
On Improving the Performance of Reliable
Server Pooling Systems

for Distance-Sensitive Distributed Applications

Thomas Dreibholz and Erwin P. Rathgeb

University of Duisburg-Essen, Ellernstrasse 29, 45326 Essen, Germany,
dreibh@iem.uni-due.de,

http://www.exp-math.uni-essen.de/~dreibh

Abstract. Reliable Server Pooling (RSerPool) is a protocol framework
for server redundancy and session failover, currently under standardiza-
tion by the IETF RSerPool WG. While the basic ideas of RSerPool
are not new, their combination into a single, unified architecture is.
Server pooling becomes increasingly important, because there is a grow-
ing amount of availability-critical applications. For a service to survive
localized disasters, it is useful to place the servers of a pool at different
locations. However, the current version of RSerPool does not incorporate
the aspect of component distances in its server selection decisions.
In our paper, we present an approach to add distance-awareness to the
RSerPool architecture, based on features of the SCTP transport protocol.
This approach is examined and evaluated by simulations. But to also
show its usefulness in real life, we furthermore validate our proposed
extension by measurements in a PlanetLab-based Internet scenario.

1 Introduction

The Reliable Server Pooling (RSerPool) architecture currently under standard-
ization by the IETF RSerPool WG is an overlay network framework to provide
server replication and session failover capabilities to its applications. These func-
tionalities themselves are not new, but their combination into a single, unified
and application-independent framework is.

While the initial motivation and main application of RSerPool is the tele-
phone signalling transport over IP using the SS7 protocol [1], there has already
been some research on the applicability and performance of RSerPool for other
applications like VoIP with SIP [2,3], IP Flow Information Export (IPFIX) [4],
SCTP-based mobility [5], real-time distributed computing [6–10] and battlefield
networks [11]. But a detailed examination of an important application scenario
is still missing: short transactions in widely distributed pools. Due to their short
processing duration, network transport latency significantly contributes to their
overall handling time. The goal of this paper is to optimize RSerPool’s support
for such transactions by extending RSerPool with an awareness for distances (i.e.
latency) between clients and servers, as well as to define an appropriate server
selection strategy trying to minimize this distance.

In section 2, we present the scope of RSerPool and related work, section 3
gives a short overview of the RSerPool architecture. A quantification of RSerPool



systems including the definition of performance metrics is given in section 4. This
is followed by the description of our distance-sensitive server selection approach.
Our approach is simulatively examined in section 6; experimental results in the
PlanetLab – showing the usefulness of our approach also in real life – are
finally presented in section 7.

2 Scope and Related Work

A basic method to improve the availability of a service is server replication.
Instead of having one server representing a single point of failure, servers are
simply duplicated. In case of a server failure, a client’s communication session
can perform a failover to another server of the pool [7, 12,13].

The existence of multiple servers for redundancy automatically leads to the
issues of load distribution and load balancing. While load distribution [14] only
refers to the assignment of work to a processing element, load balancing refines
this definition by requiring the assignment to maintain a balance across the
processing elements. This balance refers to an application-specific parameter like
CPU load or memory usage. A classification of load distribution algorithms can
be found in [15]; the two most important classes are non-adaptive and adaptive
algorithms. Adaptive strategies base their assignment decisions on the current
status of the processing elements (e.g. CPU load) and therefore require up-to-
date information. On the other hand, non-adaptive algorithms do not require
such status data. An analysis of adaptive load distribution algorithms can be
found in [16]; performance evaluations for web server systems using different
algorithms are presented in [17,18].

The scope of RSerPool [1] is to provide an open, application-independent and
highly available framework for the management of server pools and the handling
of a logical communication (session) between a client and a pool. Essentially,
RSerPool constitutes a communications-oriented overlay network, where its ses-
sion layer allows for session migration comparable to [19,20]. While server state
replication is highly application-dependent and out of the scope of RSerPool, it
provides mechanisms to support arbitrary schemes [7,12]. The pool management
provides sophisticated server selection strategies [6, 8, 13, 21] for load balancing,
both adaptive and non-adaptive ones. Custom algorithms for new applications
can be added easily [22].

