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Abstract The Reliable Server Pooling (RSerPool) architecture is the IETF’s new
standard for a lightweight server redundancy and session failover framework to
support availability-critical applications. RSerPool combines the ideas from dif-
ferent research areas into a single, resource-efficient and unified architecture.
While there have already been a number of research papers on its performance
in general, the robustness against intentional attacks has not been intensively ad-
dressed yet. In particular, there have not been any analyses for real setups.
Therefore, the goal of this paper is to provide a robustness analysis in order
to outline the attack bandwidth which is necessary for a significant impact on
RSerPool-based services. This analysis is based on lab measurements – using a
real RSerPool system setup – as well as on measurements for comparison and
validation. Furthermore, we present and evaluate countermeasure approaches to
significantly reduce the impact of attacks.1
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1 Introduction and Scope

Reliable Server Pooling (RSerPool, see [15]) denotes the IETF’s new standard for a
generic, application-independent server pool [7] and session management [3] frame-
work. While there have already been a number of publications on the performance of
RSerPool for load balancing [3, 4, 11, 22–24] and server failure handling [8], there has
been very little research on its security and attack robustness. Until now, only basic con-
cepts to avoid flooding the pool management with misinformation have been analysed
by simulations in [9, 16]. The underlying transport protocol SCTP2 already provides
protection against blind flooding attacks [20] and the RFC [19] of RSerPool manda-
torily requires applying mechanisms like TLS [14] or IPSEC [1] in order to ensure

1 Funded by the State Administration of Foreign Experts Affairs, P. R. China (funding number
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2 Stream Control Transmission Protocol, see [17].



authenticity, integrity and confidentiality. Nevertheless, these techniques are still insuf-
ficient: in a distributed system, there is always a chance that an attacker compromises a
legitimate component (e.g. by exploiting a software bug) and obtains the private key. It
is therefore important to analyse the behaviour of the RSerPool protocols under attack
situations.

The goal of this paper is to analyse the attack robustness of the RSerPool architec-
ture by simulations using our RSerPool simulation model RSPSIM [6] as well as mea-
surements in a lab setup based on our RSerPool implementation RSPLIB [3] – which
is also the IETF’s reference implementation, see [15, chapter 5] – by first showing the
impact of different attack scenarios on the application performance. Using these analy-
ses as a baseline performance level, we will present techniques to efficiently reduce the
impact of such attacks.

2 The RSerPool Architecture

Figure 1. The RSerPool Architecture

Figure 1 illustrates the RSerPool architecture [3,15] which consists of three types of
components: servers of a pool are called pool elements (PE), a client is denoted as pool
user (PU). The handlespace – which is the set of all pools – is managed by redundant
pool registrars (PR). Within the handlespace, each pool is identified by a unique pool
handle (PH).

PRs of an operation scope synchronize their view of the handlespace by using the
Endpoint haNdlespace Redundancy Protocol (ENRP) [21], transported via SCTP [13]
and secured e.g. by TLS [14] or IPSEC [1]. Unlike Grid Computing [12], an operation
scope is restricted to a single administrative domain. That is, all of its components
are under the control of the same authority (e.g. a company or an organization). This
property results in a small management overhead [7], which also allows for RSerPool
usage on devices providing only limited memory and CPU resources (e.g. embedded



systems like routers). Nevertheless, PEs may be distributed globally to continue their
service even in case of localized disasters [5].

PEs choose an arbitrary PR of the operation scope to register into a pool by using
the Aggregate Server Access Protocol (ASAP) [18], again transported via SCTP and
using TLS or IPSEC. Within its pool, a PE is characterized by its PE ID, which is a
randomly chosen 32-bit number. Upon registration at a PR, the chosen PR becomes the
Home-PR (PR-H) of the newly registered PE. A PR-H is responsible for monitoring
its PEs’ availability by keep-alive messages (to be acknowledged by the PE within a
given timeout) and propagates the information about its PEs to the other PRs of the
operation scope via ENRP updates. PEs re-register regularly (in an interval denoted as
registration lifetime) and for information updates.

