
An Application Demonstration of the Reliable Server Pooling Framework

Thomas Dreibholz, Erwin P. Rathgeb
University of Essen

Institute for Experimental Mathematics
Ellernstraße 29, D-45326 Essen, Germany
{dreibh, rathgeb}@exp-math.uni-essen.de

Tel: +49 201 183-{7637, 7670}

Abstract

The convergence of classical PSTN and IP networks re-
quires the transport of SS7 signaling over IP. Since SS7 has
very strict availability requirements for the signaling com-
ponents, redundancy is mandatory. The goal of the IETF
RSerPool working group is to define a lightweight, flexible
and real-time redundancy concept to fulfill the availability
requirements of SS7: Reliable Server Pooling (RSerPool).
RSerPool is currently under standardization, its functional-
ity and improvement are subject of our research.

As part of our RSerPool research, we have created an
implementation prototype together with an example appli-
cation. In our proposed demo, we will explain the funda-
mental protocol mechanisms of RSerPool and demonstrate
its behavior and the impacts of component failures to an
example application.

1 What is Reliable Server Pooling?

The convergence of classical circuit-switched networks
(i.e. PSTN/ISDN) and data networks (i.e. IP-based) is
rapidly progressing. This implies that PSTN signaling via
the SS7 protocol is transported over IP networks. Since
SS7 signaling networks offer a very high degree of avail-
ability (e.g. at most 10 minutes downtime per year for
any signaling relationship between two signaling endpoints;
for more information see [9]), all links and components of
the network devices must be redundant. When transport-
ing signaling over IP networks, such redundancy concepts
also have to be applied to achieve the required availabil-
ity. Link redundancy in IP networks is supported using the
Stream Control Transmission Protocol (SCTP [12, 10]); re-
dundancy of network device components is supported by
the SGP/ASP (signaling gateway process/application server
process) concept. However, this concept has some limi-
tations: no support of dynamic addition and removal of

Pool User

Po
ol

 E
le

m
en

t P
E2

Pool Element PE1

ASAP Protocol

ENRP Protocol

Application Protocol

...
Pool UserPool User

Proxy

Legacy Clients

Pool Element PE3
Registrar #1

Registrar #2

������
������

������
������

�� ������

������
���
������
���

	
 ���� � ������

���
�
����

���
�
����

Figure 1. An Overview of the RSerPool Archi-
tecture

components, limited ways of server selection, no specific
failover procedures and inconsistent application to different
SS7 adaptation layers.

To cope with the challenge of creating a unified,
lightweight, real-time and flexible redundancy solution, the
IETF Reliable Server Pooling Working Group has been
founded. An overview of their concept Reliable Server
Pooling (RSerPool), which is currently in the standardiza-
tion process and described by several Internet Drafts, is
shown in figure 1. Redundant servers providing the same
service belong to a so calledserver pool, identified by a
unique ID calledpool handlewithin the set of all server
pools, the so calledhandlespace. A server in a pool is called
pool element(PE) of its pool. The handlespace is managed
by redundantregistrars(PRs), who synchronize their view
of the handlespace using the Endpoint haNdlespace Redun-
dancy Protocol (ENRP [16]). PRs can announce them-
selves using multicast announcements, i.e. it is not nec-
essary (but possible) to pre-configure PR addresses to the
components described in the following.

PEs can register to a pool of the handlespace at an ar-
bitrary PR using the Aggregate Server Access Protocol



(ASAP [13]). A suitable PR is automatically found by lis-
tening to PR multicast announcements or by static configu-
ration. The PR chosen by the PE for registration monitors
the PE using SCTP heartbeats and ASAP keep-alives; the
frequency of monitoring messages depends on the provided
service’s availability requirements. When a PE becomes un-
available, it is immediately removed from the handlespace.
A PE can also intentionally deregister from the handlespace
by an ASAP deregistration. PR failures are handled by re-
quiring PEs to re-register regularly (and therefore choosing
a new PR when necessary) and by PRs monitoring their peer
PRs and invoking an ENRP takeover procedure in case of
failure.