3 The RSerPool Architecture

An illustration of the RSerPool architecture defined in [1] is shown in figure 1.
It consists of three component classes: servers of a pool are called pool ele-
ments (PE). Each pool is identified by a unique pool handle (PH) in the han-
dlespace, i.e. the set of all pools; the handlespace is managed by pool regis-
trars (PR). PRs of an operation scope synchronize their view of the handlespace
using the Endpoint haNdlespace Redundancy Protocol (ENRP [23]), transported
via SCTP [24, 25]. An operation scope has a limited range, e.g. a company or
organization; RSerPool does not intend to scale to the whole Internet. Never-
theless, it is assumed that PEs can be distributed globally, for their service to
survive localized disasters (e.g. earthquakes or floodings).



Fig. 1. The RSerPool Architecture

PEs choose an arbitrary PR to register into a pool using the Aggregate
Server Access Protocol (ASAP [26]). Upon registration at a PR, the chosen PR
becomes the Home-PR (PR-H) of the newly registered PE. A PR-H is responsible
for monitoring its PEs’ availability using ASAP Endpoint Keep-Alive messages
(to be acknowledged by the PE within a given timeout) and propagates the
information about its PEs to the other PRs of the operation scope via ENRP
Update messages.

A client is called pool user (PU) in RSerPool terminology. To access the
service of a pool given by its PH, a PE has to be selected. This selection – called
handle resolution in RSerPool terminology – is performed by an arbitrary PR
of the operation scope. A PU can request a handle resolution from a PR using
the ASAP protocol. The PR selects PE identities using a pool-specific selection
rule, called pool policy. A set of adaptive and non-adaptive pool policies is
defined in [21]; for a detailed discussion of these policies, see [6, 8, 13, 22]. For
this paper, only the adaptive Least Used (LU) policy is relevant. LU selects the
least-used PE, according to up-to-date load information. The definition of load
is application-specific and could e.g. be the current number of users, bandwidth
or CPU load. For further information on RSerPool, see also [6–8,13,22,27,28].

4 Quantifying a RSerPool System

The service provider side of a RSerPool system consists of a pool of PEs, using a
certain server selection policy. Each PE has a request handling capacity, which
we define in the abstract unit of calculations per second. Depending on the
application, an arbitrary view of capacity can be mapped to this definition, e.g.
CPU cycles, bandwidth or memory usage. Each request consumes a certain
amount of calculations, we call this amount request size. A PE can handle
multiple requests simultaneously, in a processor sharing mode as commonly used
in multitasking operating systems.

On the service user side, there is a set of PUs. The amount of PUs can
be given by the ratio between PUs and PEs (PU:PE ratio), which defines the
parallelism of the request handling. Each PU generates a new request in an
interval denoted as request interval. The requests are queued and sequentially
assigned to PEs.



Fig. 2. Request Handling Delays

The total delay for handling a request dhandling is defined as the sum of
queuing delay, startup delay (dequeuing until reception of acceptance acknowl-
edgement) and processing time (acceptance until finish) as illustrated in figure 2.
The handling speed (in calculations/s) is defined as:

handlingSpeed =
requestSize
dhandling

. (1)

Clearly, the user-side performance metric is the handling speed – which should
be as fast as possible.

Using the definitions above, it is now possible to give a formula for the
system’s utilization:

systemUtilization = puToPERatio ∗
requestSize

requestInterval

peCapacity
(2)

Obviously, the provider-side performance metric is the system utilization, since
only utilized servers gain revenue.

In summary, the workload of a RSerPool system is given by the three di-
mensions – PU:PE ratio, request interval and request size. In a well-designed
client/server system, the amount and capacities of servers are provisioned for a
certain target system utilization, e.g. 60%. That is, by setting any two of the pa-
rameters, the value of the third one can be calculated using equation 2. See [13]
for a detailed discussion of the workload parameters.

5 A Distance-Aware Least Used Policy

As explained in section 1, PEs may be distributed over a large geographical
area to survive localized disasters like an earthquake or tsunami. However, dis-
tributing PEs globally could e.g. result in PUs in Europe using PEs in Asia
while PUs in America use PEs in Australia. Clearly, for transactions of short
duration (compared to the network latency), this results in an increased overall
request handling time. Currently, there are no distance-aware pool policies de-
fined. Therefore, our goal is to adapt the Least Used policy to not only take care
of PE load but also take the distance between PU and PE into consideration
when selecting a server.



