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Abstract— The Reliable Server Pooling (RSerPool) ar-
chitecture is the IETF’s upcoming standard of a light-
weight server redundancy and session failover framework
for availability-critical applications. RSerPool combines the
ideas from different research areas into a single, resource-
efficient and unified architecture. Although there have al-
ready been a number of research papers on the pool manage-
ment, load distribution and failover handling performance
of RSerPool, the robustness against intentional attacks has
not been intensively addressed yet.

Therefore, the first goal of this paper is to provide a
robustness analysis in order to outline the attack bandwidth
necessary for a significant impact on RSerPool-based ser-
vices. After that, we present our anomaly detection approach
that has been designed to protect RSerPool systems against
attacks. We also show the effectiveness of this approach by
simulations.1
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I. INTRODUCTION AND SCOPE

Reliable Server Pooling (RSerPool) denotes the IETF’s
generic, application-independent framework for server
pool [1] and session management [2]. While there have
already been a number of publications on the performance
of RSerPool for load balancing [3]–[5] and server failure
handling [6], there has been very little research on security
and robustness. Until now, only some simple thresholds to
avoid flooding the pool management with misinformation
have been analysed in [7]. The underlying transport proto-
col SCTP2 already provides protection against blind flood-
ing attacks [9] and the Internet Draft [10] of RSerPool
mandatorily requires applying mechanisms like TLS [11]
or IPSEC [12] in order to ensure authenticity, integrity and
confidentiality. Nevertheless, these techniques are still in-
sufficient: in a distributed system, there is always a chance
that an attacker compromises a legitimate component (e.g.
by exploiting a software bug) and obtains the private key.
It is therefore important to analyse the behaviour of the
RSerPool protocols under attack situations.

The goal of this paper is to first analyse the robustness
of RSerPool systems against a denial of service (DoS)
attack by compromised components and to show the
impact of different attack scenarios on the application per-
formance. Using these analyses as a baseline performance
level, we will present a counter-measure approach based

1Parts of this work have been funded by the German Research
Foundation (Deutsche Forschungsgemeinschaft).

2Stream Control Transmission Protocol, see [8].

Fig. 1. The RSerPool Architecture

on anomaly detection techniques to efficiently reduce the
impact of such attacks.

II. THE RSERPOOL ARCHITECTURE

Figure 1 illustrates the RSerPool architecture [13], [14]
which consists of three types of components: servers of a
pool are called pool elements (PE), a client is denoted as
pool user (PU). The handlespace – which is the set of all
pools – is managed by redundant pool registrars (PR).
Within the handlespace, each pool is identified by a
unique pool handle (PH).

A. Components and Protocols of RSerPool

PRs of an operation scope synchronize their view of the
handlespace by using the Endpoint haNdlespace Redun-
dancy Protocol (ENRP) [15], transported via SCTP [16]–
[19] and secured e.g. by TLS [11] or IPSEC [12]. In
contrast to GRID computing [20], an operation scope is
restricted to a single administrative domain. That is, all
of its components are under the control of the same au-
thority (e.g. a company or an organization). This property
results in a small management overhead [1], [21], which
also allows for RSerPool usage on devices providing
only limited memory and CPU resources (e.g. embedded
systems like telecommunications equipment or routers).
Nevertheless, PEs may be distributed globally for their
service to survive localized disasters [22].



Fig. 2. A Handlespace Example

PEs choose an arbitrary PR of the operation scope to
register into a pool by using the Aggregate Server Access
Protocol (ASAP) [23], again transported via SCTP and us-
ing TLS or IPSEC. Within its pool, a PE is characterized
by its PE ID, which is a randomly chosen 32-bit number.
Upon registration at a PR, the chosen PR becomes the
Home-PR (PR-H) of the newly registered PE. A PR-H is
responsible for monitoring its PEs’ availability by keep-
alive messages (to be acknowledged by the PE within a
given timeout) and propagates the information about its
PEs to the other PRs of the operation scope via ENRP
updates. PEs re-register regularly (in an interval denoted
as registration lifetime) and for information updates.

