

 552 Int. J. Intelligent Information and Database Systems, Vol. 4, No. 6, 2010

 Copyright © 2010 Inderscience Enterprises Ltd.

On the security of reliable server pooling systems

Thomas Dreibholz*
Institute for Experimental Mathematics,
University of Duisburg-Essen,
Ellernstrasse 29, 45326 Essen, Germany
E-mail: dreibh@iem.uni-due.de
*Corresponding author

Xing Zhou
College of Information Science and Technology,
Hainan University,
Renmin Avenue 58, 570228 Haikou, Hainan, China
E-mail: zhouxing@hainu.edu.cn

Martin Becke, Jobin Pulinthanath and
Erwin P. Rathgeb
Institute for Experimental Mathematics,
University of Duisburg-Essen,
Ellernstrasse 29, 45326 Essen, Germany
E-mail: martin.becke@uni-due.de
E-mail: jp@iem.uni-due.de
E-mail: rathgeb@iem.uni-due.de

Wencai Du
College of Information Science and Technology,
Hainan University,
Renmin Avenue 58, 570228 Haikou, Hainan, China
E-mail: wencai@hainu.edu.cn

Abstract: In order to cope with the requirements of availability-critical internet
services, reliable server pooling (RSerPool) has been developed as the new
IETF standard for a lightweight server redundancy and session failover
framework. While the service and pool management performance of RSerPool
had already been the topic of various research papers, its security has not yet
been widely examined. But security for availability-critical systems is crucial,
since service outages – regardless of whether being caused by system failures
or intentional denial of service (DoS) attacks – are not acceptable for the users
of such systems.
 In this article, we first introduce RSerPool as well as the underlying SCTP
protocol. In an analysis of the attack threats, we will show the possibilities of
an attacker to degrade the service provided by an RSerPool system. We will
furthermore introduce possible countermeasures, in order to prevent attacks and

 On the security of reliable server pooling systems 553

improve the robustness of the systems. We will finally show the effectiveness
of our proposed countermeasures using simulations. In order to validate our
simulation results, we furthermore compare them to measurements from a
real-world internet setup using the PlanetLab.

Keywords: reliable server pooling; RSerPool; security; attacks; robustness;
performance analysis; PlanetLab.

Reference to this paper should be made as follows: Dreibholz, T., Zhou, X.,
Becke, M., Pulinthanath, J., Rathgeb, E.P. and Du, W. (2010) ‘On the security
of reliable server pooling systems’, Int. J. Intelligent Information and Database
Systems, Vol. 4, No. 6, pp.552–578.

Biographical notes: Thomas Dreibholz is an Assistant Professor in the
Computer Networking Technology group at the Institute for Experimental
Mathematics, University of Duisburg-Essen, Germany. Currently, his main
research topics are reliable server pooling (RSerPool) and the stream control
transmission protocol (SCTP). He is the author of various research papers at
international conferences and in journals. Furthermore, he contributed multiple
working group and individual submission drafts to the IETF RSerPool Working
Group's standardisation process. He is co-author of multiple RFC documents
published by the IETF. His research interests also include quality of service
(QoS) and network security as well as concepts and protocols for the future
internet.

Xing Zhou is a Full Professor of Computer Science at Hainan University and
Vice Secretary-General of Hainan Information Industry Association of China.
She received her Bachelor and Master degrees in Electrical Engineering from
Chongqing University. She was an Advanced Visiting Scholar in Computer
Science at Shanghai Jiaotong University (2001–2003) and a Visiting Scholar at
the Institute for Experimental Mathematics, University of Duisburg-Essen,
Germany (2006–2007). She is the author of six books, has published more than
40 articles in journals and is co-author of two drafts to the IETF RSerPool
Working Group. Her research interests include RSerPool, network security, the
protocols for next generation internet and web applications.

Martin Becke has studied Computer Science and Information Technology at the
Osnabrueck and the Muenster Universities of Applied Sciences, Germany. He
received his Master degree in Computer Science in 2006. For several years, he
worked at a consulting agency as Technology Consultant on network and
operating system development. In 2009, he became a Researcher at the Institute
for Experimental Mathematics of the University of Duisburg-Essen to pursue
his PhD. His current research focuses on transport protocols – particularly
SCTP and multipath TCP – in combination with performance evaluation and
network virtualisation techniques.