5.1 How to Quantify Distance?

Two approaches have been considered to actually quantify distance: using ge-
ographical position information and measuring the delay. Since geographically
near endpoints do not necessarily have a low-delay connection (e.g. if using a
satellite link), this approach is not useful. Instead, measuring the up-to-date
network delay is preferable. Clearly, this implies the need for a measurement
component. But in case of SCTP connections, this can be realized quite easily:
the SCTP protocol [24] – used for the RSerPool communication – already calcu-
lates a smoothed round-trip time (RTT) for its paths. This RTT only has to be
queried via the standard SCTP API [29]. Using the RTT, the end-to-end delay
between two associated components is approximately RTT

2 .
In real networks, there may be negligible delay differences: for example, the

delay between a PU and PE #1 is 5ms and the latency between the PU and
PE #2 is 6ms. From the service user’s perspective, such minor delay differences
are negligible and furthermore unavoidable in Internet scenarios. Therefore, the
distance parameter between two components A and B can be defined as follows:

DistanceA↔B = DistanceStep ∗ round

(
RTT

2

DistanceStep

)
(3)

That is, the distance parameter is defined as the nearest integer multiple of the
constant DistanceStep for the measured delay (i.e. RTT

2 ).

5.2 An Environment for Distance-Aware Policies

In order to define a distance-aware policy, it is first necessary to define a basic
rule: PEs and PUs choose “nearby” PRs. Since the operation scope of RSerPool
is restricted to a single organization, this condition can be met easily by appro-
priately locating PRs. A PR-H can measure the delay of the ASAP associations
to each of its PEs. As part of its ENRP updates to other PRs, it can report
this measured delay together with the PE information. A non-PR-H receiving
such an update simply adds the delay of the ENRP association with the PR-H
to the PE’s reported delay. Now, each PR can approximate the distance to ev-
ery PE in the operation scope using equation 3. Note, that delay changes are
propagated to all PRs upon PE re-registrations, i.e. the delay information (and
the approximated distance) dynamically adapts to the state of the network.

5.3 The Policy Definition

As shown in [13], the Least Used policy provides the best performance and
therefore becomes the obvious candidate to be extended with distance sensitivity:
instead of only taking the load value into account for server selection, the new
load value Load∗ is computed by increasing the PE’s reported value Load by a
distance-dependent Distance Penalty Factor (DPF) as follows:

Load∗ = Load + Distance ∗ LoadDPF︸ ︷︷ ︸
Distance Penalty Factor

. (4)



The constant LoadDPF describes the load units per millisecond the actual load
value is increased for every millisecond of the network delay. That is, the unit
for LoadDPF is ms−1. Due to the DPF parameter, the new policy is denoted
as Least Used with DPF (LU-DPF). It simply selects the PE with the lowest
value of Load∗. If there are multiple lowest-valued PEs, round robin selection is
applied among them.

Note, that the sorting of the PEs for selection is still per-PR rather than per-
PU. This property is crucial for the efficiency of the handlespace management,
since it allows for maintaining a LU-DPF pool by a set of PE identities sorted
by Load∗ values. As shown in [22], this is very efficiently realizable.

6 Simulative Results

In order to examine the new policy, a simulative proof of concept has been
performed first.

6.1 The Simulation Model

Fig. 3. The Simulation Setup

For our performance analysis, we have developed a simulation model us-
ing OMNeT++ [30], containing the protocols ASAP [26] and ENRP [23], a PR
module and PE and PU modules modelling the request handling scenario defined
in section 4. The simulation setup as shown in figure 3 consists of LANs inter-
connected by WAN links. Each LAN contains one PR and a variable amount of
PEs and PUs – all in the same operation scope. As shown in [22], the component
latencies are negligible and therefore have been omitted. As in [13], a negative
exponential distribution is used for request intervals and sizes. For the policies,
the load of a PE is defined as the current amount of simultaneously handled
requests. The capacity of a PE is 106 calculations/s, the simulation runtime is
15 minutes; each simulation has been repeated 24 times with different seeds to
achieve statistical accuracy. All results plots show the average values and their
95% confidence intervals.

6.2 A Proof of Concept

In our first simulation, we provide a proof of concept for the LU-DPF policy in
a scenario consisting of 3 LANs, each containing 10 PEs. We have used a fixed
inter-component LAN delay of 10ms and have varied the WAN delay from 0ms
to 500ms (these settings are based on PlanetLab measurements and will be
motivated in detail in subsection 7.1). The PU:PE amount ratio r varies from 1



Fig. 4. A Proof of Concept

to 10 for DPF settings of 0 (i.e. the LU-DPF policy is equal to plain LU) and
1*10−5 (this parameter will be examined in detail in subsection 6.3); the average
request size is 106 calculations (i.e. if processed exclusively, the processing time
of an average request is 1s) and the target system utilization is 60% (the request
interval is calculated using equation 2). The setting of DistanceStep is 1ms.

