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Abstract

Reliable Server Pooling (RSerPool) is a protocol frame-
work for server redundancy and session failover, currently
under standardization by the IETF RSerPool WG. While the
basic ideas of RSerPool are not new, their combination into
one architecture is. Some research into the performance of
RSerPool for certain specific applications has been made,
but a detailed, application-independent sensitivity analysis
of the system parameters is still missing.

The goal of this paper, after an application-independent,
generic quantification of RSerPool systems and defini-
tion of performance metrics for both service provider and
user, is to systematically investigate RSerPool’s behav-
ior on changes of workload and system parameters to
give basic guidelines on designing efficient RSerPool sys-
tems.

Keywords: RSerPool, server pooling, load distribution,
performance analysis, parameter sensitivity

1. Introduction

The Reliable Server Pooling (RSerPool) architec-
ture currently under standardization by the IETF RSer-
Pool WG is an overlay network framework to provide
server replication and session failover capabilities to its ap-
plications. These functionalities themselves are not new, but
their combination into one application-independent frame-
work is.

While there has already been some research on the per-
formance of RSerPool for applications like SCTP-based
mobility [11], distributed computing [9, 12, 14–16, 37] and
battlefield networks [34], a generic application-independent
performance analysis is still missing. The goal of our work
is therefore an application-independent quantitative char-
acterization of RSerPool systems and a generic sensitivity
analysis on changes of workload and system parameters.
In particular, we want to identify critical parameter spaces
to provide guidelines for designing efficient RSerPool sys-
tems. In this paper we concentrate our analysis on failure-
free scenarios, since servers are usually available in 99.9x%
of their lifetime and therefore best performance in this case
is most crucial to a system’s cost benefit ratio.

In section 2, we present the scope of RSerPool and re-
lated work, section 3 gives a short overview over the RSer-
Pool architecture. A quantification of RSerPool systems
including the definition of performance metrics is given
in section 4. This is followed by the description of our
OMNeT++-based simulation model in section 5 and finally
our results in section 6.

2. Scope and Related Work

A basic method to improve the availability of a service is
server replication. Instead of having one server representing
a single point of failure, servers are simply duplicated. Most
approaches like Linux Virtual Server [23], CiscoTM Dis-
tributed Director [5] or application-layer anycast [3] sim-
ply map a client’s session to one of the servers and use
the abort-and-restart principle in case of server failure (i.e.
when the sessions of the failed server are lost and have to
be restarted). While this approach is sufficient for its main
application - web server farms - it causes unacceptable de-
lays for long-lasting sessions and is useless for applications
like video conferences or real-time transactions [34]. More
sophisticated approaches like FT-TCP [1], M-TCP [31] or
RSerPool [33] provide a session layer to allow a resump-
tion of the interrupted session on a new server. A survey
of methods for the necessary server state replication can be
found in [35], a very handy technique is the client-based
state sharing [8].

The existence of multiple servers for redundancy au-
tomatically leads to load distribution and load balancing.
While load distribution [2] refers only to the assignment of
work to a processing element, load balancing refines this
definition by requiring the assignment to maintain a bal-
ance across the processing elements. The balance refers to
an application-specific parameter like CPU load or mem-
ory usage.

A classification of load distribution algorithms can be
found in [19]; the two classes important for this paper are
non-adaptive and adaptive ones. Adaptive strategies base
their assignment decisions on the processing elements’ cur-
rent status (e.g. CPU load) and therefore require up-to-date
information. On the other hand, non-adaptive algorithms do
not require such status data. An analysis of adaptive load
distribution algorithms can be found in [22]; performance
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Figure 1. The RSerPool Architecture

evaluations for web server systems using different algo-
rithms are presented in [4, 6, 18].

The scope of RSerPool [33] is to provide an open,
application-independent and highly available framework for
the management of server pools and the handling of a
logical communication between a client and a pool. Es-
sentially, RSerPool constitutes a communications-oriented
overlay network, where its session layer allows for session
migration comparable to [1, 31]. While server state replica-
tion is highly application-dependent and out of the scope
of RSerPool, it provides mechanisms to support arbitrary
schemes [7,8,14]. The pool management provides sophisti-
cated server selection strategies [15,16,32] for load balanc-
ing, both adaptive and non-adaptive. Custom algorithms for
new applications can be added easily [13].