In order to access the service of a pool given by its PH, a PU requests a PE se-
lection from an arbitrary PR of the operation scope, again using ASAP. The PR se-
lects the requested list of PE identities by applying a pool-specific selection rule, called
pool policy. RSerPool supports two classes of load distribution policies: non-adaptive
and adaptive algorithms [4]. While adaptive strategies base their assignment decisions
on the current status of the processing elements (which of course requires up-to-date
states), non-adaptive algorithms do not need such data. A basic set of adaptive and non-
adaptive pool policies is defined in [10]. Relevant for this paper are the non-adaptive
policies Round Robin (RR) and Random (RAND) as well as the adaptive policies Least
Used (LU) and Least Used with Degradation (LUD). LU selects the least-used PE,
according to up-to-date application-specific load information. Round robin selection
is applied among multiple least-loaded PEs. LUD [24] furthermore introduces a load
decrement constant which is added to the actual load each time a PE is selected. This
mechanism compensates inaccurate load states due to delayed updates. An update resets
the load to the actual load value again.

PUs may report unreachable PEs to a PR by using an ASAP Endpoint Unreachable
message. A PR locally counts these reports for each PE and when reaching the threshold
MaxBadPEReports [8] (default is 3 [18]), the PR may decide to remove the PE from
the handlespace. The counter of a PE is reset upon its re-registration.

3 Quantifying an RSerPool System

For our quantitative performance analysis, we use the application model from [3]: the
service provider side of an RSerPool system consists of a pool of PEs. Each PE has
a request handling capacity, which we define in the abstract unit of calculations per
second3. Each request consumes a certain number of calculations; we call this number
request size. A PE can handle multiple requests simultaneously – in a processor sharing
mode as provided by multitasking operating systems.

On the service user side, there is a set of PUs. The number of PUs can be given
by the ratio between PUs and PEs (PU:PE ratio), which defines the parallelism of the
request handling. Each PU generates a new request in an interval denoted as request
interval. The requests are queued and sequentially assigned to PEs.

3 An application-specific view of capacity may be mapped to this definition, e.g. CPU cycles,
harddisk space, bandwidth share or memory usage.



The total delay for handling a request dHandling is defined as the sum of queuing de-
lay dQueuing, startup delay dStartup (dequeuing until reception of acceptance acknowl-
edgement) and processing time dProcessing (acceptance until finish):

dHandling = dQueuing + dStartup + dProcessing. (1)

That is, dHandling not only incorporates the time required for processing the request,
but also the latencies of queuing, server selection and message transport. The user-side
performance metric is the handling speed, which is defined as:

HandlingSpeed =
RequestSize
dHandling

.

For convenience reasons, the handling speed (in calculations/s) is represented in % of
the average PE capacity.

Using the definitions above, it is possible to delineate the average system utilization
(for a pool of NumPEs servers and a total pool capacity of PoolCapacity) as:

SystemUtilization = NumPEs ∗ puToPERatio ∗
RequestSize

RequestInterval

PoolCapacity
. (2)

Obviously, the provider-side performance metric is the system utilization, since only
utilized servers gain revenue. In practise, a well-designed client/server system is di-
mensioned for a certain target system utilization of e.g. 50%. That is, by setting any
two of the parameters (PU:PE ratio, request interval and request size), the value of the
third one can be calculated using equation 2 (see [3] for detailed examples).

4 System Setup

Figure 2. The System Setup

For our performance analysis, we have used the OMNET++-based RSerPool sim-
ulation model RSPSIM [4, 6] as well as the implementation RSPLIB [3, 5] for measure-



ments in a lab setup. Both – simulation model and implementation – contain the pro-
tocols ASAP [18] and ENRP [21], a PR module, an attacker module and PE as well as
PU modules for the request handling scenario defined in section 3.

Unless otherwise specified, the basic simulation and measurement setup – which is
also presented in figure 2 – uses the following parameter settings:

– The target system utilization is 50%. Request size and request interval are random-
ized using a negative exponential distribution (in order to provide a generic and
application-independent analysis [3, 4]). There are 10 PEs; each one provides a
capacity of 106 calculations/s.