In order to access the service of a pool given by its PH,
a PU requests a PE selection from an arbitrary PR of the
operation scope, again using ASAP. The PR selects the
requested list of PE identities by applying a pool-specific
selection rule, called pool policy. RSerPool supports two
classes of load distribution policies: non-adaptive and
adaptive algorithms [3]. While adaptive strategies base
their assignment decisions on the current status of the
processing elements (which of course requires up-to-date
states), non-adaptive algorithms do not need such data. A
basic set of adaptive and non-adaptive pool policies is de-
fined in [24]. Relevant for this paper are the non-adaptive
policies Round Robin (RR) and Random (RAND) as well
as the adaptive policy Least Used (LU).

PUs may report unreachable PEs to a PR by using
an ASAP Endpoint Unreachable message. A PR lo-
cally counts these reports for each PE. If the threshold
MaxBadPEReports [6] is reached, the PR may decide
to remove the PE from the handlespace. The counter of
a PE is reset upon its re-registration.

An example handlespace consisting of four pools is
illustrated in figure 2. The pool using the PH “Compute
Pool” consists of 3 dual-homed PEs (IPv4 and IPv6).
Since the pool policy is LU, the handlespace also stores
the latest known load state of each PE in this pool.

B. Application Scenarios for RSerPool

While the initial motivation of RSerPool has been the
availability of SS7 (Signalling System No. 7 [25]) services
over IP networks, it has been designed for application

independence. Current research on applicability and per-
formance of RSerPool includes application scenarios like
VoIP with SIP [26], SCTP-based mobility [27], web
server pools [14], e-commerce systems [2], video on de-
mand [28], battlefield networks [29], IP Flow Information
Export (IPFIX) [30] and workload distribution [3], [14],
[31].

A generic application model for RSerPool systems has
been introduced by [3], including performance metrics for
the provider side (pool utilization) and user side (request
handling speed). Based on this model, the load balancing
quality of different pool policies has been evaluated [3]–
[5], [14], [22], [32].

III. ANOMALY DETECTION

The term anomaly detection [33] denotes the continu-
ous monitoring of network traffic or user behaviour and
the checking for deviation from “normality”. It bases on
the assumption that attackers behave different from regu-
lar users and therefore can be identified as such. Unlike
traditional anti-threat applications like Intrusion Detection
Systems (IDS) and Intrusion Prevention Systems (IPS),
anomaly detection is able to identify attack scenarios that
have never occurred before – because malicious systems
do not behave like normal network elements.

Anomaly detection consists of two phases: in the
monitoring phase, network traffic or user behaviour is
monitored and learned as a baseline “normal” system
behaviour. The second phase – denoted as detection phase
– is the comparison of the actual network traffic or
user behaviour with the baseline. In case of significant
differences from the normal state, an attack is assumed
and an alarm or counter-measure procedure is triggered.

For a good determination whether a monitored be-
haviour is normal or anomalous, thresholds have to be
defined after the monitoring-phase. There are two ways
of specifying these thresholds. First, there are the static
thresholds, which do not change once they are defined.
The second kind of thresholds are dynamic thresholds.
They adapt themselves to usual changes which may occur
in the system (e.g. added or removed components or new
applications).



IV. QUANTIFYING AN RSERPOOL SYSTEM

For our quantitative performance analysis, we use the
application model from [3], [14]: the service provider side
of an RSerPool system consists of a pool of PEs. Each
PE has a request handling capacity, which we define in
the abstract unit of calculations per second3. Each request
consumes a certain number of calculations; we call this
number request size. A PE can handle multiple requests
simultaneously – in a processor sharing mode as provided
by multitasking operating systems.

On the service user side, there is a set of PUs. The
number of PUs can be given by the ratio between PUs
and PEs (PU:PE ratio), which defines the parallelism of
the request handling. Each PU generates a new request in
an interval denoted as request interval. The requests are
queued and sequentially assigned to PEs.

The total delay for handling a request dHandling is
defined as the sum of queuing delay dQueuing, startup
delay dStartup (dequeuing until reception of acceptance
acknowledgement) and processing time dProcessing (ac-
ceptance until finish):

dHandling = dQueuing + dStartup + dProcessing. (1)

That is, dHandling not only incorporates the time required
for processing the request, but also the latencies of
queuing, server selection and message transport. The han-
dling speed is defined as: handlingSpeed = requestSize

dhandling
.

For convenience reasons, the handling speed (in calcula-
tions/s) is represented in % of the average PE capacity.
Clearly, the user-side performance metric is the handling
speed – which should be as fast as possible.