Jobin Pulinthanath has studied Business Informatics at the University of
Duisburg-Essen, Germany and received his Diploma (Dipl.-Wirt.-Inf.) degree
in 2007 for his thesis ‘Reliable transport of IPFIX-messages with the
RSerPool-architecture’. Between 2007 and 2009 he was a member of the
scientific staff in the Computer Networking Technology Group at the Institute
for Experimental Mathematics, University of Duisburg-Essen, Germany. He is
the co-author of multiple research papers on the stream control transmission
protocol (SCTP). His research interests include also concepts and protocols for
routing and network management.

 554 T. Dreibholz et al.

Erwin P. Rathgeb holds the Alfried Krupp von Bohlen und Halbach-Chair for
‘Computer Networking Technology’ at the Institute for Experimental
Mathematics, University of Duisburg-Essen, Germany. He is the author of a
book on ATM and has published more than 50 papers in journals and at
international conferences. He is a Senior Member of IEEE and a member of GI,
IFIP and ITG where he is Chairman of the expert group on network security.
His current research interests include network security as well as concepts and
protocols for next generation internets, in particular SCTP and RSerPool.

Wencai Du is a Full Professor of Computer Science and Dean of the College of
Information Science and Technology at Hainan University and President of
Electronic Society of Hainan Province of China. He received his PhD in
Informatics from the University of South Australia, two Master degrees in
Geoinformatics from International Institute for Geo-Information Science and
Earth Observation (ITC) at The Netherlands and Hohai University and
Bachelor degree from Peking University of China. He has authored ten books
and has published more than 80 articles. His research interests cover software
engineering, the internet, computer network, interoperability, and web services.

1 Introduction and scope

When the internet was designed a long time ago, its main applications were e-mail and
file transfer. On failures of servers, routers or network links, the users just waited for
some time and tried again. This worked quite well for the application of that time, but
new applications – which are widely used today – have a significantly higher demand for
availability. For example, in the area of e-commerce, a service not being available will
not gain any revenue. Also, there are many competitors on the internet. Potential
customers can simply use the service of such a competitor – without ever coming back. In
order to cope with the requirements of availability-critical services, the IETF has just
published a generic, application-independent server pool (see Dreibholz and Rathgeb,
2008a) and session management (see Dreibholz, 2007) framework as RFCs: reliable
server pooling (RSerPool) (see Lei et al., 2008). It is responsible for the required server
redundancy and session management. Various research papers have already been
published on the load balancing (see Dreibholz and Rathgeb, 2005b; Dreibholz, 2007)
and server failure handling (see Dreibholz and Rathgeb, 2009) features of RSerPool, but
there have only been simulations of some security concepts by Schöttle et al. (2008),
Dreibholz et al. (2008) and a corresponding evaluation in a lab setup by Zhou et al.
(2009a).

In our paper Dreibholz et al. (2009c) for the ConTEL 2009, we have presented an
experimental evaluation of the mechanisms described in Zhou et al. (2009a) and
Dreibholz et al. (2008) in a real-world internet setup, based on the PlanetLab (see
Peterson and Roscoe, 2006). This article is the extended version of this paper, extending
the content of our paper by a detailed description of the attack threats on RSerPool
systems. Also, we cover the endpoint handlespace redundancy protocol (ENRP) protocol
as well as the underlying stream control transmission protocol (SCTP) protocol, which
have not been addressed by the paper.

This article is structured as follows. First, we introduce the SCTP protocol in
Section 2. Next, we present the RSerPool framework in Section 3. In Section 4, we offer

 On the security of reliable server pooling systems 555

an overview of attack threats on RSerPool systems. Our proposed attack countermeasures
are presented in Section 5. Finally, by using the performance metrics introduced in
Section 6 and our simulative and experimental PlanetLab setups described in Section 7,
we provide an evaluation of the most important security mechanisms in Section 8.

2 The SCTP protocol

The SCTP protocol – which is defined as RFC by Stewart (2007) – is a
connection-oriented, general-purpose, unicast transport protocol providing the reliable
transport of user messages. An SCTP connection is denoted as association. Each SCTP
endpoint can use multiple IPv4 and/or IPv6 addresses to provide network fault tolerance.
The addresses used by the endpoints are negotiated during association setup. This
redundancy feature is called multi-homing and is illustrated in Figure 2 (see also
Jungmaier et al., 2001; Dreibholz et al., 2003, for more details). User data and control
information is transported in so-called chunks, which are bundled into SCTP packets.

Several SCTP extensions have been developed and standardised. The most important
extensions with relevance to this article are:

• The dynamic address reconfiguration extension (Add-IP) defined as RFC by Stewart
et al. (2007) provides interface and address changes during association runtime. In
particular, it allows for mobility as examined by Dreibholz et al. (2003) or an
interruption-free IPv6 site renumbering – or even a seamless migration from IPv4 to
IPv6 as explained by Dreibholz and Rathgeb (2005a).