– A PU:PE ratio of 3 is used (i.e. a non-critical setting as explained in [4]).
– We use request size:PE capacity setting of 10; i.e. being processed exclusively, the

average processing takes 10s – see also [4].
– There is a single PR only, since we do not examine PR failure scenarios here (see [4]

for the impact of multiple PRs). PEs re-register every 30s (registration lifetime) and
on every load change of the adaptive LU and LUD policies.

– MaxBadPEReports is set to 3 (default value defined in [18]). A PU sends an
Endpoint Unreachable if a contacted PE fails to respond within 10s (see also [8]).

– The system is attacked by a single attacker node.
– For the simulation, the simulated real-time is 120min; each simulation run is re-

peated at least 24 times with a different seed in order to achieve statistical accuracy.
– Each measurement run takes 15min; each run is repeated at least 3 times.

GNU R [6] is used for the statistical post-processing of the results. Each resulting plot
shows the average values and their 95% confidence intervals.

5 The Impact of an Attacker

Attack targets of RSerPool systems are the PRs, PEs and PUs. Due to the restriction of
RSerPool to a single administrative domain, a protection of the small number of PRs
is assumed to be feasible [9, 16]. Instead, the most likely attack targets are the PEs and
PUs. These components are significantly more numerous [3] and may be distributed
over a larger, less controllable area [5]. For that reason, ASAP-based attacks are in the
focus of our study. Initially, we will show that – without any protection mechanisms –
even a single compromised PE or PU can already cause a Denial of Service (DoS).

5.1 An Attacker Masquerading as Pool Element

The goal of an attacker being able to perform PE registrations is clearly to perform as
many fake registrations as possible. That is, each registration request simply has to con-
tain a new (random) PE ID. The policy parameters may be set appropriately, i.e. a load
of 0% (LU, LUD) and a load increment of 0% (LUD), to get the fake PE selected as
frequently as possible. The underlying SCTP protocol [17, 20] itself already prevents
simple address spoofing: each network-layer address under which a PE is registered
must be part of the SCTP association between PE and PR. The ASAP protocol [18]
requires the addresses to be validated by SCTP. However, maintaining a registration



Figure 3. The Impact of a PE/PU-Based Attacks without Countermeasures

association with the PE and silently dropping all incoming PU requests is already suffi-
cient for an attacker.

The left-hand side of figure 3 shows the impact of varying the attack interval A
(i.e. the time between two fake registrations) on the handling speed in the lab setup.
Clearly, even an interval of 10s (i.e. one registration packet per 10s) is already sufficient
to significantly decrease the performance. For the LUD policy [24], this already leads to
a full DoS: an unloaded PE whose load does not increase when accepting a new request
seems to be the most useful choice for each PU. That is, it leads to exclusively choosing
fake PEs. Using smaller settings of A (e.g. here: 0.1s) a DoS is also reached for the
other policies.

The corresponding simulation results show an analogous behaviour. Since we have
presented such results already in [9, 16], they have been omitted here.

5.2 An Attacker Masquerading as Pool User

PUs are the other means of ASAP-based attacks, especially their handle resolution re-
quests and unreachability reports. Obviously, an attack scenario would be to flood the
PR with handle resolution requests. However, the server selection as part of the hand-
lespace management is very efficiently realizable [7] – but it is a fallacy to assume that
simply performing some handle resolutions (without actually contacting any selected
PE) cannot affect the service quality: on the right-hand side of figure 3, the impact of
a handle resolution attack on the performance is presented for varying the attack in-
terval A (i.e. the delay between two handle resolution requests) in the lab setup. For
selected PE entries, an unreachability report (see section 2) is sent with probability u.

Even for u=0%, there is an impact on the performance of RR, due to the “state-
ful” [4] operation of RR: the round robin pointer is advanced by the selection proce-
dure itself (i.e. without actually using a PE), causing the selection of less appropriate



PEs. Similarly, the load value is increased on each selection for LUD. In contrast, LU
and RAND are “stateless” and therefore not affected by this attack. The impact of also
reporting all PEs as being unreachable (here: u=100%) is disastrous: PEs are kicked
out of the handlespace, and the handling speed quickly sinks and leads – here at about
A=0.1s (i.e. only 10 reports/s) to a DoS. Since analogous simulation results have been
discussed by us in [9, 16], we omit them here.