Using the definitions above, it is possible to delineate
the average system utilization (for a pool of NumPEs
servers and a total pool capacity of PoolCapacity) as:

systemUtil = NumPEs ∗ puToPERatio ∗
reqSize

reqInterval

PoolCapacity
. (2)

Obviously, the provider-side performance metric is the
system utilization, since only utilized servers gain rev-
enue. In practise, a well-designed client/server system
is dimensioned for a certain target system utilization of
e.g. 80%. That is, by setting any two of the parameters
(PU:PE ratio, request interval and request size), the value
of the third one can be calculated using equation 2
(see [3], [14] for details).

V. THE SIMULATION SETUP

For our performance analysis, the RSerPool simulation
model RSPSIM [3], [14], [31] has been used. This model
is based on the OMNET++ [34] simulation environment
and contains the protocols ASAP [23] and ENRP [15],
a PR module, an attacker module and PE as well as
PU modules for the request handling scenario defined in
section IV. Network latency is introduced by link delays
only. Therefore, only the network delay is significant. The
latency of the pool management by PRs is negligible [1].

3An application-specific view of capacity may be mapped to this
definition, e.g. CPU cycles or memory usage.

Fig. 3. The Simulation Setup

Unless otherwise specified, the basic simulation setup
– which is also presented in figure 3 – uses the following
parameter settings:
• The target system utilization is 80%. Request size

and request interval are randomized using a neg-
ative exponential distribution (in order to provide
a generic and application-independent analysis [3],
[14]). There are 10 PEs; each one provides a capacity
of 106 calculations/s.

• A PU:PE ratio of 10 is used (i.e. a non-critical setting
as shown in [3]).

• We use request size:PE capacity settings between 1
and 100; i.e. being processed exclusively, the pro-
cessing takes between 1s and 100s respectively – see
also [3].

• There is a single PR only, since we do not examine
PR failure scenarios here (see [3] for the impact of
multiple PRs). PEs re-register every 30s (registration
lifetime) and on every load change of the adaptive
LU policy.

• MaxBadPEReports is set to 3 (default value de-
fined in [15]). A PU sends an Endpoint Unreachable
if a contacted PE fails to respond within 10s (see
also [6]).

• The system is attacked by a single attacker node.
• The simulated real-time is 90min; each simulation

run is repeated at least 15 times with a different seed
in order to achieve statistical accuracy.

GNU R is used for the statistical post-processing of the
results. Each resulting plot shows the average values and
their 95% confidence intervals.

VI. POSSIBLE ATTACKS AND EFFECTS

The attack targets of RSerPool are the PRs, PEs and
PUs. But due to the restriction of RSerPool to a single
administrative domain, a protection of the small number
of PRs is assumed to be feasible [7]. Instead, the most
likely attack targets are the PEs and PUs. These compo-
nents are significantly more numerous [14] and may be
distributed over multiple, less controllable locations [22].

In the following, we will demonstrate that – without
protection mechanisms – even a single compromised PE
or PU is already able to cause a complete DoS.

A. A Compromised Pool Element

The most likely scenario of an attacker masquerading
as a PE is to perform as many fake PE registrations



Fig. 4. The Impact of a Compromised Pool Element

as possible [7], [35]: each registration request sent to
a PR simply has to contain another PE ID (randomly
chosen), which makes it appear as registration of a new
PE. Obviously, using an adaptive pool policy, the attacker
will also set the policy information for the fake PE to be
selected as often as possible (e.g. claiming a load of 0%
for LU). For a non-adaptive policy, the attacker simply has
to register as many fake PEs as possible, and the more
registrations he can perform, the more likely is the choice
of a fake PE.

In both cases, the impact of the attack depends on the
attack interval A – which is the delay between two fake
registrations. Figure 4 shows the handling speed for a
single attacker performing registrations in the interval A
(see section V for the other parameters). Obviously, the
smaller the attack interval, the more fake entries go into
the handlespace. This leads to an increased probability
for a PU to select a non-existing PE and therefore to a
decreased overall request handling speed. It takes only a
single registration every second (i.e. A=1 for a request
size:PE capacity ratio of s=1) to cause a handling speed
of nearly 0% – which means a complete DoS. Clearly,
the results are worse with multiple attackers.