3. The RSerPool Architecture

An illustration of the RSerPool architecture defined
in [33] is shown in figure 1. It consists of three compo-
nent classes: servers of a pool are called pool elements
(PE). Each pool is identified by a unique pool han-
dle (PH) in the handlespace, i.e. the set of all pools; the
handlespace is managed by registrars (PR). PRs of an op-
eration scope synchronize their view of the handlespace
using the Endpoint haNdlespace Redundancy Proto-
col (ENRP [30, 36]), transported via SCTP [20, 21, 28]. An
operation scope has a limited range, e.g. a company or or-
ganization; RSerPool does not intend to scale to the whole
Internet. Nevertheless, it is assumed that PEs can be dis-
tributed worldwide, for their service to survive localized
disasters (e.g. earthquakes or floodings).

A client is called pool user (PU) in RSerPool terminol-
ogy. To use the service of a pool given by its PH, a PE has to
be selected. The selection works in two stages: first, an arbi-
trary PR of the operation scope is asked for a handle resolu-
tion of the PH to a list of PE identities. This communication
between PU and PR uses the Aggregate Server Access Pro-
tocol (ASAP [29, 30]). The PR selects the requested list of
PE identities using a pool-specific selection rule, called pool
policy. The PU writes this list into its local cache, denoted
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as PU-side cache, and selects again one PE for its communi-
cation. Subsequent handle resolutions may be directly sat-
isfied from the cache, until its entries time out. This time-
out is called stale cache value. Using a stale cache value of
zero, every handle resolution must query a PR.

Adaptive and non-adaptive pool policies are defined
in [32], relevant for this paper are the non-adaptive policies
Round Robin (RR) and Random (RAND) and the adap-
tive policy Least Used (LU). LU selects the least-used PE,
according to up-to-date load information. Round robin se-
lection is applied among multiple least-loaded PEs [13].
The definition of load is application-specific and could e.g.
be the current number of users, bandwidth or CPU load.

For more detailed information on RSerPool, see [10, 11,
13, 14, 16, 17].

4. Quantifying an RSerPool System

4.1. System Parameters

The service provider side of an RSerPool system con-
sists of a pool of PEs, using a certain server selection pol-
icy. Each PE has a request handling capacity, which we de-
fine in the abstract unit of calculations per second. Depend-
ing on the application, an arbitrary view of capacity can be
mapped to this definition, e.g. CPU cycles, bandwidth or
memory usage. Each request consumes a certain amount of
calculations, we call this amount request size. A PE can han-
dle multiple requests simultaneously, in a processor sharing
mode as commonly used in multitasking operating systems.

On the service user side, there is a set of PUs. The
amount of PUs can be given by the ratio between PUs and
PEs (PU:PE ratio), which defines the parallelism of the re-
quest handling: the higher the PU:PE ratio, the more re-
quests have to be simultaneously handled by the PEs. Each
PU generates a new request in an interval denoted as re-
quest interval. Requests are queued in the request queue
and are sequentially assigned to PEs selected by the RSer-
Pool mechanisms (see section 3).

The total delay for handling a request dhandling is de-
fined as the sum of queuing delay (stay in request queue),
startup delay (dequeuing until reception of acceptance ac-
knowledgement from PE) and processing time (acceptance
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until finish) as illustrated in figure 2:

dhandling = dqueuing + dstartup + dprocessing (1)

Using dhandling, we define the handling speed in calcula-
tions/s as:

handlingSpeed =
reqSize
dhandling

(2)

Using the definitions above, it is now possible to give a
formula for the system’s utilization:

sysUtil = puToPERatio ∗
reqSize
reqInt

peCapacity
(3)

The load fraction generated by a single PU is given by the
following formula:

puLoad =
reqSize

reqInt ∗ peCapacity
(4)

In summary, the workload of a RSerPool system is given
by the three dimensions (1) PU:PE ratio, (2) request interval
and (3) request size. In a well-designed client/server system,
the amount and capacities of servers are provisioned for a
certain target system utilization, e.g. 80%. That is, by set-
ting any two of the parameters, the value of the third one
can be calculated using equation 3.