The left-hand side of figure 4 shows the resulting handling speed (in % of
the PE capacity). As it is already shown in [6, 13], the PU:PE ratio r is the
most critical load workload parameter. For smaller values of r, the per-PU
load is highest, leading to higher performance degradation upon “bad” server
selections. While the impact on the system utilization is negligible (therefore,
the plot is omitted here), this effect is clearly visible for the handling speed –
even if there is no WAN delay. As expected, the handling speed for a DPF
of 0 (i.e. the policy behaves like plain LU) becomes smaller if the WAN delay
increases. However, also taking the network delay into account (by setting the
DPF to 1*10−5), the impact of the WAN delay becomes hardly visible. That
is, our new LU-DPF policy has shown the desired effect: avoiding unnecessary
delays by preferably using local PEs.

Obviously, the request handling speed for short transactions strongly depends
on the network latency. To make this effect clearer, the right-hand side of figure 4
shows the speed results for varying the request size:PE capacity ratio for different
WAN delay and DPF settings, using a PU:PE ratio of 3 and again a target
system utilization of 60%. As expected, the handling speed for a DPF of 0 is
significantly reduced by an increased WAN latency. However, if taking care of
the delay by using a DPF of 1*10−5, the request handling speed becomes almost
delay-independent. While it is obvious that the handling speed decreases with
the request size for a DPF of 0, this effect can – in a smaller degree – also
be observed for a DPF of 1*10−5: although the PUs preferably choose local
PEs, there is still the inter-component LAN latency (10ms) which contributes
to the startup delay of the requests. However, compared to the results of plain
Least Used selection, the handling speed impact of small requests is significantly
reduced (e.g. still a handling speed of 48% for a DPF of 1*10−5 vs. almost 0%



for a DPF of 0, at a WAN delay of 300ms for a request size:PE capacity ratio of
0.1). Therefore, the next question to be answered is: how to configure the DPF
setting appropriately?

6.3 Configuring the Distance Penalty Factor

Fig. 5. Finding a Reasonable DPF Setting

After the first promising results from our proof-of-concept simulation, the
following tasks have to be performed: (1) Find an appropriate DPF parameter
setting and (2) verify that LU-DPF still provides a useful performance for the
case that PEs in a region become unavailable (localized disaster) and remote
PEs should be used instead.

To answer the questions, we have performed simulations for a large param-
eter space; the scenario presented here consists of a subset, carefully chosen to
illustrate the essential effects. In this simulation, the DPF value is varied in
a scenario consisting of 3 LANs with 12 PEs in each LAN, for a WAN delay
of 150ms. Furthermore, the amount of PEs in the last LAN has been varied
between 100% (i.e. all 12 PEs) and 25% (only 3 PEs) to simulate a localized
disaster. To compensate the capacity loss in the last LAN, additional PEs have
been equally distributed to the other 2 LANs. That is, the overall capacity of
the pool always remains the same. All other parameters have been set as for the
proof-of-concept simulation described in subsection 6.2.

While there is no significant impact on the utilization (therefore, we omit a
figure), the handling speed as shown in figure 5 is significantly increased even
for a small DPF setting. As expected, a higher value of the DPF setting has
no impact if all PEs in the last LAN are available. For this scenario, the server
selection mainly behaves as for three separate pools. However, decreasing the
amount of PEs in the last LAN and increasing the amount in the other LANs,
the scenario becomes heterogeneous. For setting the DPF parameter too high,
the handling speed decreases and – for a sufficiently large setting (e.g. 15*10−5

for ≤ 50% PEs in the last LAN) – the handling speed is even exceeded by plain
LU (i.e. a DPF of 0).



In summary, the resulting general guideline on setting the DPF parameter is
rather simple: set it to a value slightly above 0 – e.g. 1*10−5. In case of having
multiple least-loaded PEs, this setting gives the server selection a preference
for the nearest PE (see equation 4). Furthermore, it also provides an improved
performance in scenarios of localized disasters – by enabling the selection of
remote PEs if necessary. That is, LU-DPF can achieve a significant performance
benefit over LU – at least in simulations. But since our goal is to also apply
our new policy in real life, the next step is to validate our results by performing
experiments in the Internet.