6 Applying Attack Countermeasures

Clearly, even a single attacker with a small attack bandwidth (i.e. a few messages/s) can
achieve a complete DoS. Therefore, we discuss and analyse possible countermeasures
for the PE and PU-based threats in the following section.

6.1 Countermeasures Against Pool Element Attacks

The key problem of the PE-based threat shown in subsection 5.1 is the attacker’s ability
to create a new fake PE with each of its registration messages. Only a few messages per
second (i.e. even a modem connection) are sufficient to degrade the service. Therefore,
an effective countermeasure is to restrict the number of PE registrations that a single PE
identity is allowed to create. However, in order to retain the “lightweight” [7] property
of RSerPool and to avoid synchronizing such numbers among PRs, we have put forward
a new approach and introduce the concept of a registration authorization ticket [9]
consisting of:

1. the pools’s PH and a fixed PE ID,
2. minimum/maximum policy information settings (e.g. a lower limit for the load

decrement of LUD) and
3. a signature by a trusted authority (to be explained below).

This ticket, provided by a PE to its PR-H as part of the ASAP registration, can be easily
verified by checking its signature. Then, if it is valid, it is only necessary to ensure that
the PE’s policy settings are within the valid range specified in the ticket. An attacker
stealing the identity of a real PE would only be able to masquerade as this specific PE.
A PR only has to verify the authorization ticket. No protocol change or synchronization
among the PRs is necessary. The additional runtime required is in O(1). Clearly, the
need for a trusted authority (e.g. a Kerberos service) adds an infrastructure requirement.
However, since an operation scope is restricted to a single administrative domain (see
section 2), this is feasible at reasonable costs.

To demonstrate the effectiveness of our countermeasure approach, figure 4 presents
the handling speed results for an attack interval of A=0.1s per attacker for varying the
number of attackers α. As shown in subsection 5.1, A=0.1s has already lead to a full
DoS with only a single attacker.

Obviously, our countermeasure is quite effective: even for α=10, the handling speed
only halves at most – but the service still stays operational and the attack impact is not
even close to a DoS. Note, that α=10 here means that the attacker had successfully
compromised as many nodes for obtaining registration authorization tickets as there are



Figure 4. Applying Countermeasures Against Pool-Element-Based Attacks

“real” PEs in the pool – which is assumed to be quite difficult in a controlled RSerPool
operation scope (i.e. a single administrative domain, see section 2). The lab measure-
ment results correspond to the simulation results, i.e. the mechanism also works effec-
tively in a real setup. Note, that the slightly different handling speed levels of the lab
measurements are caused by node and SCTP association setup latencies, which are –
due to their complexity – not incorporated into the simulation model. Nevertheless, the
obtained tendency of the results is clearly observable.

6.2 Countermeasures Against Pool User Attacks

The key threat of the handle resolution/failure report attack shown in subsection 5.2 is
a PU’s ability to impeach PEs – even for MaxBadPEReport>1. Our basic counter-
measure idea is therefore to avoid counting multiple reports from the same PU. As for
the PEs, it is necessary to introduce a PU identification which is certified by a trusted
authority and can be verified by a PR (see subsection 6.1). Then, a PR simply has to
memorize (described later) the PH for which a certain PU has reported unreachable
PEs and to ignore multiple reports for the same pool. Since the unreachability count for
each PE is a PR-local variable, no synchronization among PRs is necessary. That is, an
attacker cannot cause harm by just sending its reports for the same PE to different PRs.

Instead of storing each reported PE (which could be exploited by sending a large
amount of random IDs), we use a hash-based approach for a per-PU message black-
board: the function Ψ maps a PE’s PH into a bucket:

Ψ(PH) = h(PH) MOD Buckets.

h denotes an appropriate hash function: an attacker may not easily guess its behaviour.
This property is provided by so called universal hash functions [2], which are – unlike
cryptographic hash functions (e.g. MD5, SHA-256) also efficiently computable.



Each bucket contains the time stamps of the latest up to MaxEntries Endpoint
Unreachables for the corresponding bucket. Then, the report rate can be calculated as:

Rate =
NumberOfTimeStamps

TimeStampLast − TimeStampFirst

. (3)

Upon reception of an Endpoint Unreachable, it simply updates the reported PE’s cor-
responding bucket entry. If the rate in equation 3 exceeds the configured threshold
MaxEURate (Maximum Endpoint Unreachable Rate), the report is silently ignored.
The effort for this operation is in O(1), as well as the required per-PU storage space.