• The chunk authentication extension defined as RFC by Tüxen et al. (2007) provides
the authenticity and integrity for the chunks of an SCTP association by using keys
negotiated during association setup or pre-shared keys. Chunk authentication is
required to avoid association hijacking when using Add-IP. However, it does not
provide confidentiality.

• The packet drop extension defined by Stewart et al. (2009) allows for notifying a
sender of dropped packets due to bit errors. In this case, retransmissions can be sent
without reducing the congestion window. This feature improves the association
throughput over low-quality, high-delay satellite links.

• CMT-SCTP (see Iyengar et al., (2006); Dreibholz et al., 2010b) is a concurrent
multipath transfer (CMT) extension for SCTP. Unlike standard SCTP as defined in
Stewart (2007), it utilises all paths for data transport (not just a designated primary
path). Combined with resource pooling (RP), the CMT/RP-SCTP extension
introduced by Dreibholz et al. (2010a) allows for TCP-friendly CMT transport over
the internet.

Furthermore, SCTP provides some security features: first, SCTP applies a four-way
handshake for association setup – in contrast to the three-way handshake of TCP which is
susceptible to the SYN-flooding attack. The principle of the four-way handshake is
illustrated in Figure 1: the endpoint A starts establishing an association to the endpoint B
using an INIT chunk. Endpoint B stores all information about the new association into a
signed cookie, which is returned to endpoint A in an INIT ACK chunk. After that,
endpoint B releases all resources associated with the new association. The cookie is

 556 T. Dreibholz et al.

returned from endpoint A in a COOKIE ECHO chunk. By checking its signature,
endpoint B can ensure that the cookie is valid and unaltered as well as that the other
endpoint is existing and reachable (since the cookie has been returned by endpoint A, its
address cannot be spoofed). Using the association information from the cookie, endpoint
B can restore the corresponding data structures. The successful association establishment
is finally signalised by a COOKIE ACK chunk.

Figure 1 SCTP association establishment by four-way handshake (see online version for colours)

Figure 2 Multi-homing (see online version for colours)

Another security feature of SCTP against blind flooding attacks is the so-called
verification tag. This is a 32-bit number which is configured for each communication
direction during association establishment. An endpoint writes its verification tag into all
outgoing packets; an attacker trying to inject a packet into the association (e.g., in order
to abort the association similar to the RST attack of TCP) needs to guess the verification
tag – which requires ample bandwidth and time for brute-force trials. The peer endpoint
simply ignores packets containing a wrong verification tag.

In order to support authenticity, integrity and confidentiality for the user data
transport, SCTP can – similar to TCP – also be used with transport layer security
(TLS) by Dierks and Rescorla (2008). But since TLS has been designed for a
byte-stream-oriented, single-homed transport, it poorly supports the enhanced protocol

 On the security of reliable server pooling systems 557

features of SCTP – particularly its message-oriented transport, multi-homing and
dynamic address reconfiguration. An enhanced version of TLS – denoted as datagram
TLS (D-TLS) – and its adaptation to SCTP is described by Hohendorf et al. (2007). An
alternative to TLS is IPsec by Kent and Seo (2005). However, multi-homing results in the
need for a large number of security associations (SA). Using the optimisations described
by Bellovin et al. (2003), an SCTP transport over IPsec can be realised efficiently.
Another alternative is the secure-SCTP (S-SCTP) extension by Unurkhaan (2005), which
directly realises authenticity, integrity and confidentiality within the SCTP stack.

3 The RSerPool architecture

An overview of the RSerPool architecture – which is defined as RFC by Lei et al. (2008)
– is provided in Figure 3. There are three types of components:

• Pool element (PE) denotes a server in a pool. PEs in the same pool provide the same
service.

• Pool user (PU) denotes a client using the service of a pool.

• Pool registrar (PR) is the management component for the pools.

Figure 3 The RSerPool architecture (see online version for colours)

The set of all pools within an operation scope (e.g., an organisation, a company or a
department) is denoted as handle-space. Clearly, a single PR would be a single point of
failure. Therefore, PRs also have to be redundant. Within the handle-space, each pool is
identified by a unique pool handle (PH).

RSerPool provides support for non-RSerPool nodes by proxies: proxy PUs connect
non-RSerPool clients to a server pool; Proxy PEs let non-RSerPool servers join a pool.