7 Experimental Results

Experimental results are necessary, because simulating all effects of the real
Internet – including temporary QoS variations and the SCTP protocol’s reaction
– is almost impossible.

7.1 The Measurement Setup

In order to perform realistic measurements, we have used the PlanetLab [31],
a set of globally distributed hosts in the Internet. Based on our SCTP prototype
implementation sctplib [32] and our RSerPool implementation rsplib [27, 28,
33], we have realized an application model which is compatible to the simulated
one. The setup consists of components distributed into three regions: Europe
(mainly Germany), America (U.S.A., mainly West Coast) and Asia (mainly
Japan). Each region contains one PR, which is used by the region’s 5 PEs and
15 PUs. As for the simulations, the PEs have a capacity of 106 calculations/s;
the PUs use a request size of 106 calculations and an average request interval of
7.5s (both using negative exponential distribution).

Tests using ping and traceroute have shown latencies between 5ms to 15ms
within the regions; the inter-region delay varies between about 75ms to 150ms
between Europe and America and America and Asia, as well as about 250ms to
350ms between Europe and Asia (routed via the U.S.A.). The delays between
any two endpoints have not shown a significant variation. That is, it can be
assumed that there has been sufficient bandwidth available. This is also realistic
for RSerPool scenarios, since all components belong to a single operation scope
(e.g. a company) and QoS mechanisms can therefore be applied easily (e.g. WAN
connections via DiffServ-based VPN links using an appropriate SLA). Based on
the delay experiments, DistanceStep has been set to 75ms.

7.2 Measurements

Each measurement run has a runtime of 65 minutes, with the following actions:
at t1=15min, 2 of the 5 Asian PEs are turned off; at t2=30min, two additional
PEs are turned on – one in America, the other one in Europe. At t3=45min, the
failure in Asia is repaired. Both PEs are again added to the pool, increasing its
total capacity. The two additional PEs in Europe and America are turned off at



Interval Network State LU-DPF LU Improvement

1m - 14m Normal Operation I 2.17s ± 0.05 2.63s ± 0.05 17.5%
16m - 29m Failure in Asia 2.55s ± 0.02 2.78s ± 0.02 8.3%
31m - 45m Added Backup Capacity 2.54s ± 0.02 2.71s ± 0.02 6.3%
46m - 49m Failure Resolved 2.35s ± 0.06 2.55s ± 0.03 7.8%
51m - 64m Normal Operation II 2.08s ± 0.02 2.47s ± 0.02 15.8%

Table 1. Average Request Handling Time Results

t4=50min. In order to achieve sufficient statistical accuracy, the measurement
has been performed 22 times, covering a total runtime of about 35 hours.

In order to compare the results for LU and LU-DPF (with a DPF setting of
1*10−5), we have performed both experiment runs simultaneously. That is, we
have set up two pools – one for LU, the other one for LU-DPF. On each of the
PE hosts, two PE instances have been started: one registering into the LU pool,
the other one registering into the LU-DPF pool. Analogously, each PU host
runs two PU instances: one using the LU pool, the other one using the LU-DPF
pool. Due to the simultaneous execution, we ensure that both measurements
are equally affected by temporal variations of the Internet’s QoS conditions and
keep the results comparable.

The resulting average request handling times and their 95% confidence in-
tervals for both measurements are presented in table 1. Note, that we show
the average over intervals beginning one minute after and ending one minute
before a system condition change, since the latency to log into a PlanetLab
node to start or stop a component may take up to about 30s. Furthermore,
small deviations of the hosts’ clocks may be possible. Comparing the results
for LU and LU-DPF, the LU-DPF policy provides a significant handling speed
gain: between 17.6% and 15.8% for the two phases of normal operation and still
around 8% during the failure and its resolution in Asia.

It is important to note that the performance in the “failure resolved” state
is lower than for the “normal operation” states, although there are additional
PEs in America and Europe: the over-capacity in these regions attracts the
assignment of requests from Asia. This effect – the assignment of requests to
slightly-loaded servers – is a property of all load-based policies; trying to avoid
it by simply using a high LoadDPF setting would not lead to a performance
improvement, as described in subsection 6.3.

