
On Robustness and Countermeasures of
Reliable Server Pooling Systems

against Denial of Service Attacks?

Thomas Dreibholz1, Erwin P. Rathgeb1, and Xing Zhou2

1 University of Duisburg-Essen
Institute for Experimental Mathematics
Ellernstrae 29, D-45326 Essen, Germany

Tel: +49 201 183-7637, Fax: +49 201 183-7673
dreibh@iem.uni-due.de

2 Hainan University
College of Information Science and Technology

Renmin Road 58, 570228 Haikou, Hainan, China
Tel: +86 898 6625-0584, Fax: +86 898 6618-7056

xing.zhou@uni-due.de

Abstract. The Reliable Server Pooling (RSerPool) architecture is the
IETF’s novel approach to standardize a light-weight protocol framework
for server redundancy and session failover. It combines ideas from dif-
ferent research areas into a single, resource-efficient and unified archi-
tecture. While there have already been a number of contributions on
the performance of RSerPool for its main tasks – pool management,
load distribution and failover handling – the robustness of the protocol
framework has not yet been evaluated against intentional attacks.
The first goal of this paper is to provide a robustness analysis. In par-
ticular, we would like to outline the attack bandwidth necessary for a
significant impact on the service. Furthermore, we present and evalu-
ate our countermeasure approach to significantly reduce the impact of
attacks.
Key words: Reliable Server Pooling, Attacks, Denial of Service, Ro-
bustness, Countermeasures

1 Introduction and Scope

The Reliable Server Pooling (RSerPool) architecture [1] is a generic, application-
independent framework for server pool [2] and session management, based on the
Stream Control Transmission Protocol (SCTP) [3]. While there have already
been a number of publications on the performance of RSerPool for load balanc-
ing [4] and server failure handling [5], there has not yet been any research on se-
curity and robustness. SCTP already protects against simple flooding attacks [6]
and the Internet Drafts [7] of RSerPool mandatorily require using mechanisms
like TLS [8] or IPSEC [9] in order to ensure authenticity, integrity and confiden-
tiality. However, this approach is not sufficient: as for every distributed system,
there is a chance that an attacker may compromise a legitimate component and
obtain the private key. So, how robust are the RSerPool protocols under attack?
? Parts of this work have been funded by the German Research Foundation (Deutsche

Forschungsgemeinschaft).



The goal of this paper is therefore to first analyse the robustness of RSerPool
against a denial of service (DoS) attack by compromised components, in order
to show the impact of different attack scenarios on the application performance.
Using these analyses as a baseline performance level, we will present our coun-
termeasure approach which can significantly reduce the impact of attacks at a
reasonable effort.

2 The RSerPool Architecture

Fig. 1. The RSerPool Architecture

Figure 1 illustrates the RSerPool architecture [1, 10] which consists of three
types of components: servers of a pool are called pool elements (PE), a client is
denoted as pool user (PU). The handlespace – which is the set of all pools – is
managed by redundant pool registrars (PR). Within the handlespace, each pool
is identified by a unique pool handle (PH).

2.1 Components and Protocols

PRs of an operation scope synchronize their view of the handlespace by using
the Endpoint haNdlespace Redundancy Protocol (ENRP) [11], transported via
SCTP [12] and secured e.g. by TLS [8] or IPSEC [9]. In contrast to GRID com-
puting [13], an operation scope is restricted to a single administrative domain.
That is, all of its components are under the control of the same authority (e.g.
a company or an organization). This property results in a small management
overhead [2,14], which also allows for RSerPool usage on devices providing only
limited memory and CPU resources (e.g. embedded systems like telecommuni-
cations equipment or routers). Nevertheless, PEs may be distributed globally for
their service to survive localized disasters [15].

PEs choose an arbitrary PR of the operation scope to register into a pool
by using the Aggregate Server Access Protocol (ASAP) [16], again transported
via SCTP and using TLS or IPSEC. Within its pool, a PE is characterized



by its PE ID, which is a randomly chosen 32-bit number. Upon registration at
a PR, the chosen PR becomes the Home-PR (PR-H) of the newly registered
PE. A PR-H is responsible for monitoring its PEs’ availability by keep-alive
messages (to be acknowledged by the PE within a given timeout) and propagates
the information about its PEs to the other PRs of the operation scope via ENRP
updates. PEs re-register regularly (in an interval denoted as registration lifetime)
and for information updates.