4.2. Performance Metrics

To evaluate the performance impacts of parameter vari-
ation, we define two performance metrics. For the service
provider, performance obviously refers to the system uti-
lization as defined in equation 3: only utilized servers gain
revenue. On the other hand, we denote service efficiency
for service users as the achieved handling speed defined in
equation 2. This definition not only includes the process-
ing time itself but also the waiting time for the service.

5. Our Simulation Model

For our performance analysis, we have developed a sim-
ulation model using OMNeT++ [24], containing full imple-
mentations of the protocols ASAP [29] and ENRP [36], a

PR module and PE and PU modules modelling the request
handling scenario defined in section 4.

Our scenario setup is shown in figure 3: all components
are connected by a switch; network delay is introduced
by link delays only. We neglect component latencies here,
because a RSerPool system is usually geographically dis-
tributed using WANs, to survive localized disasters (e.g. an
earthquake); therefore, only the network delay is significant.
The latency of the pool management by PRs is also negligi-
ble, as we show in our paper [13].

Since our goal is a generic parameter sensitivity analy-
sis being independent of specific applications, we use neg-
ative exponential distribution for request intervals and re-
quest sizes. Unless otherwise specified, the used target sys-
tem utilization (see section 4) is 80% and the PU-side han-
dle resolution cache is turned off (stale cache value set to
0s). For the LU policy, we define load as the current amount
of simultaneously handled requests. The capacity of a PE is
106 calculations/s, we use 10 PEs and the simulation run-
time is 120 minutes; each simulation has been repeated 18
times with different seeds to achieve statistical accuracy.

The amount of PRs has been set to 1. We will show in
section 6.2 that this parameter does not significantly affect
the results; PR synchronization via ENRP only introduces
the delay of the network. For this paper, we neglect con-
gestion and failure scenarios of these connections, because
we assume ENRP connections to be highly reliable, due to
the usage of SCTP multi-homed associations [13]. Further-
more, they are established in controlled networks (e.g. of a
company or an organization) where QoS mechanisms could
be applied easily.

For the statistical post-processing of our results, we used
R Project [26] for the computation of 95% confidence inter-
vals and plotting.

6. Results

6.1. Workload Parameter Variation

In our first set of simulations, we examine the perfor-
mance impact of varying the three workload parameters:
PU:PE ratio, request size (normalized by Request Size

PE Capacity ) and
request interval on a system designed for a target utiliza-
tion of 80%. In this simulation set, we do not want the net-
work delay to affect the results, therefore we turn it off.
The impact of network delay will be examined later in sec-
tion 6.3. Figure 4 presents the resulting average utilization
and figure 5 the average handling speed (normalized by
Request Size
PE Capacity ). In each figure, the left part shows the varia-
tion of the PU:PE ratio r, the middle part the variation of the
request size:PE capacity ratio s and the right part the varia-
tion of the request interval i. In the following three subsec-
tions, we discuss these results.

6.1.1. Impact of the PU:PE Ratio For our first simula-
tion set, we varied the PU:PE ratio r from 1 to 20 for re-
quest size:PE capacity ratios s from 1s to 100s. For each
pair of both values, the request interval can be calculated



Figure 4. Impact of Workload Variation on the System Utilization

Figure 5. Impact of Workload Variation on the Request Processing Speed

based on equation 3 described in section 4:

reqInt =
puToPERatio ∗ reqSize

targetSysUtil ∗ peCapacity

The left sides of figure 4 (utilization) and figure 5 (han-
dling speed) show a carefully chosen subset of our results
which contains the essential results.

As shown, the PU:PE ratio r giving the degree of par-
allelism in request handling has a significant impact on the
utilization: At r = 1, the utilization is at 53% for the RAND
policy and at about 65% for RR. Using LU, it nearly reaches
80%. The utilization difference for the policies becomes
significantly smaller when r increases: for r = 5, the dif-
ference is about 6% and for r = 10, it decreases to about
3%.