 558 T. Dreibholz et al.

3.1 Registrar operations

The PRs of an operation scope synchronise their view of the handle-space by using the
ENRP (defined as RFC by Xie et al., 2008), transported via SCTP (see Section 2). In
contrast to grid computing (see Foster, 2002), an operation scope is restricted to a single
administrative domain. That is, all of its components are under the control of the same
authority (e.g., a company). This property leads to small management overhead (details
are described by Dreibholz and Rathgeb, 2008a, 2005a), which also allows for RSerPool
usage on devices having only limited memory and CPU resources (e.g.,
telecommunications equipment). Nevertheless, PEs may be distributed globally to
continue their service even in case of localised disasters (e.g., an earthquake). Such
scenarios are examined in more detail by Dreibholz and Rathgeb (2007). Each PR in the
operation scope is identified by a PR ID, which is a randomly chosen 32-bit number.

3.2 PE operations

Within their operation scope, the PEs may choose an arbitrary PR to register into a pool
by using the aggregate server access protocol (ASAP) (defined as RFC by Stewart et al.,
2008). The registration is performed by using an ASAP registration message. Within its
pool, a PE is characterised by its PE ID, which is a randomly chosen 32-bit number.
Upon registration at a PR, the chosen PR becomes the home-PR (PR-H) of the newly
registered PE. A PR-H is responsible for monitoring the availability of its PEs by ASAP
endpoint keep alive messages (to be acknowledged by a PE via an ASAP endpoint keep
alive ack message within a configured timeout). The PR-H propagates the information
about its PEs to the other PRs of the operation scope via ENRP Update messages. This
principle is illustrated in Figure 4.

Figure 4 The principle of PE registration (see online version for colours)

PEs re-register regularly in an interval denoted as registration lifetime and for
information updates. Similar to the registration, a re-registration is performed by using
another ASAP registration message. PEs may intentionally deregister from the pool by
using an ASAP deregistration message. Also like for the registration, the PR-H makes the
deregistration known to the other PRs within the operation scope by using an ENRP
update message.

3.3 Takeover procedure

As soon as a PE detects the failure of its PR-H (i.e., its request is not answered within a
given timeout), it simply tries another PR of the operation scope for its registration and
deregistration requests. However, as a double safeguard, the remaining PRs also negotiate
a takeover of the PEs managed by a dead PR. This ensures that each PE again gets a
working PR-H as soon as possible. The PRs of an operation scope monitor the
availability of each other PR by using ENRP presence messages, which are transmitted

 On the security of reliable server pooling systems 559

regularly. If there is no ENRP presence within a given timeout, the peer is assumed to be
dead and a so-called takeover procedure (see also Zhou et al., 2009b, for details) is
initiated for the PEs managed by the dead PR: from all PRs having started this takeover
procedure, the PR with the highest PR ID takes over the ownership of these PEs. The PEs
are informed about being taken over by their new PR-H via an ASAP endpoint keep-alive
with home-flag set. The PEs are requested to adopt the sender of this home-flagged
message as their new PR-H.

3.4 PU operations

In order to access the service of a pool given by its PH, a PU requests a PE selection from
an arbitrary PR of the operation scope, again by using ASAP. This selection procedure is
denoted as handle resolution. Upon reception of a so-called ASAP handle resolution
message the PR selects the requested list of PE identities and returns them in an ASAP
handle resolution response message. The pool-specific selection rule is denoted as pool
policy. Two classes of load distribution policies are supported: non-adaptive and adaptive
strategies (a detailed overview is provided by Dreibholz, 2007; Dreibholz and Rathgeb,
2005b, 2008a). While adaptive strategies base their selections on the current PE state
(which requires up-to-date information), non-adaptive algorithms do not need such data.
A basic set of adaptive and non-adaptive pool policies is defined as RFC by Dreibholz
and Tüxen (2008).

Relevant for this article are the non-adaptive policies round robin (RR) and random
(RAND) as well as the adaptive policies least used (LU) and least used with degradation
(LUD). LU selects the least-used PE, according to up-to-date application-specific load
information. RR selection is applied among multiple least-loaded PEs. LUD, which is
evaluated by Zhou et al. (2008), furthermore introduces a load decrement constant which
is added to the actual load each time a PE is selected. This mechanism compensates
inaccurate load states due to delayed updates. An update resets the load to the actual load
value. It is important to differentiate policies between stateful and stateless, as is
explained by Dreibholz and Rathgeb (2005b): for a stateful policy, a selection is
influenced by the previous choice. For example, the ‘in turn’ selection of RR is stateful.
LUD is also stateful. On the order hand, LU and RAND are stateless; they will –
regardless of a previous selection – return a least-loaded or random element.