In order to access the service of a pool given by its PH, a PU requests a PE
selection from an arbitrary PR of the operation scope, again using ASAP. The
PR selects the requested list of PE identities by applying a pool-specific selec-
tion rule, called pool policy. RSerPool supports two classes of load distribution
policies: non-adaptive and adaptive algorithms [4]. While adaptive strategies
base their assignment decisions on the current status of the processing elements
(which of course requires up-to-date states), non-adaptive algorithms do not
need such data. A basic set of adaptive and non-adaptive pool policies is defined
in [17]. Relevant for this paper are the non-adaptive policies Round Robin (RR)
and Random (RAND) as well as the adaptive policies Least Used (LU) and
Least Used with Degradation (LUD). LU selects the least-used PE, according
to up-to-date application-specific load information. Round robin selection is ap-
plied among multiple least-loaded PEs. LUD [18] furthermore introduces a load
decrement constant which is added to the actual load each time a PE is selected.
This mechanism compensates inaccurate load states due to delayed updates. An
update resets the load value to the actual load again.

PUs may report unreachable PEs to a PR by using an ASAP Endpoint
Unreachable message. A PR locally counts these reports for each PE. If the
threshold MaxBadPEReports [5] is reached, the PR may decide to remove the
PE from the handlespace. The counter of a PE is reset upon its re-registration.

2.2 Application Scenarios

Although the main motivation to define RSerPool has been the availability of
SS7 (Signalling System No. 7 [19]) services over IP networks, it is intended to
be a generic framework. There has already been some research on the perfor-
mance of RSerPool usage for applications like SCTP-based mobility [20], VoIP
with SIP [21], web server pools [10], IP Flow Information Export (IPFIX) [22],
real-time distributed computing [4, 10] and battlefield networks [23]. A generic
application model for RSerPool systems has been introduced by [4], including
performance metrics for the provider side (pool utilization) and user side (request
handling speed). Based on this model, the load balancing quality of different pool
policies has been evaluated [4, 10].

3 Quantifying a RSerPool System

The service provider side of a RSerPool system consists of a pool of PEs. Each
PE has a request handling capacity, which we define in the abstract unit of calcu-
lations per second3. Each request consumes a certain number of calculations; we
call this number request size. A PE can handle multiple requests simultaneously
– in a processor sharing mode as provided by multitasking operating systems.
3 An application-specific view of capacity may be mapped to this definition, e.g. CPU

cycles or memory usage.



On the service user side, there is a set of PUs. The number of PUs can
be given by the ratio between PUs and PEs (PU:PE ratio), which defines the
parallelism of the request handling. Each PU generates a new request in an
interval denoted as request interval. The requests are queued and sequentially
assigned to PEs.

The total delay for handling a request dHandling is defined as the sum of queu-
ing delay dQueuing, startup delay dStartup (dequeuing until reception of acceptance
acknowledgement) and processing time dProcessing (acceptance until finish):

dHandling = dQueuing + dStartup + dProcessing. (1)

That is, dHandling not only incorporates the time required for processing the
request, but also the latencies of queuing, server selection and protocol message
transport. The handling speed is defined as: handlingSpeed = requestSize

dhandling
. For

convenience reasons, the handling speed (in calculations/s) is represented in
% of the average PE capacity. Clearly, the user-side performance metric is the
handling speed – which should be as fast as possible.

Using the definitions above, it is possible to delineate the average system uti-
lization (for a pool of NumPEs servers and a total pool capacity of PoolCapacity)
as:

systemUtilization = NumPEs ∗ puToPERatio ∗
requestSize

requestInterval

PoolCapacity
. (2)

Obviously, the provider-side performance metric is the system utilization, since
only utilized servers gain revenue. In practise, a well-designed client/server sys-
tem is dimensioned for a certain target system utilization, e.g. 80%. That is, by
setting any two of the parameters (PU:PE ratio, request interval and request
size), the value of the third one can be calculated using equation 2 (see [4, 10]
for details).

4 The Simulation Setup

Fig. 2. The Simulation Setup



For our performance analysis, the RSerPool simulation model rspsim [4, 10,
24] has been used. This model is based on the OMNeT++ [25] simulation envi-
ronment and contains the protocols ASAP [16] and ENRP [11], a PR module, an
attacker module and PE as well as PU modules for the request handling scenario
defined in section 3. Network latency is introduced by link delays only. There-
fore, only the network delay is significant. The latency of the pool management
by PRs is negligible [2].