B. A Compromised Pool User

An attacker masquerading as a PU has two possi-
bilities to degrade a pool’s service [7], [35]: First, it
can flood PRs with handle resolution requests. Since
the handlespace management – and therefore the server
selection procedure – can be realized very efficiently (as
shown in [1], [21], [36]), such an attack requires a large
attack bandwidth to cause problems. The second attack
possibility is therefore much more likely: an attacker can
report real PEs as being unreachable. Depending on the
setting of MaxBadPEReports [6] (default is 3, see [15]),
the PR will eventually remove the reported PE out of the
handlespace. Using a sufficiently small attack interval, an
attacker can clear the whole handlespace from PEs and
cause a complete DoS.

Figure 5 presents the impact of an attacker masquerad-
ing as a PU: handle resolutions are performed in the attack
interval A, and an unreachability report is sent for the
selected PE at a probability u. The left-hand side shows
the variation of A, the right-hand side the variation of u
for A=0.1. Even without sending unreachability reports
(i.e. u=0%), there is an impact on the performance of RR.
The reason for this effect is the “stateful” [3] operation of
RR: the round robin pointer is advanced by the selection
procedure itself (i.e. without actually using a PE), causing
the selection of less appropriate PEs. On the other hand,
LU and RAND are “stateless” policies and not affected
by such an attack.

However, the impact of also reporting all PEs as being
unreachable is disastrous: PEs are kicked out of the
handlespace, and the handling speed quickly sinks. This
effect is even emphasised by a larger PE lifetime L
(see the right-hand plot): the later PEs re-register (and
therefore re-appear in the handlespace), the worse the
pool’s performance. Because an attacker’s goal is to
cause the highest performance degradation, unreachability
reports are clearly the most probable threat scenario for
PU-based attacks.

VII. OUR APPROACH FOR ANOMALY DETECTION

As mentioned in section VI, we assume the PRs to
be relatively safe against attacks and therefore design our
anomaly detection for protection against PE and PU-based
attacks as part of the PRs. First, we have to distinguish
between PE attacks and PU attacks.

A. Concept

Therefore, we introduce three new lists for the hand-
lespace management: the first list stores the source ad-
dresses (not the PE IDs!) of all PEs registering at the PR.
Each entry contains a counter which increments on each
registration or re-registration from the same source ad-
dress. The second list records all PUs with their addresses
and number of handle resolution requests. In the third list,
PU source addresses and their corresponding number of
unreachability reports are stored. It is important to note
that address spoofing is already avoided by the SCTP
protocol [9], [17], [18], [37]. So, we can assume that an
attacker has not more than a few usable source addresses
– since RSerPool is deployed into a single administrative
domain. As already shown in section VI, the attack inter-
val is the most important factor of an attack. Therefore,
comparing the lists contents of an attacker to a normal
component, we can assume a significant difference.

For interpretation of the list contents, it is necessary to
define a time window interval l for the anomaly detection,
after which the lists are periodically analysed and reset.
The time window l has to be long enough for the list
contents to be meaningful, but also not too long for an
attack to remain undetected for some time. Resetting the
list each period allows components to use the pool again
after cleaning from an infestation.

We now differntiate the attack scenarios into two cate-
gories:
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1) PE attacks with non-adaptive policy and
2) PE attacks with adaptive policy or PU attacks.

As described in section III, there are static and dynamic
thresholds. While static thresholds are useful for the first
category, dynamic ones are useful for the second. In the
following subsections, we will introduce our anomaly
detection approach for the two categories.

B. Pool Element with Non-Adaptive Policy

Using a non-adaptive policy, a PE registers in a fixed
re-registration interval r at its PR-H. Except for the case
of a PR-H failure (which is seldom), there is no need to
re-register more frequently. Therefore, for non-adaptive
policies, we can simply calculate an upper threshold S:

upper threshold S =
time window l

re-registration interval r
.

By slightly increasing the actual setting of S, PR-H
failures will also be covered.

Choosing a different PE ID for each registration, an
observation of the per-ID behaviour would not be suspi-
cious. But since we look for the source address (which
cannot change arbitrarily in a controlled environment),
the attacker’s behaviour is definitely different from the
behaviour of the real PEs – unless his attack interval is
equal to the re-registration interval r (which would be
clearly ineffective, though).

