-7695-2421-4.

DRrEIBHOLZ, T., AND RATHGEB, E. P. The
Performance of Reliable Server Pooling Systems in
Different Server Capacity Scenarios. In Proceedings of
the IEEE TENCON 05 (Melbourne/Australia, Nov.
2005). ISBN 0-7803-9312-0.

DREIBHOLZ, T'., AND RATHGEB, E. P. An Evalulation
of the Pool Maintenance Overhead in Reliable Server
Pooling Systems. In Proceedings of the IEEE
International Conference on Future Generation
Communication and Networking (FGCN) (Jeju

[14]

[15]

==
®© N

[19]

[20]

[24]

[25]

[26]

Island /South Korea, Dec. 2007), vol. 1, pp. 136-143.
ISBN 0-7695-3048-6.

DrEeIBHOLZ, T., AND RATHGEB, E. P. On Improving
the Performance of Reliable Server Pooling Systems
for Distance-Sensitive Distributed Applications. In
Proceedings of the 15. ITG/GI Fachtagung
Kommunikation in Verteilten Systemen (KiVS)
(Bern/Switzerland, Feb. 2007), pp. 39-50. ISBN
978-3-540-69962-0.

DrEIBHOLZ, T., AND RATHGEB, E. P. Reliable Server
Pooling — A Novel IETF Architecture for
Availability-Sensitive Services. In Proceedings of the
2nd IEEE International Conference on Digital Society
(ICDS) (Sainte Luce/Martinique, Feb. 2008),

pp. 150-156. ISBN 978-0-7695-3087-1.

DrEBHOLZ, T., ZHou, X., AND RATHGEB, E. P. A
Performance Evaluation of RSerPool Server Selection
Policies in Varying Heterogeneous Capacity Scenarios.
In Proceedings of the 33rd IEEE EuroMirco
Conference on Software Engineering and Advanced
Applications (Liibeck/Germany, Aug. 2007),

pp. 157-164. ISBN 0-7695-2977-1.

EASTLAKE, D., AND JONES, P. US Secure Hash
Algorithm 1 (SHA1). Informational RFC 3174, IETF,
Sept. 2001.

EATON, J. Octave Home Page, 2003.

FREE SOFTWARE FOUNDATION. GNU Make, 2003.

| ITU-T. Introduction to CCITT Signalling System

No. 7. Tech. Rep. Recommendation Q.700,
International Telecommunication Union, Mar. 1993.
JUNGMAIER, A., RATHGEB, E. P., AND TUXEN, M.
On the Use of SCTP in Failover-Scenarios. In
Proceedings of the State Coverage Initiatives,
Mobile/Wireless Computing and Communication
Systems II (Orlando, Florida/U.S.A., July 2002),
vol. X. ISBN 980-07-8150-1.

LEe1, P., OngG, L., TUXEN, M., AND DREIBHOLZ, T.
An Overview of Reliable Server Pooling Protocols.
Internet-Draft Version 05, IETF, RSerPool Working
Group, Jan. 2008. draft-ietf-rserpool-overview-05.txt,
work in progress.

NS-2. The Network Simulator NS-2, 2003.

OPNET TECHNOLOGIES. OPnet Modeler, 2003.
Prank, J. S., BeEck, M., KINGSLEY, G., AND L1, K.
Libckpt: Transparent Checkpointing under Unix. In
Proceedings of the USENIX Winter 1995 Technical
Conference (New Orleans, Louisiana/U.S.A., Jan.
1995), pp. 213-224.

PULINTHANATH, J. Zuverldssige Ubertragung von
IPFIX-Nachrichten mit der RSerPool-Architektur.
Master’s thesis, Universitdt Duisburg-Essen, Institut
fiir Experimentelle Mathematik, Nov. 2007.

R DEVELOPMENT CORE TEAM. R: A language and
environment for statistical computing. R Foundation
for Statistical Computing, Vienna/Austria, 2005.
ISBN 3-900051-07-0.

RUNGELER, 1., TUXEN, M., AND RATHGEB, E. P.
Integration of SCTP in the OMNeT++ Simulation
Environment. In Proceedings of the 1st OMNeT++
Workshop (Marseille/France, Mar. 2008). ISBN
978-963-9799-20-2.