Unless otherwise specified, the basic simulation setup – which is also pre-
sented in figure 4 – uses the following parameter settings:
– The target system utilization is 80%. Request size and request interval are

randomized using a negative exponential distribution (in order to provide a
generic and application-independent analysis [10]). There are 10 PEs; each
one provides a capacity of 106 calculations/s.

– A PU:PE ratio of 10 is used (i.e. a non-critical setting as shown in [4]). The
default request size:PE capacity is 10 (i.e. the request size is 107 calculations;
being processed exclusively, the processing of an average request takes 10s –
see also [4]).

– We use a single PR only, since we do not examine PR failure scenarios here
(see [4] for the impact of multiple PRs). PEs re-register every 30s (registra-
tion lifetime) and on every load change for the adaptive policies.

– MaxBadPEReports is set to 3 (default value defined in [11]). A PU sends an
Endpoint Unreachable if a contacted PE fails to respond within 10s.

– The system is attacked by a single attacker node.
– The simulated real-time is 120m; each simulation run is repeated at least

24 times with a different seed in order to achieve statistical accuracy.
GNU R has been used for the statistical post-processing of the results. Each
resulting plot shows the average values and their 95% confidence intervals.

5 Robustness Analysis and Attack Countermeasures

5.1 Introduction
The attack targets of RSerPool are the PRs, PEs and PUs; the goal of an attack
is to affect the services built on top of RSerPool. Due to mandatory connection
security by TLS or IPSEC (see subsection 2.1), an attacker has to compromise a
component itself. Clearly, an attacker being able to compromise a PR is able to
propagate arbitrary misinformation into the handlespace via ENRP. However,
since the number of PRs is considered to be quite small [2] (e.g. less than 10)
in comparison with the number of PEs and PUs (up to many thousands [2,10])
and due to the restriction of RSerPool to a single administrative domain, it is
assumed to be feasible to protect the small number of PRs rather well. Instead,
the most probable attack scenario is an attacker being able to compromise a
PE or PU. These components are significantly more numerous [10] and may
be distributed over multiple, less controllable locations [15]. For that reason,
ASAP-based attacks are in the focus of our study.

For our analysis, we use a single attacker node only. Assuming that there
is a certain difficulty in compromising a PE or PU, the number of attackers
in a system is typically small. If a powerful attacker is able to compromise a
large number of RSerPool components, protocol-internal countermeasures are
obviously difficult and the effort should be spent to increase the system security
of the components. However, as we will show, even a single attacker can cause a
DoS without further countermeasures.



5.2 A Compromised Pool Element

Fig. 3. The Impact of a Compromised Pool Element

The goal of an attacker being able to perform PE registrations is clearly to
execute as many fake registrations as possible. That is, each registration request
simply has to contain a new PE ID (randomly chosen). The policy parameters
may be set appropriately, i.e. a load of 0% (LU, LUD) and a load increment
of 0% (LUD), to get the fake PE selected as often as possible.

It is important to note that address spoofing is already avoided by the SCTP
protocol [3, 6]: each network-layer address under which a PE is registered must
be part of the SCTP association between PE and PR. The ASAP protocol [16]
requires the addresses to be validated by SCTP. However, maintaining the regis-
tration association with the PE and silently dropping all incoming PU requests
is already sufficient for an attacker.

In order to illustrate the impact that even a single attacker can cause on the
pool performance, we have performed simulations using the parameters described
in section 4. Each PE handles up to 4 requests simultaneously, i.e. the load
increment of LUD is 25% for a real PE. Figure 3 presents the results; the left-
hand side shows the request handling speed, the right-hand one the number of
PU requests ignored by the attacker (requests sent to fake PEs).

Obviously, the smaller the attack interval (i.e. the delay between two fake
PE registrations), the more fake entries go into the handlespace. This leads to
an increased probability for a PU to select a non-existing PE and therefore to a
decreased overall request handling speed. In particular, this effect is the strongest
for LUD: real PEs get loaded and provide their real load increment (here: 25%),
while the fake PEs always claim to be unloaded with a load increment of 0%. It
takes only a single registration every 10s (A=10) to cause a complete DoS (i.e. a
handling speed of 0%). The other policies are somewhat more robust, since they
do not allow an attacker to manipulate the PE selection in such a powerful way.