A PE may fail, e.g., due to hardware or network failures. Since there is a certain
latency between the actual failure of a PE and the removal of its entry from the
handle-space – depending on the interval and timeout for the ASAP endpoint keep alive
monitoring – the PUs may report unreachable PEs to a PR by using an ASAP endpoint
unreachable message. A PR locally counts these reports for each PE and when reaching
the threshold MaxBadPEReports (default is 3, as defined in the RFC by Stewart et al.,
2008), the PR may decide to remove the PE from the handle-space. The counter of a PE
is reset upon its re-registration. More details on this threshold and guidelines for its
configuration can be found in Dreibholz and Rathgeb (2009).

3.5 A handle-space example

Figure 5 depicts an example of a handle-space containing four pools. The pool using the
PH ‘compute pool’ consists of 3 dual-homed PEs (IPv4 and IPv6). Since its pool policy is

 560 T. Dreibholz et al.

LU, the handle-space also stores the latest known load state of each PE. Clearly, the next
handle resolution in this pool will return PE #7466, since its load state is lowest.

Figure 5 A handlespace example (see online version for colours)

3.6 Automatic configuration

RSerPool components need to know the PRs of their operation scope. While it is of
course possible to configure a list of PRs into each component, RSerPool also provides
an auto-configuration feature: PRs may send so-called announces, i.e., ASAP announce
and ENRP Presence messages which are regularly sent over UDP via IP multicast. Unlike
broadcasts, multicast messages can also be transported over routers (at least, this is easily
possible within LANs). The announces of the PRs can be heard by the other components,
which can maintain a list of currently available PRs. That is, RSerPool components are
usually just turned on and everything works automatically.

An example is provided by Figure 6 for the ASAPbased PU/PE configuration: all PEs
and PUs within the multicast domain (e.g., a company or department LAN) can learn the
identity of the PE automatically. Components outside of this domain (e.g., off-site
systems in the internet) need manual configuration.

3.7 The RSerPool protocol stack

Figure 7 presents an illustration of the RSerPool protocol stack: a PR provides ENRP and
ASAP services to PRs and PEs/PUs respectively. But between PU and PE, ASAP
provides a session layer protocol in the OSI model. This makes ASAP the first IETF
standard for a session layer protocol. From the perspective of the application layer, the
PU side establishes a session with a pool. ASAP takes care of selecting a PE of the pool,
initiating and maintaining the underlying transport connection and triggering a failover
procedure when the PE becomes unavailable.

The transport layer protocol is by default SCTP over possibly multi-homed
IPv4 and/or IPv6 – except for the UDP-based automatic configuration announces
(see Subsection 3.6) which are not shown here for readability reasons.

 On the security of reliable server pooling systems 561

Figure 6 Automatic configuration by ASAP announces (see online version for colours)

Figure 7 The RSerPool protocol stack (see online version for colours)

3.8 Application scenarios

While the initial motivation of RSerPool has been the availability of SS7 (Signalling
System No. 7, see ITU-T, 1993) services over IP networks, it has been designed for
application independence. Current research on the applicability and the performance of
RSerPool includes application scenarios like VoIP with SIP (see Conrad et al., 2002),
SCTP-based mobility (see Dreibholz et al., 2003), web server pools, e-commerce systems
(see Dreibholz, 2002), video on demand (see Maharana and Rathna, 2006), battlefield
networks (see Uyar et al., 2004), IP flow information export (IPFIX) (see Dreibholz et
al., 2009a) and workload distribution (see Dreibholz and Rathgeb, 2008b).

A detailed comparison of the RSerPool architecture to other frameworks and
protocols for load balancing and service availability – including DNS, CORBA and
Layer-4/Layer-7 switching – is provided by Loughney et al. (2005). We neglect a further
overview here, since this would exceed the scope of this article.

 562 T. Dreibholz et al.

4 Attack threats on RSerPool systems

The SCTP protocol – as introduced in Section 2 – already contains the four-way
handshake and the verification tag as countermeasures against blind flooding attacks
(see also Hohendorf et al., 2007). Furthermore, chunk authentication can be applied to
avoid association hijacking, which is particularly useful when using dynamic address
reconfiguration in changing network environments. SCTP as the underlying transport
protocol already prevents simple address spoofing attacks: each network-layer address
under which a PE is registered must be part of the SCTP association between PE and PR.
The ASAP protocol (see Stewart et al., 2008) requires the addresses to be validated by
SCTP. But it is just sufficient for an attacker to hold a registration association to the PR
and silently drop all incoming PU requests.