The reason for this behavior is the amount of simultane-
ous requests processed by the PEs: a PU:PE ratio r = 1,
there should be exactly one PE for every PU. That is, each

PU expects to get a PE exclusively, which processes its re-
quests during 80% (target utilization) of its runtime (see
equation 4). Each time a ”bad” PE is selected for a request,
one PE is idle while another one has to split up its capacity
to handle two requests simultaneously. Obviously, this be-
havior is most frequent when PEs are randomly chosen. For
RR selection, the PE just selected should be chosen again
only after having used every other PE before. This method
already achieves a significant improvement over RAND. Fi-
nally, LU has the knowledge of the PEs’ current load states;
therefore - except for the rare cases of simultaneous selec-
tion - the least-loaded PE can be used. This is the reason for
the good performance of LU.

Observing the utilization for a variation of the request
size:PE capacity ratio s, only minor differences are shown.
Even for a change of two orders of magnitude as presented
in figure 4, the utilization between s = 1 (solid lines) and
s = 100 (dotted lines) only decreases by 1%-2% for LU,
about up to 4% for RR and up to about 7% for RAND.



The reason for the small decrement is that longer requests
increase the impact duration of the selection decision: for
example, a heavily-loaded PE may become idle within the
next few seconds while a 75%-loaded one - putatively the
appropriate choice - may stay at this load level for quite
some time. Clearly, the probability of a non-optimal assign-
ment is highest for RAND and lowest for LU, explaining
the performance differences between these policies.

Comparing the different policies, it can be observed that
the higher the PU:PE ratio r, the smaller the utilization dif-
ferences: trying to assume which PE is a good choice to se-
lect - based on load information for LU or by list position
for RR - becomes more and more inappropriate.

The results for the handling speed normalized by
Request Size
PE Capacity shown in figure 5 (left) reflect the results for
the system utilization: Since the per-PU load (see equa-
tion 4) becomes higher with a lower PU:PE ratio, a ”bad”
selection decision leads to queuing of requests. Clearly,
this ”request jam” contributes significantly to the han-
dling speed loss.

While the utilization for higher request sizes s decreases,
the handling speed increases: for example 100 requests of
size s = 1 are affected 100 times by the queuing de-
lay, while one large request of s = 100 is only affected
once - for the same amount of calculations to be processed.
Clearly, this results in a significant handling speed gain.

Unlike the utilization curves for the different policies,
the handling speed does not converge to a certain value for
all policies when the PU:PE ratio r becomes high enough.
Instead, a significant gap between the handling speeds for
RAND, RR and LU remains: RAND and RR frequently
make ”bad” assignments, leading to low handling speeds
and therefore longer request queues of the PUs. While the
per-PU load (see equation 4) decreases with r and therefore
lowers the penalty of queuing delay (leading to an improved
handling speed), the probability to make non-optimal selec-
tion decisions remains significantly higher for RAND and
RR than for LU.

6.1.2. Impact of the Request Size In this simulation set,
we vary the request size:PE capacity ratio s between 5s and
100s for values of the request interval i between 1s and
500s. Based on equation 3 described in section 4, we can
calculate the PU:PE ratio:

puToPERatio =
reqInt ∗ targetSysUtil ∗ peCapacity

reqSize

Note, that the smaller the request size, the higher the PU:PE
ratio.

The middle blocks of figure 4 (utilization) and figure 5
(handling speed) show a carefully chosen subset of our re-
sults which contains the essential results.

Obviously, the utilization is highest for small values of
the request size:PE capacity ratio s, since here the PU:PE
ratio r is highest. As already observed in the analysis of
the PU:PE ratio in section 6.1.1, the difference between the
policies becomes small for high values of r due to the par-
allelism of request handling.