Clearly, using a larger setting of MaxBadPEReports would lead to an even
worse performance: the longer it takes to get rid of a fake PE entry, the more
trials of PUs to use these PEs (see also the right-hand side of figure 3). As a



summary, it is clearly observable that even a single attacker with small attack
bandwidth can cause a complete DoS.

Fig. 4. Applying the Countermeasure against the Pool Element Attack

The key problem of the described threat is attacker’s power to create a new
fake PE with each of its registration messages. That is, only a few messages
per second (i.e. even a slow modem connection) is sufficient to cause a severe
service degradation. For that reason, an effective countermeasure is clearly to
restrict the number of PE registrations that a single PE identity is authorized to
create. However, in order to retain the “light-weight” property of RSerPool [2]
and to avoid synchronizing such numbers among PRs, we have put forward a
new approach and introduce the concept of a registration authorization ticket.
Such a ticket consists of

1. a PH,
2. a fixed PE ID,
3. minimum/maximum policy information settings (e.g. a lower limit for the

load decrement of LUD) and
4. a signature by a trusted authority (similar to a Kerberos service, see below).

Such a ticket, provided by a PE to its PR-H as part of the ASAP registration, can
be easily verified by checking its signature. Then, if it is valid, it is only necessary
to ensure that the PE’s policy settings are within the valid range specified in
the ticket. An attacker stealing the identity of a real PE would only be able
to masquerade as this specific PE. A PR only has to verify the authorization
ticket, i.e. no change of the protocol behaviour and especially no additional
synchronization among the PRs are necessary. Therefore, the approach can be
realized easily; the additional runtime required is in O(1).

Clearly, the need for a trusted authority (e.g. a Kerberos service) adds an
infrastructure requirement. However, since an operation scope belongs to a single
authority only (see subsection 2.1), it is feasible at reasonable cost.

In order to show the effectiveness of our approach, figure 4 presents the results
for applying the same attack as above, but using the new attack countermea-
sure. The other simulation parameters remain unchanged. Clearly, a significant



improvement can be observed. While the handling speed is only slightly sinking
with a smaller attack interval (down to 0.001, which means 1,000 fake registra-
tions per second), the number of ignored PU requests rises from about 1,000
to 2,200 at an attack interval of A=15s to only about 3,000 (LU, LUD) at
A=0.001s. In particular, due to the lower limit for policy information, LUD now
even achieves a performance benefit: only for very small attack intervals A, its
performance converges to the results of LU. The stateful behaviour [10] of this
policy now becomes beneficial: although the attacker registers a fake PE with a
load of 0%, the PE entry’s load increment is increased each time it gets selected.
Therefore, frequent re-registrations of this fake PE are necessary in order to re-
sult in a significant performance degradation. In summary, a registration attack
can be significantly diminished by our countermeasure.

5.3 A Compromised Pool User

Fig. 5. The Impact of a Compromised Pool User

PUs are the other means of ASAP-based attacks, especially their handle
resolution requests and unreachability reports. An obvious attack scenario on
handle resolutions would be to flood the PR. However, the server selection can
be realized very efficiently – as shown by [2] – but it is a fallacy to assume
that simply performing some handle resolutions (without actually contacting
any selected PE) cannot affect the service quality. In order to show the effects,
the left-hand side of figure 5 presents the impact of a handle resolution attack
on the pool performance. The right-hand side of figure 5 presents the results
varying the probability for an unreachability report for A=0.1 (i.e. 10 handle
resolutions per second).

Clearly, even without unreachability reports, handle resolutions already re-
sult in a performance decay: the handling speed of RR converges to the value of
RAND, since each selection leads to a movement of the Round Robin pointer [10].
That is, instead of trying to select PEs in turn, some servers are skipped and a



new round starts too early. This leads in fact to a random selection. The perfor-
mance of LUD decreases due to the load incremented upon each selection. Until
the next re-registration (on load change or registration lifetime expiration), the
load value in the handlespace grows steadily and leads to a smaller selection
probability. LU and RAND, on the other hand, are immune to a simple handle
resolution attack: a PE’s state is – unlike RR and LUD – not manipulable by the
handle resolution itself. Therefore, a handle resolution attack (without Endpoint
Unreachable) has no effect here.