C. Pool Element with Adaptive Policy or Pool User

For a PE with an adaptive policy or a PU, it is
not possible to specify an universal upper threshold for
re-registrations or handle resolutions. Both operations
strongly depend on the current application requirements.
Therefore, we apply a statistical analysis of the saved
values for our counters. In different tests, we have ob-
served that attackers in a pool with adaptive policy do
not need to re-register more frequently than regular PEs.
Instead, using the right policy value (e.g. a load of 0%
for LU), an attack is already effective with significantly
less re-registrations than the interval r. Therefore, we

span a confidence interval K with an upper and a lower
threshold. PEs are considered to be attackers when their
counter is outside of this range. Analogously, we handle
PUs and their handle resolutions.

We have considered two statistical measures for lo-
cating the middle of the upper and lower thresholds:
the mean and the median. The mean X̄n of a sample
Xn = {x1, x2, . . . , xn} is defined as:

X̄n =
1
n

n∑
i=1

xi =
x1 + x2 + . . . + xn

n
.

However, the mean is not appropriate for anomaly de-
tection: as described in [38], it has a breakdown point
of 1

n . The breakdown point was introduced to measure
the resilience of a statistical measure with respect to
outliers. A breakdown point of 1

n means that if only one
value in the sample runs towards infinity (in our case:
the counter of an attacker node), the mean runs towards
infinity as well. Therefore, a single attacker is already
able to displace the mean value – and regular nodes fall
outside of the confidence interval.

The median has a breakdown point of 1
2 , i.e. more than

half of the sample’s values have to be outliers (in our
case: attackers) to affect the value of the median. This is
indeed the best possible value for the breakdown point of
a statistical measurement, as shown by [39].

The median med(Xn) for a given sample of values
Xn = {x1, x2, . . . , xn} is defined as:

med(Xn) =
{

xn+1
2

if n is odd
1
2 (xn

2
+ xn

2 +1) if n is even

Using the median as an appropriate value for what is
approximately “normal”, we have to span the confidence
interval. In statistics besides the measures of location,
there are measures of dispersion of a sample of values.
Directly linked to the median is the MAD (Median
Absolute Deviation). The MAD MAD(Xn) of a sample
of values Xn = {x1, x2, . . . , xn} is defined as:



MAD(Xn) = med(|x1 −med(Xn)|, . . . , |xn −med(Xn)|).

We have chosen the median as measurement for the
location of the saved counters and the MAD as measure-
ment of their dispersion. Therefore, these two values span
the confidence interval K with lower value K− and upper
value K+:

K− = med(x1, . . . , xn)− p− ∗MAD(x1, . . . , xn)
K+ = med(x1, . . . , xn) + p+ ∗MAD(x1, . . . , xn)

The two parameters p− and p+ define how wide the
confidence interval is spanned up and down.

VIII. DEALING WITH ANOMALIES

Using the threshold settings defined in subsection VII-
B and subsection VII-C, PEs and PUs falling below
or exceeding their counter threshold are assumed to be
attackers. In order to handle such components, we intro-
duce two more lists: the suspect PE list and the suspect
PU list. Requests (registration or handle resolution) from
components on these lists are simply ignored by the PR
during the next period of the time window.

A. Dealing with a Suspect Pool Element

Upon start of the next time window period, a PR de-
registers all PEs on the suspect PE list. Furthermore, upon
each registration of a PE, the PR checks whether the PE
address of the incoming request is on the suspect PE list.
If a PE is suspect, its registration requests are ignored,
but “success” is reported back to the PE. There are two
reasons for reporting a successful registration to the PE:

1) The attacker should not get an information of being
blacklisted and

2) A real PE, which is mistakenly on the list as a false
positive, would – without successful registration –
assume a PR problem and try again at another PR.

When a real PE gets blacklisted, it will remain on the
list only for one period: as long as it is on the list, it is
not selected for PUs. Therefore, the re-registration interval
should normalize again and the PE will be removed from
the suspect PE list for the next period. However, it remains
blacklisted if the anomaly persists.

B. Dealing with a Suspect Pool User

The handlespace itself does not maintain a list of PUs,
i.e. there is no need to de-register suspect PUs. Instead, a
suspect PU only gets an empty list of PEs upon its handle
resolution request. A real PU, misidentified as attacker,
will then assume that the pool is currently empty and retry
after some delay h (see also [14], [32]). Due to its reduced
request rate, it will be removed from the suspect PU list
in the next period. However, an attacker would not care
for the reply and keep sending handle resolution requests.
Therefore, we introduce a new parameter minPURate,
which is defined as:

minPURate =
time window l

handle resolution retry timer h
.