Larger values of i lead to a more shallow descent of the
PU:PE ratio r, therefore, the utilization decrement rate for

rising s becomes smaller. Compare the results for i = 50
(solid lines) with the curves for i = 500 (dotted lines) at
s = 25: the PU:PE ratio at s = 25 has already reached 1
for i = 50 and therefore the gap between the three poli-
cies as explained in section 6.1.1 can be observed. On the
other hand, the PU:PE ratio r is 16 for i = 500; therefore,
the difference between the policies is only about 2%.

The handling speed results shown in figure 5 (middle) re-
flect the results of the utilization curves. r sinks with rising
request size s, i.e. the possibility to compensate ”bad” selec-
tions by parallelity becomes smaller and the handling speed
decreases. Obviously, this effect becomes smaller for higher
request intervals i.

Again, as explained in section 6.1.1, there is a huge dif-
ference between the three policies, due to their different se-
lection decision qualities.

6.1.3. Impact of the Request Interval The request inter-
val is the third and last workload parameter. We examined
it in the range from 1 to 500 for PU:PE ratios from 1 to 10.
Based on equation 3 described in section 4, we can calcu-
late the request size:

reqSize =
reqInt ∗ targetSysUtil ∗ peCapacity

puToPERatio

Note, that the request size increases with the request inter-
val.

The right sides of figure 4 (utilization) and figure 5 (han-
dling speed) show a carefully chosen subset of our results,
containing the essential information.

With increasing request interval i, the request size:PE ca-
pacity ratio s also increases. As already explained in sec-
tion 6.1.1 and section 6.1.2, this leads to a small decrement
of the utilization due to the longer durability of selection de-
cisions.

Obviously, the most influencing factor is the PU:PE ra-
tio r: while the policies’ utilizations for r = 1 differ in the
range of about 20% to 25%, the variation already sinks to
less than about 10% for r = 3 for the reason of parallelism
as explained in section 6.1.1.

The handling speed curves presented in figure 5 (right)
mainly reflect the results for the system utilization. But
while the utilization slightly decreases, the handling speed
slowly increases. The reason is that s increases with i.
Therefore, as explained in detail in section 6.1.1, the amount
of requests decreases and the fraction of processing delay
dprocessing in equation 1 gains more importance over the
queuing delay dqueuing . This implies a handling speed im-
provement (see equation 2).

Note, that for sufficiently high values of i, the handling
speed curves for RR and RAND at r = 1 exceed the curves
for r = 3. Here, the gain by larger (and therefore fewer) re-
quests at r = 1 oversteps the gain by parallelity at r = 3.

6.2. Registrar Parameter Variation

An important parameter for redundancy is the amount of
PRs. In section 5 we noted that this amount does not signifi-
cantly influence the performance. To substantiate our asser-
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tion, we made simulations with different workload sets and
PR ranges from 1 to 10.

PRs synchronize their handlespace copies using the
ENRP protocol. Neglecting the network delay (ana-
lyzed later in section 6.3), it is obvious that the amount
of PRs does not affect the LU and RAND policies, since
they are stateless. However, RR is stateful, i.e. the selec-
tion of the next PE depends on the previous selections. This
introduces a problem, since multiple PRs select indepen-
dently from each other.

Figure 6 shows the impact of varying PR amounts on the
utilization for different settings of MaxIncrement m. We de-
note the number of steps the round robin pointer in the PE
list is forwarded after selection as MaxIncrement; e.g. a set-
ting of m = 3 means that after selecting n elements, the
pointer is incremented by min(m,n). As we have already
shown in our paper [16], the selection performance highly
depends on the setting of m. In short, if the amount of PE
identities selected by the PR is larger than the number of
PEs actually used by the PU, this leads to systematical skip-
ping of PEs while other PEs are highly loaded. The setting
m = 1 has been found to be a useful value.

The example in figure 6 shows the utilization for a
PU:PE ratio r = 1 and a request size:PE capacity ratio
s = 10. Obviously, m = 1 is also useful to avoid RR prob-
lems when scaling the amount of PRs. Note, that the utiliza-
tion slightly decreases with the amount of PRs: round robin
selection on independent components differs from a global
round robin selection. LU and RAND (not shown here) are
not affected by the amount of PRs: the utilizations for both
of them are constant at 80%.