In a similar way, the same hash-based approach can be applied for handle reso-
lutions with the corresponding threshold MaxHRRate (Maximum Handle Resolution
Rate). However, unlike simply ignoring the request, the PR replies with an empty list –
which means for the PU that the pool is currently empty.

Instead of specifying a fixed threshold, an alternative approach is presented in [16]
by applying statistical anomaly detection: the behaviour of the majority of nodes is
assumed to be “normal”. Differing behaviour – which is necessary for an attack to
be effective – is denoted as anomaly. However, this approach can – by definition –
only detect attackers if their number is less than the number of legitimate components.
Furthermore, obtaining the “normal” behaviour is more resource-intensive than simple
thresholds.

Figure 5. Applying Countermeasures Against a Pool-User-Based Attack

The effectiveness of our approach for MaxHRRate=1 (which is 60 times more
than the application’s actual handle resolution rate) and MaxEURate=1 (which is by
orders of magnitude higher than a real pool’s PE failure rate) is shown by figure 5 for
varying the attack interval of a single attacker in simulation (left-hand plot) and lab



measurement (right-hand plot). The results are shown for two probabilities of sending
Endpoint Unreachables for each selected entry: u=0% and u=100% (i.e. worst case).

Due to the “stateful” behaviour of the RAND and LUD policies, the attacker is able
to reduce the handling speed until triggering the countermeasure mechanism. Then, the
attacker is ignored and the performance remains as for attack-free scenarios. For the LU
and RAND policies, even very small attack intervals (e.g.A=0.001s) have no significant
impact in the simulation. Only for LU and u=100%, a performance degradation can be
observed in the measurement scenario: this effect is caused by the latency of the PE load
state updates in the real network (which can vary depending on the SCTP protocol’s
flow control – which is not covered by the simulation model): since the load value of
a PE only changes on reregistration, a least-loaded PE entry may be selected multiple
times in sequence. That is, the attacker will send multiple unreachability reports for the
same PE. As long as the threshold of MaxEURate is not yet reached, the PE entry may
be removed. However, when the countermeasure threshold is reached, the attacker is
ignored and the performance goes back to the level of attacker-free scenarios.

Figure 6. Applying Countermeasures for Varying the Number of Pool-User-Based Attackers

Figure 6 presents the results for varying the number of attackers α with an attack
interval ofA=0.1 (for which a single attacker was able to cause a complete DoS without
countermeasures, as shown in subsection 5.2). The attacker sends Endpoint Unreach-
ables at a probability of u=100% for the selected PE entries (worst case). Clearly, the
presented results show that even α=10 attackers have no significant impact on the per-
formance – neither in simulation nor in reality – any more, due to the applied counter-
measures.



7 Conclusions

In this paper, we have examined the two critical attack threats on RSerPool systems by
both, simulations and corresponding lab measurements:

– PE-based attacks (registration) and
– PU-based attacks (handle resolution/failure report).

Without any protection, even a single attacker is easily able to achieve a complete
DoS. For both types of attacks, we have introduced countermeasure approaches which
are efficiently realizable with small memory and CPU requirements – as it is necessary
for the “lightweight” RSerPool architecture. By simulations and lab measurements we
have shown that these mechanisms work as expected and provide a significant perfor-
mance gain – in comparison to an unprotected setup – in case of DoS attacks.

The ideas of our RSerPool research have been contributed into IETF’s RSerPool
standardization process, which has just reached a major milestone by publication of its
basic protocol documents as RFCs. As part of our future work, it is also necessary to
analyse the robustness of the ENRP protocol. Although the threat on the small number
of PRs of an operation scope is significantly smaller, it is useful to obtain knowledge
of possible attack scenarios. Furthermore, we intend to perform real-world security ex-
periments in the PLANETLAB – again by using our RSerPool implementation RSPLIB.
Our goal is to provide security and configuration guidelines for application developers
and users of the IETF’s new RSerPool standard.
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