27]

28]

29]

30]

(31]

(32]
(33]

(34]

35]

(36]

37]

(38]

(39]

SEWARD, J. bzip2 - A program and library for data
compression. Snowbird, Utah/U.S.A., Feb. 2005.
SEWARD, J., AND NETHERCOTE, N. Using Valgrind to
detect undefined value errors with bit-precision. In
Proceedings of the USENIX’05 Annual Technical
Conference (Anaheim, California/U.S.A., Apr. 2005),
pp. 17-30.

STEWART, R., XIE, Q., STILLMAN, M., AND TUXEN,
M. Aggregate Server Access Protcol (ASAP).
Internet-Draft Version 18, IETF, RSerPool Working
Group, Nov. 2007. draft-ietf-rserpool-asap-18.txt,
work in progress.

TUXEN, M., AND DREIBHOLZ, T. Reliable Server
Pooling Policies. Internet-Draft Version 07, IETF,
RSerPool Working Group, Nov. 2007.
draft-ietf-rserpool-policies-07.txt, work in progress.
UvaR, U., ZHENG, J., FECKO, M. A., SAMTANI, S.,
AND CONRAD, P. Evaluation of Architectures for
Reliable Server Pooling in Wired and Wireless
Environments. IEEE JSAC Special Issue on Recent
Advances in Service Overlay Networks 22, 1 (2004),
164-175.

VALGRIND DEVELOPERS. Valgrind Home, 2005.
VARCGA, A. OMNeT++ Discrete Event Simulation
System User Manual - Version 3.2. Technical
University of Budapest/Hungary, Mar. 2005.
WiLriams, T., AND KELLEY, C. GNU Plot
Homepage, 2003.

XIE, Q., STEWART, R., STILLMAN, M., TUXEN, M.,
AND SILVERTON, A. Endpoint Handlespace
Redundancy Protocol (ENRP). Internet-Draft Version
18, IETF, RSerPool Working Group, Nov. 2007.
draft-ietf-rserpool-enrp-18.txt, work in progress.
ZHou, X., DREIBHOLZ, T., AND RATHGEB, E. P. A
New Approach of Performance Improvement for
Server Selection in Reliable Server Pooling Systems. In
Proceedings of the 15th IEEE International
Conference on Advanced Computing and
Communication (ADCOM) (Guwahati/India, Dec.
2007), pp. 117-121. ISBN 0-7695-3059-1.

Zuou, X., DrREIBHOLZ, T., AND RATHGEB, E. P.
Evaluation of a Simple Load Balancing Improvement
for Reliable Server Pooling with Heterogeneous Server
Pools. In Proceedings of the IEEE International
Conference on Future Generation Communication and
Networking (FGCN) (Jeju Island/South Korea, Dec.
2007), vol. 1, pp. 173-180. ISBN 0-7695-3048-6.
Zuou, X., DrREIBHOLZ, T., AND RATHGEB, E. P.
Improving the Load Balancing Performance of
Reliable Server Pooling in Heterogeneous Capacity
Environments. In Proceedings of the 3rd Asian
Internet Engineering Conference (AINTEC)
(Phuket/Thailand, Nov. 2007), vol. 4866 of Lecture
Notes in Computer Science, Springer, pp. 125-140.
ISBN 978-3-540-76808-1.

Zuou, X., DREIBHOLZ, T., AND RATHGEB, E. P. A
New Server Selection Strategy for Reliable Server
Pooling in Widely Distributed Environments. In
Proceedings of the 2nd IEEE International Conference
on Digital Society (ICDS) (Sainte Luce/Martinique,
Feb. 2008), pp. 171-177. ISBN 978-0-7695-3087-1.

	Introduction
	The RSerPool Architecture
	Components and Protocols
	Application Scenarios

	The Simulation Model
	The Parametrization
	Distributing Simulation Runs
	Overview
	Using the Scripting Service
	Work in Progress

	The Results Analysis
	The Summarization Tool
	Plotting

	Debugging
	Conclusions
	References