As defined for RSerPool in the RFC by Stillman et al. (2008), the application of TLS
(see Jungmaier et al., 2002), IPsec (see Bellovin et al., 2003) or secure SCTP
(see Unurkhaan, 2005) is required in order to ensure authenticity, integrity and
confidentiality. Nevertheless, relying on these techniques alone is still not sufficient: a
component having authenticated successfully may still be misbehaving – for example
when it is taken over by an attacker. Therefore, it is important to analyse the implications
to the service under denial of service (DoS) attack situations, in order to apply effective
attack countermeasures. Such counter-measures should at least reduce the impact of
attacks on the performance of the system.

Table 1 lists the attack threats on RSerPool systems for the protocols ENRP and
ASAP. These attack threats and their impact will be explained in the following
subsections.

Table 1 Attack threats on the RSerPool systems

Protocol Attacker role Threat Solved by authentication

ENRP Registrar Fake ENRP announce Yes
ENRP Registrar Handlespace manipulation Yes
ENRP Registrar Takeover manipulation Yes
ASAP Registrar Fake ASAP announce Yes
ASAP Registrar Hostile takeover Yes
ASAP Registrar Malicious responses to PEs Yes
ASAP Registrar Malicious responses to PUs Yes
ASAP PE Registration hijacking Partly

ASAP PE Deregistration hijacking Partly

ASAP PE Registration/re-registration flooding Partly

ASAP PE Deregistration flooding Partly

ASAP PE Fake registration No
ASAP PU Handle resolution flooding No
ASAP PU PE impeachment No

 On the security of reliable server pooling systems 563

4.1 Threats on the ENRP protocol

The ENRP protocol is highly security-critical. An attacker gaining ENRP access to a PR
is able to perform the following attacks:

• Fake ENRP announce: an attacker may announce itself as PR, using UDP-based
multicast ENRP presence messages (see Subsection 3.6). Since UDP is
connection-less, an attacker may even apply IP-spoofing and send such announces
from an arbitrary location within the same multicast domain. The effort to perform
this kind of attack is therefore very small – but its impact on the system is very high.

• Handlespace manipulation: The attacker is able to arbitrarily manipulate the content
of the handlespace (e.g., by adding or removing PE entries, modifying policy
information, etc.).

• Takeover manipulation: The ENRP takeover mechanism can be used to take
ownership of all PEs in the handlespace. After that, the PEs will adopt the attacker’s
PR as their PR-H and the attacker gains control over the synchronisation of all
handlespace information with the real PRs.

Under the assumption that an attacker cannot obtain a valid PR identity, the usage of
authentication will solve the attack threats on ENRP. Furthermore, for redundancy
reasons a number of 2 to 5 PRs is realistic for an operation scope (see also Zhou et al.,
2009b). The PRs can be placed at protected places (e.g., locked server rooms, etc.), so
that the possibility of attackers to directly manipulate a PR remains small. These
properties make the likeliness of ENRP-based attacks quite small. However, in
Subsection 5.1, we will discuss some further countermeasures against such attacks.

4.2 Threats on the ASAP protocol

While the ENRP protocol is only used among the small number of PRs, ASAP is used
among all RSerPool components. In large setups, the number of PEs and Pus may easily
reach several thousands of PEs and PUs (see also Dreibholz and Rathgeb, 2008a) which
are located at much less protected places (e.g., even on end-user PCs). The probability of
attacks on the ASAP protocol is therefore significantly higher.

4.2.1 A malicious registrar

The first four ASAP-based attack threats are attackers in the role of malicious PRs:

• Fake ASAP announce: Similar to ENRP-based fake announces, an attacker can send
fake ASAP announces, via UDP-based multicast messages from anywhere in the
multicast domain. This can lead to PEs and PUs using the attacker’s system as PR.

• Hostile takeover: In order to let a PE adopt the attacker’s PR as PR-H, it has to send
ASAP endpoint keep-alive messages with home-flag set (see Subsection 3.3). To
perform this attack, the attacker only has to guess the ASAP endpoint address of the
PE: its IP addresses are known (they may be obtained by a handle resolution), only
the 16-bit SCTP port number has to be guessed.

 564 T. Dreibholz et al.

• Malicious responses to PEs: An attacker can claim to be a PR, so that it is chosen by
PEs as their PR-H. By just returning valid responses to the ASAP registration
messages, the PEs will not become known in the ‘real’ pool, i.e., their service cannot
be used by PUs.

• Malicious responses to PUs: PUs assuming the attacker to be a PR will use it for
PE selections. The attacker can simply return an empty list, which means for a
PU that the pool is currently empty (and the requested service is currently
unavailable).