Sending ASAP Endpoint Unreachables for the selected PEs (see the right-
hand side of figure 5) has a significant negative impact on the pool performance
if the attack interval is small enough (here: A=0.1). In this case, the attacker is
able to impeach almost all PEs out of the handlespace. A PE comes back upon
re-registration (i.e. 30s). Clearly, a larger re-registration interval setting leads to
an even lower performance.

The key problem of the handle resolution/failure report attack is that a single
PU is able to impeach PEs – even for MaxBadPEReport>1. Therefore, the basic
idea of our countermeasure is to avoid counting multiple reports from the same
PU. Like for the PEs, it is necessary to introduce a PU identification which is
certified by a trusted authority and can be checked by a PR (see subsection 5.2
for details). After that, a PR simply has to remember (to be explained later) the
PEs for which a certain PU has reported unreachability and to ignore multiple
reports for the same PE. Note, that no synchronization among PRs is necessary,
since the unreachability count for each PE is a PR-local variable. That is, sending
unreachability reports for the same PE to different PRs does not cause any harm.

In order to remember the already-reported PE identities, we have considered
the following hash-based approach of a per-PU message blackboard: instead of
memorizing each reported PE (an attacker could exploit this by sending a large
amount of random IDs), we simply define a function Ψ mapping each PE given
by PE ID and PH to a bucket:

Ψ(PH, IDPE) = h(PH, IDPE) MOD Buckets.

h denotes an appropriate hash function: an attacker may not easily guess its
behaviour. This property is provided by so called universal hash functions [26],
which are – unlike cryptographic hash functions like SHA1 [27] – also efficiently
computable.

Each bucket contains the time stamps of the latest up to MaxEntries End-
point Unreachables for the corresponding bucket. Then, the report rate can be
calculated as:

Rate =
NumberOfTimeStamps

TimeStampLast − TimeStampFirst

. (3)

Upon reception of an Endpoint Unreachable, it simply updates the reported
PE’s corresponding bucket entry. If the rate in equation 3 exceeds the configured
threshold MaxEURate, the report is silently ignored. The effort for this operation
is in O(1), as well as the required per-PU storage space. Analogously, the same
hash-based approach can be applied for Handle Resolutions with the threshold
MaxHRRate, using only the PH of the requested pool as hash key.

In order to demonstrate the effectiveness of our approach, we have shown
the results of two example simulations in figure 6. Both simulations have used
64 buckets with at most 16 entries. Assuming 1,000 PEs in the handlespace,
each bucket would represent only about 16 PEs on average. The probability of
a bucket collision for two really-failed PEs would therefore be rather small. The



Fig. 6. Applying the Countermeasure against the Pool User Attack

left-hand plot presents the application of the handle resolution rate limit (with-
out failure reports) for rate limits of MaxHRRate H=1 (solid lines) and H=100
(dotted lines) handle resolutions per second. An Endpoint Unreachable is sent
for each selected PE, since this is the worst case and also affects LU and RAND.
The actual average handle resolution interval for legitimate PUs for the workload
(see section 4) is 125s (which is a rate of 0.008 operations/s), i.e. the limit still
allows sufficient room for additional handle resolutions (e.g. due to PE failures,
temporary workload peaks or hash collisions). As expected from the previous re-
sults, the handling speed slightly decreases with a smaller attack interval A for
LU, LUD and RR, while RAND remains unaffected. However, when the attack
interval exceeds the threshold, all subsequent handle resolutions of the attacker
are blocked and the handling speed achieves its full level again. Clearly, the han-
dle resolution threshold should not be set too large (here: H=100), since this
gives the attacker too much room to cause service degradation.

The results for a failure report rate limit of MaxEURate U=1 (solid lines)
and U=100 (dotted lines) are presented on the right-hand side of figure 6 for a
handle resolution rate of A=0.1 at a PE registration life of 30s. In order to show
the effect of failure reports only, the handle resolution rate has not been limited
here. Obviously, as expected from the handle resolution results, a useful limit
achieves a significant benefit: as soon as the failure report rate exceeds the limit,
subsequent reports are simply ignored and the handling speed goes back to the
original value. Setting a too-high limit (here: U=100) again gives the attacker
room to degrade the service quality.