6.3. Network Delay

The performance impact of network delay is most signif-
icant when (1) the PU:PE ratio r is small, so that the per-PU
load (see equation 4) is high and/or (2) the ratio between de-

lay and request size:PE capacity ratio s is high. The first
case reduces the system’s capability to absorb the impact
of ”bad” selection decisions (see section 6.1.1); in the sec-
ond case the delay decreases the handling speed (see equa-
tion 2).

We made simulations for a wide range of workload pa-
rameters (r from 1 to 10, s from 1 to 10) and delays (given
as ratio between component RTT and s, from 0.0 to 1.0);
a carefully chosen subset (s = 1) of the results containing
the essential information is shown in figure 7. The left side
presents the utilization, the right side the handling speed
(normalized by PE capacity).

Obviously, the PU:PE ratio r has the main impact on the
utilization for a rising delay: while the curves only slightly
decrease for r = 3, there is a steep descent for r = 1. As
explained in section 6.1.1, the lower the PU:PE ratio r, the
higher the amount of capacity a single PU expects from its
PE. That is, at r = 1 a PE is expected to exclusively provide
80% of its runtime to request handling. Only 20% remain
to absorb both, the delay of communications and the speed
degradation due to simultaneously handled requests.

An important observation can be made for LU: while the
utilization of LU converges to the curve of RR for r = 1, it
converges to the curve of RAND for higher values of r. The
reason is clear: while for r = 1 RR provides the best chance
to get an unloaded PE, the probability of RR to make a good
choice decreases with rising parallelism (see section 6.1.1).

The handling speed results presented on the right side of
figure 7 reflect the observations for the utilization. Clearly,
the network delay has a significant impact on the handling
speed for small settings of s (here: s = 1), since it affects
the handling speed (see equations 2 and equation 1) by the
communication of PU and PR (handle resolution) and PU
and PE (request handling).

6.4. Handle Resolution Cache

As explained in section 3, the PU provides a cache to
provide local handle resolutions. Using this cache, the over-
head of asking a PR for handle resolution may be skipped.

To be effective, the stale cache value has to be larger than
the request interval i. We made simulations for a large pa-
rameter range using PU:PE ratios r from 1 to 10, request
size:PE capacity ratios s from 1 to 100 (the corresponding
request interval i has been calculated using equation 3) and
stale cache value:request interval ratios sir from 0 to 10.
The value sir is a measure for how many times the cache
could be used for a handle resolution before querying a PR.

Figure 8 presents a subset (i = 3; 60% target utilization)
of the results for utilization (left side) and handling speed
(right side), carefully chosen to present the essential effects.

As expected, the cache does not affect the RAND pol-
icy’s results, neither utilization nor handling speed. Clearly,
the utilization of LU quickly decays for rising sir at r = 1
due to high per-PU load (see equation 4) and therefore
high penalty of ”bad” selection decisions. Caching results
in using out-of-date load information, therefore inappropri-
ate decisions become more likely for larger values of sir.
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Figure 8. Impact of PU-side Handle Resolution Caching

For higher values of r, the situation becomes much bet-
ter, since the per-PU penalty of a ”bad” decision becomes
smaller due to the parallelism (see section 6.1.1).

The reason for RR’s utilization decay is the same as for
the amount of PRs (see section 6.2): each component se-
lects independently using round robin; but viewed glob-
ally, the selections differ from round robin behavior. For
r = 1, it can be observed that RR’s utilization even slightly
falls short of RAND’s utilization for sir greater than 5.0 -
the higher the sir, the more independent are the RR selec-
tions, the more the global view of the round robin selections
adapts to random.

Although the utilization penalty for using the cache be-
comes small when the PU:PE ratio r is high enough, no sig-
nificant impact in form of a constant request handling speed
can be observed for policies other than RAND: using LU
or RR, there remains a significant loss in handling speed.
This is caused by long request queues, due to inappropri-
ate PE selection and therefore reduced processing speed.