Under the assumption that an attacker cannot obtain the identity of a PR in the operation
scope, authentication will solve the problem of malicious PRs: a PR has to authenticate to
a PE or PU, which ensures that the PR is valid. In Subsection 5.1, we will discuss some
mechanisms to cope with untrustworthy PRs.

4.2.2 A malicious PE

An attacker in the role of a PE introduces the following threats:

• Registration hijacking registrations: and re-registrations may be performed at an
arbitrary PR of the operation scope. If the PE is already registered, a further
registration simply updates the existing registration. PEs are identified by their PE
ID, i.e., an attacker just has to use the known ID of a PE to hijack its registration.
Particularly, the registration update by the attacker could contain malicious policy
information or wrong transport addresses.

• Deregistration hijacking: Similar to registration hijacking, the attacker can perform
the same kind of attack with a deregistration. A known PE (identified by its PE ID)
will be removed from the handlespace.

• Registration/re-registration flooding: An attacker can flood its PR-H with ASAP
registration messages. The PR-H will propagate these updates to all other PRs
in the handlespace. These operations consume CPU power and/or memory at the
PRs.

• Deregistration flooding: Like for the registration/re-registration flooding, a similar
kind of attack is possible with deregistrations.

• Fake registration: An attacker can create fake registrations. By appropriately
configuring the policy information of such fake entries, they will be selected upon
handle resolution; PUs try to contact the fake PEs which of course will not provide
any (useful) service. We will demonstrate this problem in Subsection 8.1.

The authentication of PEs to their PR-H will not fully solve these problems: as soon as an
attacker can obtain a valid PE authentication, [e.g., by exploiting a software bug on one
of the possibly thousands of PEs in an operation scope (see Dreibholz and Rathgeb,
2008a)], its ASAP registration and ASAP deregistration messages are processed by PRs.
We will discuss the impact of such attacks and countermeasures in Subsection 5.2.

 On the security of reliable server pooling systems 565

4.2.3 A malicious PU

An attacker in the role of a PU introduces the following threats:

• Handle resolution flooding: An attacker can flood a PR with ASAP handle
resolution messages. The resulting PE selections not only consume CPU power but
can – in combination with a stateful pool policy (see Subsection 3.4) – also influence
the selection performance. We will demonstrate this problem in Subsection 8.3.

• PE impeachment: When using PU-based endpoint monitoring (see Subsection 3.4),
the attacker can use ASAP endpoint unreachable reports to impeach PEs, i.e., to let a
PR assume them as dead and remove them from the handlespace. The performance
impact of such an attack is very severe, as we will show in Subsection 8.3.

Similar to the PE-based attacks, also the authentication of PUs will not fully solve these
threats: having stolen a valid PU authorisation, the ASAP handle resolution and ASAP
Endpoint Unreachable messages will be processed by PRs. Countermeasures to this kind
of attacks will be presented in Subsection 5.3.

5 Our attack countermeasure mechanisms

5.1 Countermeasures against malicious registrars

Under the assumption of trustworthy PRs, the ENRP-based attack treats fake ENRP
announce, handlespace manipulation and takeover manipulation (see Subsection 4.1) as
well as the ASAP-based threats fake ASAP announce, hostile takeover and malicious
responses to PEs and PUs can be solved by applying authentication of PRs to other PRs
(ENRP) and PEs as well PUs (ASAP).

In order to cope with untrustworthy PRs, ideas from the area of peer-to-peer (P2P)
networks – where nodes cooperate with totally unknown and possibly hostile peers –
could be adapted. Aberer and Despotovic (2001) present data structures and algorithms
for P2P networks to assess trust by computing the reputation of an agent from its former
interactions with other agents. But while the application of such mechanisms is also
adaptable to the interaction with PRs, their application adds a significant level of
complexity to the otherwise lightweight RSerPool framework. Therefore, their usefulness
in the – presumably – controlled single administrative domain of an RSerPool operation
scope may be limited. A more straightforward approach to cope with malicious PR
behaviour in the operation scope may be to keep the PRs and the performance of the
pools under a tight control by monitoring, e.g., based on the RSerPool SNMP interface
defined as RFC by Dreibholz and Mulik (2009).

5.2 Countermeasures against malicious PEs

Registration and deregistration hijacking

In order to cope with the threats of registration and deregistration hijacking, it is
necessary to ensure that the PE identity performing a re-registration or deregistration is
the same that has been performed the original registration. It is therefore necessary to add

 566 T. Dreibholz et al.

certified identity information into the ASAP registration and ASAP deregistration
messages (which currently contain PH and PE ID only). Then, the PR can distribute this
information by ENRP Update messages having this information also added. This allows
for checking the validity of re-registrations and deregistrations by all PRs of the operation
scope.