In summary, the handle resolution and failure report limits should be config-
ured sufficiently above the expected rate (here: about two orders of magnitude)
in order to allow for temporary peaks. Too high settings, on the other hand,
result in a too-weak attack countermeasure.

6 Conclusions

In this paper, we have identified two critical attack threats on RSerPool systems:
(1) PE-based attacks (registration) and (2) PU-based attacks (handle resolu-



tion/failure report). In order to reduce the attack impact on registrations, we
have suggested to limit the number of PE registrations a single user authorization
is allowed to perform by fixed PE IDs and to enforce upper/lower policy infor-
mation values. This mechanism – denoted as registration authorization ticket
– is applicable in time O(1) and in particular requires no additional network
overhead or protocol changes. Our solution for reducing the attack impact of
handle resolutions/failure reports is a rate limitation based on hash tables. For
each PU served by a PR, the rate limit can be realized in O(1) time and space.
We have provided simulation results for both attack countermeasures, demon-
strating their ability to significantly reduce the impact of attacks on the service
performance.

As part of our future work, it is also necessary to analyse the robustness of the
ENRP protocol. Although the threat on the small number of PRs of an operation
scope is significantly smaller, it is useful to obtain knowledge of possible attack
scenarios. Furthermore, we intend to perform real-world security experiments in
the PlanetLab, using our RSerPool prototype implementation rsplib. Finally,
our goal is to also contribute our results into the IETF standardization process.

References

1. Lei, P., Ong, L., Tüxen, M., Dreibholz, T.: An Overview of Reliable Server Pooling
Protocols. Internet-Draft Version 04, IETF, RSerPool Working Group (January
2008) draft-ietf-rserpool-overview-04.txt, work in progress.

2. Dreibholz, T., Rathgeb, E.P.: An Evalulation of the Pool Maintenance Overhead
in Reliable Server Pooling Systems. In: Proceedings of the IEEE International
Conference on Future Generation Communication and Networking (FGCN). Vol-
ume 1., Jeju Island/South Korea (December 2007) 136–143 ISBN 0-7695-3048-6.

3. Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Taylor, T., Ry-
tina, I., Kalla, M., Zhang, L., Paxson, V.: Stream Control Transmission Protocol.
Standards Track RFC 2960, IETF (October 2000)

4. Dreibholz, T., Rathgeb, E.P.: On the Performance of Reliable Server Pooling
Systems. In: Proceedings of the IEEE Conference on Local Computer Networks
(LCN) 30th Anniversary, Sydney/Australia (November 2005) 200–208 ISBN 0-
7695-2421-4.

5. Dreibholz, T., Rathgeb, E.P.: Reliable Server Pooling – A Novel IETF Architecture
for Availability-Sensitive Services. In: Proceedings of the 2nd IEEE International
Conference on Digital Society (ICDS), Sainte Luce/Martinique (February 2008)
150–156 ISBN 978-0-7695-3087-1.

6. Unurkhaan, E.: Secure End-to-End Transport - A new security extension for SCTP.
PhD thesis, University of Duisburg-Essen, Institute for Experimental Mathematics
(July 2005)

7. Stillman, M., Gopal, R., Guttman, E., Holdrege, M., Sengodan, S.: Threats In-
troduced by RSerPool and Requirements for Security. Internet-Draft Version 07,
IETF, RSerPool Working Group (October 2007) draft-ietf-rserpool-threats-07.txt.

8. Jungmaier, A., Rescorla, E., Tüxen, M.: Transport Layer Security over Stream
Control Transmission Protocol. Standards Track RFC 3436, IETF (December
2002)

9. Bellovin, S., Ioannidi, J., Keromytis, A., Stewart, R.: On the Use of Stream Control
Transmission Protocol (SCTP) with IPsec. Standards Track RFC 3554, IETF (July
2003)

10. Dreibholz, T.: Reliable Server Pooling – Evaluation, Optimization and Extension
of a Novel IETF Architecture. PhD thesis, University of Duisburg-Essen, Faculty
of Economics, Institute for Computer Science and Business Information Systems
(March 2007)



11. Xie, Q., Stewart, R., Stillman, M., Tüxen, M., Silverton, A.: Endpoint Handle-
space Redundancy Protocol (ENRP). Internet-Draft Version 18, IETF, RSerPool
Working Group (November 2007) draft-ietf-rserpool-enrp-18.txt, work in progress.