In summary, the measurements have shown that our new LU-DPF policy is
also working as intended in the real Internet.

8 Conclusion and Future Work

In this paper, we have presented a new, efficiently implementable, adaptive,
distance-aware pool policy for RSerPool, which bases its server selection deci-
sions on delay (measured by a feature of the SCTP protocol) and server load.
The goal of this policy is to minimize the request handling time in situations
where the processing time on the server is in the range of the network’s transport
latency.

To show the usefulness of our new policy, we have provided simulation results
first. Furthermore, in order to also validate the policy’s applicability in real life,
we have performed measurements in the Internet using the PlanetLab. Both



– simulations and measurements – have shown that our new policy can achieve
a significant performance gain.

The future goal of our ongoing RSerPool research activities is to further ex-
amine the new policy under a broader range of network and application parame-
ters – again, by simulations as well as measurements for validation. Furthermore,
we intend to propose our new policy for standardization by the IETF RSerPool
WG.

References

1. M. Tüxen, Q. Xie, R. Stewart, M. Shore, J. Loughney, and A. Silverton. Archi-
tecture for Reliable Server Pooling. Technical Report Version 11, IETF, RSerPool
Working Group, March 2006. draft-ietf-rserpool-arch-11.txt, work in progress.

2. M. Bozinovski. Fault-tolerant platforms for IP-based Session Control Systems. PhD
thesis, Aalborg University, Aalborg/Denmark, June 2004.

3. P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen. Reliable IP Tele-
phony Applications with SIP using RSerPool. In Proceedings of the State Coverage
Initiatives 2002, Mobile/Wireless Computing and Communication Systems II, vol-
ume X, Orlando, Florida/U.S.A., July 2002. ISBN 980-07-8150-1.

4. T. Dreibholz, L. Coene, and P. Conrad. Reliable Server pool use in IP flow informa-
tion exchange. Internet-Draft Version 02, IETF, Individual Submission, February
2006. draft-coene-rserpool-applic-ipfix-02.txt, work in progress.

5. T. Dreibholz, A. Jungmaier, and M. Tüxen. A new Scheme for IP-based Internet
Mobility. In Proceedings of the 28th IEEE Local Computer Networks Conference,
pages 99–108, Königswinter/Germany, November 2003. ISBN 0-7695-2037-5.

6. T. Dreibholz and E. P. Rathgeb. The Performance of Reliable Server Pooling Sys-
tems in Different Server Capacity Scenarios. In Proceedings of the IEEE TENCON
’05, Melbourne/Australia, November 2005. ISBN 0-7803-9312-0.

7. T. Dreibholz and E. P. Rathgeb. RSerPool – Providing Highly Available Services
using Unreliable Servers. In Proceedings of the 31st IEEE EuroMirco Conference on
Software Engineering and Advanced Applications, pages 396–403, Porto/Portugal,
August 2005. ISBN 0-7695-2431-1.

8. T. Dreibholz, E. P. Rathgeb, and M. Tüxen. Load Distribution Performance of
the Reliable Server Pooling Framework. In Proceedings of the 4th IEEE Inter-
national Conference on Networking, volume 2, pages 564–574, Saint Gilles Les
Bains/Reunion Island, April 2005. ISBN 3-540-25338-6.

9. T. Dreibholz and E. P. Rathgeb. An Application Demonstration of the Reliable
Server Pooling Framework. In Proceedings of the 24th IEEE INFOCOM, Miami,
Florida/U.S.A., March 2005. Demonstration and poster presentation.

10. T. Dreibholz. Applicability of Reliable Server Pooling for Real-Time Distributed
Computing. Internet-Draft Version 01, IETF, Individual Submission, February
2006. draft-dreibholz-rserpool-applic-distcomp-01.txt, work in progress.

11. Ü. Uyar, J. Zheng, M. A. Fecko, S. Samtani, and P. Conrad. Evaluation of Archi-
tectures for Reliable Server Pooling in Wired and Wireless Environments. IEEE
JSAC Special Issue on Recent Advances in Service Overlay Networks, 22(1):164–
175, 2004.

12. T. Dreibholz. An Efficient Approach for State Sharing in Server Pools. In Pro-
ceedings of the 27th IEEE Local Computer Networks Conference, pages 348–352,
Tampa, Florida/U.S.A., October 2002. ISBN 0-7695-1591-6.