When a client requests a service from a pool, it asks an
arbitrary PR to translate the pool handle to a list of PE trans-
port addresses selected by the pool’s selection policy (pool
policy), e.g round robin or least used (see [14, 7] for addi-
tional standardized policies). Then, it selects again one PE
and establishes a transport connection to this PE using the
application’s protocol. The client then becomes a so called
pool user(PU) of the PE’s pool. In case of PE failure, the
procedure is repeated to establish a connection to a new PE.
Optionally, a PU can report a PE failure to a PR, which may
decide to remove this PE from the handlespace.

RSerPool supports optional client-based state synchro-
nization [3] for failover. That is, a PE can provide its cur-
rent state asstate cookieto the PU. When a failover to a
new PE is made, the PU can transmit this state cookie to
the new PE, which can then restore this state. RSerPool
is not restricted to client-based state synchronization, any
other application-specific failover procedure can be used as
well by the application layer itself.

The lightweight, real-time and flexible architecture of
RSerPool is not only usable for SS7-based telephony sig-
naling. Other application scenarios include SIP [2], mo-
bility management [6] and the management of distributed
computing pools [8, 17].

Finally, load balancing using RSerPool is currently un-
der discussion by the IETF RSerPool Working Group: due
to its flexible server selection policies and pool management
functionalities, it has many similarities to load balancer pro-
tocols. A very common application for such load balanc-
ing systems is to distribute HTTP requests in web server
farms. There is an ongoing effort to merge both the RSer-
Pool framework and the Server/Application State Protocol
(SASP [1], a contribution of IBM) for load balancers into
one common architecture for highly-available server pool
management and load distribution.

2 Our Demonstration System

Currently, there are only two existing implementations of
RSerPool: a closed source version by Motorola [15] and the

Figure 2. Our RSerPool Application Demo

authors’ own GPL-licensed Open Source prototypersplib.
The latter implementation has been created by us as part
of our RSerPool research and to verify the results of our
simulation model [7, 4, 5] in real-life scenarios. It is a
complete implementation prototype of the RSerPool frame-
work [11, 8], together with a vivid example application.
In this application, the PEs provide a computation service
for fractal graphics and can dynamically join and leave the
pool. At least two PRs manage the handlespace the pool
belongs to.

The computation service provided by the pool is re-
quested by PUs, which continuously show the calculation
results on screen; i.e. any service disturbances are imme-
diately visible. Our calculation service example therefore
becomes representative for various kinds of RSerPool appli-
cation scenarios, due to its similar requirements on failure
and fail-over handling:

• It must be possible to continue the interrupted service
on a new PE.

• A failover should be as quick as possible. Otherwise,
the service user would be annoyed.

To achieve the first requirement, client-based state synchro-
nization [3] is applied as it is provided [13] by RSerPool.
The second requirement, real-time failover behavior, is a
design criteria of RSerPool. Our PU application can vividly
display that RSerPool achieves both requirements of the ser-
vice.

The GUI-based control component, shown in figure 2,
permanently shows each component’s status and the proto-
col associations between the devices. Furthermore, it is able
to interactively start and stop – either by clean shutdown or
by hard shut-off like in case of a failure – arbitrary compo-
nents.



It should be stated again that our demo system is not a
simulation, it consists of our real, Linux-based RSerPool
implementation and real application programs.

3 Our Proposed Demo

In our demo, we first explain and demonstrate the funda-
mental RSerPool protocol mechanisms for dynamic, com-
pletely auto-configuring pool management and the mapping
of PU requests to PEs by policy-based server selection.
Here, we can demonstrate the impact of the various PE se-
lection strategies (pool policies) on load balancing perfor-
mance.

In the following, we will show the effects of PE and PR
shut-downs and failures: while the behavior of the RSer-
Pool framework can be monitored in the GUI’s display, the
impacts of PEs shut down or failed on the pool’s provided
service can be observed in real-time by having a look at
the PU’s result display progress. On a separate screen the
SCTP and RSerPool messages can be captured and decoded
to provide additional insight into the protocol mechanisms.