12. Jungmaier, A., Rathgeb, E.P., Tüxen, M.: On the Use of SCTP in Failover-
Scenarios. In: Proceedings of the State Coverage Initiatives, Mobile/Wireless Com-
puting and Communication Systems II. Volume X., Orlando, Florida/U.S.A. (July
2002) ISBN 980-07-8150-1.

13. Foster, I.: What is the Grid? A Three Point Checklist. GRID Today (July 2002)
14. Dreibholz, T., Rathgeb, E.P.: An Evalulation of the Pool Maintenance Overhead

in Reliable Server Pooling Systems. SERSC International Journal on Hybrid In-
formation Technology (IJHIT) 1(2) (April 2008)

15. Dreibholz, T., Rathgeb, E.P.: On Improving the Performance of Reliable Server
Pooling Systems for Distance-Sensitive Distributed Applications. In: Proceedings
of the 15. ITG/GI Fachtagung Kommunikation in Verteilten Systemen (KiVS),
Bern/Switzerland (February 2007) 39–50 ISBN 978-3-540-69962-0.

16. Stewart, R., Xie, Q., Stillman, M., Tüxen, M.: Aggregate Server Access Protcol
(ASAP). Internet-Draft Version 18, IETF, RSerPool Working Group (November
2007) draft-ietf-rserpool-asap-18.txt, work in progress.

17. Tüxen, M., Dreibholz, T.: Reliable Server Pooling Policies. Internet-Draft Version
07, IETF, RSerPool Working Group (November 2007) draft-ietf-rserpool-policies-
07.txt, work in progress.

18. Zhou, X., Dreibholz, T., Rathgeb, E.P.: A New Server Selection Strategy for
Reliable Server Pooling in Widely Distributed Environments. In: Proceedings
of the 2nd IEEE International Conference on Digital Society (ICDS), Sainte
Luce/Martinique (February 2008) 171–177 ISBN 978-0-7695-3087-1.

19. ITU-T: Introduction to CCITT Signalling System No. 7. Technical Report Rec-
ommendation Q.700, International Telecommunication Union (March 1993)

20. Dreibholz, T., Jungmaier, A., Tüxen, M.: A new Scheme for IP-based Internet
Mobility. In: Proceedings of the 28th IEEE Local Computer Networks Conference
(LCN), Königswinter/Germany (November 2003) 99–108 ISBN 0-7695-2037-5.

21. Conrad, P., Jungmaier, A., Ross, C., Sim, W.C., Tüxen, M.: Reliable IP Telephony
Applications with SIP using RSerPool. In: Proceedings of the State Coverage Ini-
tiatives, Mobile/Wireless Computing and Communication Systems II. Volume X.,
Orlando, Florida/U.S.A. (July 2002) ISBN 980-07-8150-1.

22. Dreibholz, T., Coene, L., Conrad, P.: Reliable Server Pooling Applicability for IP
Flow Information Exchange. Internet-Draft Version 05, IETF, Individual Submis-
sion (January 2008) draft-coene-rserpool-applic-ipfix-05.txt, work in progress.

23. Uyar, Ü., Zheng, J., Fecko, M.A., Samtani, S., Conrad, P.: Evaluation of Archi-
tectures for Reliable Server Pooling in Wired and Wireless Environments. IEEE
JSAC Special Issue on Recent Advances in Service Overlay Networks 22(1) (2004)
164–175

24. Dreibholz, T., Rathgeb, E.P.: A Powerful Tool-Chain for Setup, Distributed Pro-
cessing, Analysis and Debugging of OMNeT++ Simulations. In: Proceedings of the
1st OMNeT++ Workshop, Marseille/France (March 2008) ISBN 978-963-9799-20-
2.

25. Varga, A.: OMNeT++ Discrete Event Simulation System User Manual - Version
3.2, Technical University of Budapest/Hungary. (March 2005)

26. Crosby, S.A., Wallach, D.S.: Denial of service via Algorithmic Complexity Attacks.
In: Proceedings of the 12th USENIX Security Symposium, Washington, DC/U.S.A.
(August 2003) 29–44

27. Eastlake, D., Jones, P.: US Secure Hash Algorithm 1 (SHA1). Informational RFC
3174, IETF (September 2001)