As a conclusion, using the cache for a policy other than
RAND does not make much sense. The gain of saving some
overhead messages on handle resolution comes at a high
price on performance. So, in which cases can the cache be-
come valuable? We provide the answer in the next section.
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Figure 9. Efficient Cache Usage

Using the cache to reduce overhead traffic is usually
inefficient, as shown in section 6.4. But there are situa-
tions where the cache becomes quite useful: (1) The request
size:PE capacity ratio s is small, therefore network delay
for the handle resolution at the PR significantly contributes
to a reduction of the handling speed. (2) A PE may reject
a request with a certain probability aPE , implying an addi-
tional handle resolution to find a new PE. This is e.g. the
case in telephone signaling, when the PE’s request queue is
full and it currently cannot accept any more request.

For a given aPE , the total rejection probability after n
trials is atotal = (aPE)n. To reach a given value of atotal
(e.g. 0.05), the number of trials n can be computed by:

n(atotal, aPE) = max(1, dlogaPE(atotal)e).

Now, we want to cover the given number of trials by the
cache instead of having to query a PR. That is, we compute
the maximum delay for this amount of trials as follows:
d(atotal, aPE) = RTTPU↔PR + (n(atotal)− 1) ∗ RTTPU↔PE.

Using the computed delay as stale cache value, the trials
are covered by the cache.

To show the effectiveness of the cache, we made an ex-
ample simulation using a PU:PE ratio of r = 3, a request
interval of i = 1 and a target utilization of 60%. The re-
sulting request size:PE capacity ratio is s = 0.2 (such fre-
quent and short transactions are typical for telecommuni-
cations signaling) for a component RTT of 200ms. Figure 9
shows the resulting queuing delay (see section 4 for the def-
inition) for varying stale cache values from 0s (no cache) to

1s (equal to the request interval) and request rejection rates
aPE from 0.0 (0%) to 0.2 (20%). The system utilization is
stable at about 60% for all settings, therefore we omit a fig-
ure. We also do not show plots for RR, since the results are
quite similar.

Obviously, the cache has a huge impact on the reduc-
tion of the queuing delay (and therefore on an improvement
of the handling speed). In the extreme case of RAND policy
and aPE = 0.2, a stale cache value of only 400ms reduces
the queuing delay from 23s to 4s (d(0.05, 0.20) = 400ms);
for aPE = 0.1, the queuing delay of RAND drops from
8s to 4s at the same stale cache value (d(0.05, 0.10) =
400ms). Clearly, the reductions for LU are smaller, since
LU’s initial values without cache are much smaller than for
RAND and the load values become inaccurate due to the
cache. But nevertheless, there is still a significant queuing
delay reduction by several seconds.

7. Conclusions and Future Work

In this paper, we first quantified the basic workload pa-
rameters of RSerPool systems (PU:PE ratio, request size
and interval) and defined performance metrics for both ser-
vice provider (system utilization) and service user (handling
speed). We then provided a sensitivity analysis of the sys-
tem performance for a broad range of the workload and
system parameter space, providing application-independent
guidelines for the behavior of RSerPool systems on work-
load changes.

The PU:PE ratio has been found to be the most critical
parameter. A high parallelism in the request handling can
compensate for deficiencies of the pool policies’ load dis-
tribution quality, due to smaller per-PU load. It has been
shown that the adaptive LU policy provides the highest
stability on workload parameter changes. However, for in-
creasing network delays the load information required by
LU becomes inaccurate, resulting in convergence of LU’s
performance to the results of the non-adaptive RR and
RAND policies.

Using the PU-side cache to avoid handle resolutions at
a PR usually comes at a high price on system performance.
But as we have shown, there are certain situations where
this cache is able to achieve a significant performance gain.

The future goals of our ongoing RSerPool performance
analysis include the examination of heterogeneous scenar-
ios, where server capacities differ. It is also necessary to
investigate the performance impacts of server failures and
RSerPool’s failover capabilities.

Furthermore, another goal of our future work is to trans-
fer the results of our simulative research to our RSerPool
prototype implementation [10, 27] and verify our simula-
tion results in real life using the PLANETLAB [25].
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