Thus, we will show that RSerPool is not only able to pro-
vide auto-configuring management of dynamic server pools
but also ensures quick failover and service continuation in
case of component failures.

For our demo presentation, we only require space and
power outlets for three laptop computers.

References

[1] A. Bivens. Server/Application State Protocol v1. Internet-
Draft Version 01, IETF, Individual submission, Oct 2004.
draft-bivens-sasp-01.txt, work in progress.

[2] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen.
Reliable IP Telephony Applications with SIP using RSer-
Pool. In Proceedings of the SCI 2002, Mobile/Wireless
Computing and Communication Systems II, volume X, Or-
lando/U.S.A., Jul 2002.

[3] T. Dreibholz. An efficient approach for state sharing in
server pools. InProceedings of the 27th Local Computer
Networks Conference, Tampa, Florida/U.S.A., Oct 2002.

[4] T. Dreibholz. An Overview of the Reliable Server Pool-
ing Architecture. InProceedings of the International Con-
ference on Network Protocols 2004, Berlin/Germany, Oct
2004.

[5] T. Dreibholz. Policy Management in the Reliable Server
Pooling Architecture. InProceedings of the Multi-Service
Networks Conference 2004, Abingdon, Oxfordshire/United
Kingdom, Jul 2004.

[6] T. Dreibholz, A. Jungmaier, and M. Tüxen. A new Scheme
for IP-based Internet Mobility. InProceedings of the
28th Local Computer Networks Conference, Königswin-
ter/Germany, Nov 2003.

[7] T. Dreibholz, E. P. Rathgeb, and M. Tüxen. Load Distribu-
tion Performance of the Reliable Server Pooling Framework.

In Proceedings of the International Conference on Network-
ing 2005, Saint Gilles Les Bains/Reunion Island, Apr 2005.

[8] T. Dreibolz and M. Tüxen. High availability using reliable
server pooling. InProceedings of the Linux Conference Aus-
tralia 2003, Perth/Australia, Jan 2003.

[9] K. D. Gradischnig and M. Tüxen. Signaling transport over
IP-based networks using IETF standards. InProceedings
of the 3rd International Workshop on the design of Reliable
Communication Networks, pages 168–174, Budapest, Hun-
gary, 2001.

[10] A. Jungmaier, M. Schopp, and M. Tüxen. Performance
Evaluation of the Stream Control Transmission Protocol. In
Proceedings of the IEEE Conference on High Performance
Switching and Routing, Heidelberg/Germany, June 2000.

[11] Thomas Dreibholz’s RSerPool Page. http://tdrwww.exp-
math.uni-essen.de/dreibholz/rserpool.

[12] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol. RFC
2960, IETF, Oct 2000.

[13] R. Stewart, Q. Xie, M. Stillman, and M. Tüxen. Aggre-
gate Server Access Protcol (ASAP). Internet-Draft Version
10, IETF, RSerPool WG, Oct 2004. draft-ietf-rserpool-asap-
10.txt, work in progress.

[14] M. Tüxen and T. Dreibholz. Reliable Server Pooling Poli-
cies. Internet-Draft Version 00, IETF, RSerPool WG, Oct
2004. draft-ietf-rserpool-policies-00.txt, work in progress.

[15] Q. Xie. Private communication at the 60th IETF meeting,
San Diego/California, U.S.A., August 2004.

[16] Q. Xie, R. Stewart, and M. Stillman. Endpoint Name Res-
olution Protcol (ENRP). Internet-Draft Version 10, IETF,
RSerPool WG, Oct 2004. draft-ietf-rserpool-enrp-10.txt,
work in progress.

[17] Y. Zhang. Distributed Computing mit Reliable Server Pool-
ing. Masters thesis, Universität Essen, Institut für Experi-
mentelle Mathematik, Apr 2004.