At the end of each anomaly detection time window,
the counters on the suspect PU list are checked against
minPURate. If the counter is higher, the PU remains on
the list. Otherwise, it is removed.

The second target of PU-based attackers are the un-
reachability reports. A real PU will not send such reports
if it gets an empty list of PEs upon handle resolution
requests: if there are no PEs, how should one be unreach-
able? Therefore, a PU on the suspect PU list sending
unreachability reports (for a list of previously recorded
PEs!) is definitely an attacker. Utilizing this fact, we can
make sure that a real PU will be removed from the list
in the next period – while keeping attackers blacklisted.

Another behaviour which indicates an attacker is the
composition of the pool. If there are a lot of PUs (e.g.
some thousands) and only a few PEs (e.g. a dozen), an
attack can be assumed when only a small subset of the
PUs reports unreachable PEs. Therefore, such PUs are
also put on the list of suspect PUs as a precaution.

IX. PERFORMANCE EVALUATION

In order to evaluate the performance of our anomaly
detection approach, we have set up scenarios similar to
the attack simulations in section VI, but with anomaly de-
tection activated. The anomaly detection window has been
set to l=5min, which has turned out to be a reasonable
value. We use these attack scenarios as baseline and show
how the system performance is improved. Furthermore,
we also increase the number of attackers.

A. Avoiding Pool Element Attacks

The left-hand side of figure 6 presents the handling
speed results for varying the number of attackers from 0
to 5 at an attack interval A=2 for request size:PE capacity
ratios s=1 and s=100. Unlike the results in subsection VI-
A – where even a single attacker was able to cause a
complete denial of service – the performance difference
between no attack and 5 attackers is minimal. Using
3 attackers and varying the attack interval A (shown on
the right-hand side of figure 6), also only very small
performance degradations can be observed at very short
attack intervals. In particular, the handling speed does not
even come close to a DoS. That is, our evaluation shows
that our PE anomaly detection approach – for adaptive
policies (here: LU) and non-adaptive policies (here: RR,
RAND) – is of significant benefit in attack situations.

B. Avoiding Pool User Attacks

Handling speed results for PU attacks are presented
in figure 7. The left-hand plot shows the results for
increasing the number of attackers from 0 to 5 for
never sending unreachability reports (u=0%) and always
sending them (u=100%) for a PE lifetime of L=90s. On
a pure handle resolution attack (i.e. u=0%), no service
degradation can be observed. Unreachability reports (here:
u=100%) significantly affect LU only. To explain this
effect, the right-hand side of figure 7 presents the handling
speed for varying the the probability to report a PE
unreachability u for 2 attackers and an attack interval
of A=1s. While the impact of the attack is smaller for RR



Fig. 6. Effects of the Anomaly Detection against the Pool Element Attack

Fig. 7. Effects of the Anomaly Detection against the Pool User Attack

and RAND, unreachability reports for LU target the least-
loaded PE, which is obviously the best choice for a new
request. Therefore, the performance decreases for an in-
creasing report probability (since the least-loaded PE gets
kicked out of the pool) – until there is a sufficient report
rate that triggers the anomaly detection which blacklists
the attacker. Clearly, this occurs earlier for higher u,
resulting in an again increasing handling speed. However,
in comparison to the complete DoS for only a single
attacker without anomaly detection (see subsection VI-
B), even the worst performance degradation with anomaly
detection is quite small. That is, our anomaly detection
approach also achieves a significant benefit in PU-based
attack scenarios.

X. CONCLUSIONS

The goal of this paper has been the application of
anomaly detection to protect RSerPool systems against
two important attack scenarios:
• PE-based attacks (registration) and
• PU-based attacks (handle resolution/failure report).

Without any protection, we have shown that even a single
attacker is able to cause a complete DoS. Therefore,
we have designed and described our anomaly detection
approach, using statistical methods to define lower and
upper thresholds for certain pool management operations.
In simulations using our RSerPool simulation model
RSPSIM, we have shown that our approach is effectively
protecting RSerPool setups against the PE/PU-based at-
tacks.

As part of our future work, we consider a similar
anomaly detection approach for the protection against PR-
based attacks. Furthermore, we are also going to evaluate
our approach in the reality, using our RSerPool prototype
implementation RSPLIB [14], [40] in large-scale Internet
setups – based on the PLANETLAB [22].
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