13. T. Dreibholz and E. P. Rathgeb. On the Performance of Reliable Server Pooling
Systems. In Proceedings of the IEEE Conference on Local Computer Networks



30th Anniversary, pages 200–208, Sydney/Australia, November 2005. ISBN 0-
7695-2421-4.

14. E. Berger and J. C. Browne. Scalable Load Distribution and Load Balancing
for Dynamic Parallel Programs. In Proceedings of the International Workshop on
Cluster-Based Computing 99, Rhodes/Greece, June 1999.

15. D. Gupta and P. Bepari. Load Sharing in Distributed Systems. In Proceedings of
the National Workshop on Distributed Computing, January 1999.

16. O. Kremien and J. Kramer. Methodical Analysis of Adaptive Load Sharing Algo-
rithms. IEEE Transactions on Parallel and Distributed Systems, 3(6), 1992.

17. M. Colajanni and P. S. Yu. A Performance Study of Robust Load Sharing Strate-
gies for Distributed Heterogeneous Web Server Systems. IEEE Transactions on
Knowledge and Data Engineering, 14(2):398–414, 2002.

18. S. G. Dykes, K. A. Robbins, and C. L. Jeffery. An Empirical Evaluation of Client-
Side Server Selection Algorithms. In Proceedings of the IEEE Infocom 2000, vol-
ume 3, pages 1361–1370, Tel Aviv/Israel, March 2000. ISBN 0-7803-5880-5.

19. F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory TCP: Highly available
Internet services using connection migration. In Proceedings of the ICDCS 2002,
pages 17–26, Vienna/Austria, July 2002.

20. L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and D. Zagorodnov. Wrap-
ping Server-Side TCP to Mask Connection Failures. In Proceedings of the IEEE
Infocom 2001, volume 1, pages 329–337, Anchorage, Alaska/U.S.A., April 2001.
ISBN 0-7803-7016-3.

21. M. Tüxen and T. Dreibholz. Reliable Server Pooling Policies. Internet-Draft
Version 02, IETF, RSerPool Working Group, February 2006. draft-ietf-rserpool-
policies-02.txt, work in progress.

22. T. Dreibholz and E. P. Rathgeb. Implementing the Reliable Server Pooling Frame-
work. In Proceedings of the 8th IEEE International Conference on Telecommuni-
cations, volume 1, pages 21–28, Zagreb/Croatia, June 2005. ISBN 953-184-081-4.

23. Q. Xie, R. Stewart, M. Stillman, M. Tüxen, and A. Silverton. Endpoint Han-
dlespace Redundancy Protocol (ENRP). Internet-Draft Version 13, IETF, RSer-
Pool Working Group, February 2006. draft-ietf-rserpool-enrp-13.txt, work in
progress.

24. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Ry-
tina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol.
Standards Track RFC 2960, IETF, October 2000.

25. A. Jungmaier. Das Transportprotokoll SCTP. PhD thesis, Universität Duisburg-
Essen, Institut für Experimentelle Mathematik, August 2005.

26. R. Stewart, Q. Xie, M. Stillman, and M. Tüxen. Aggregate Server Access Protcol
(ASAP). Technical Report Version 13, IETF, RSerPool Working Group, February
2006. draft-ietf-rserpool-asap-13.txt, work in progress.

27. T. Dreibholz. Das rsplib–Projekt – Hochverfügbarkeit mit Reliable Server Pooling.
In Proceedings of the LinuxTag, Karlsruhe/Germany, June 2005.

28. T. Dreibholz and M. Tüxen. High Availability using Reliable Server Pooling. In
Proceedings of the Linux Conference Australia, Perth/Australia, January 2003.

29. R. Stewart, Q. Xie, Y. Yarroll, J. Wood, K. Poon, and M. Tüxen. Sockets API
Extensions for Stream Control Transmission Protocol (SCTP). Internet-Draft Ver-
sion 12, IETF, Transport Area Working Group, February 2006. draft-ietf-tsvwg-
sctpsocket-12.txt, work in progress.

30. A. Varga. OMNeT++ Discrete Event Simulation System, 2005.
31. Larry Peterson and Timothy Roscoe. The Design Principles of PlanetLab. Oper-

ating Systems Review, 40(1):11–16, January 2006.
32. M. Tüxen. The sctplib Prototype, 2001.
33. T. Dreibholz. Thomas Dreibholz’s RSerPool Page, 2006.