(Re-)registration and deregistration flooding

When successfully authenticated as PE, an attacker can perform (re-)registration and
deregistration flooding, i.e., trying to overload the PR's CPU capacity by such requests.
However, the handlespace management of RSerPool systems can be realised very
efficiently when using appropriate data structures for the information storage. Dreibholz
and Rathgeb (2008a) show that even a low-performance CPU is able to handle many
thousands of such operations per second. Further combining a rate threshold with the
authenticated identity will solve the attack problem.

Fake registration

Without further countermeasure mechanisms, an authenticated PE may perform an
almost infinite number of registrations. Using a new PE ID in each ASAP registration
message, the handlespace can be flooded with fake PE entries. Therefore, the starting
point for a countermeasure is a restriction of the number of PE registrations a single PE
identity is allowed to create. In order to retain the ‘lightweight’ property of RSerPool (see
Dreibholz and Rathgeb, 2008a) and to avoid synchronising such numbers among PRs,
our countermeasure approach first introduces a so-called registration authorisation ticket
(suggested by us in Dreibholz et al., 2008), which consists of:

1 the pool’s PH and a fixed PE ID (or an ID range for proxy PEs)

2 minimum/maximum policy information settings (e.g., a lower bound on the LUD
load decrement)

3 a signature of the ticket by a trustworthy authority (to be explained below).

Since ASAP messages use a TLV structure (see Dreibholz, 2007, Section 3.8, for a
detailed description), it is easily possible to add the registration authorisation ticket to the
ASAP registration message sent from the PE to its PR-H. Using the ticket, the PR-H can
verify the validity of the request by checking the signature and ensuring that the PE's
policy settings are within the valid range granted by the ticket. These checks are possible
with additional time complexity in O(1). As a result, an attacker stealing the identity of a
real PE would only be able to masquerade as this specific PE. Particularly, it is neither
necessary to change the protocols (except for adding the ticket TLV structure described
above) nor to perform additional ENRP-based synchronisation of authorisation
information among the PRs of the operation scope. Our approach only requires a trusted
authority for issuing the tickets, e.g., a Kerberos service (see Neuman et al., 2005, for
details). Due to the restriction of RSerPool to a single administrative domain (as
described in Section 3), the effort to fulfil this requirement is feasible at reasonable costs
– and this effort is worthwhile, as we will show in Subsection 8.2.

 On the security of reliable server pooling systems 567

5.3 Countermeasures against malicious PUs

PE impeachment

PU-based endpoint monitoring using ASAP endpoint unreachable messages to report
failed PEs empowers a malicious PU to impeach PEs. In order to cope with this problem,
we first introduce a PU identification which is certified by a trusted authority and which
can be verified by the PR (similar to the registration authorisation ticket for PEs, as
explained in Subsection 5.2). This allows for tracking the number of failure reports sent
by a PU for a certain pool (given by its PH): the PR simply has to memorise (to be
explained later) the PH for which a certain PU has reported unreachable PEs. After that,
multiple reports coming for the same pool can simply be ignored. Since the
unreachability count for each PE is a PR-local variable, no synchronisation among PRs is
necessary. That is, an attacker is unable to cause harm to the service by simply sending its
unreachability reports for the same PE to different PRs.

Storing each reported PE identity would be exploitable in the form of a so-called
computational complexity attack as introduced by Crosby and Wallach (2003). An
attacker would just have to send a large number of ASAP endpoint unreachables with
random PE IDs to exhaust the memory of the PR. Therefore, our approach applies a
hash-based per-PU report blackboard (as suggested by us in Zhou et al., 2009a): the hash
function Ψ maps a PE’s PH into a bucket:

(PH) (PH) MOD number of buckets.Ψ = Φ

Φ denotes a hash function that is not easily guessable by the attacker. This property is
provided by so-called universal hash functions (see Crosby and Wallach, 2003 for
details), which are – in contrast to cryptographic hash functions like MD5 (see Rivest,
1992) or SHA1 (see Eastlake and Jones, 2001) – very efficiently computable.

Each bucket contains the time stamps of the latest up to MaxEntries ASAP endpoint
unreachable messages for the corresponding bucket. Then, the endpoint unreachable
report rate can be calculated as:

EU
last first

Number of time stampsRate
TimeStamp TimeStamp

=
−

 (1)

Upon reception of an ASAP Endpoint unreachable from a PU, a PR has to update the
corresponding bucket entry of the reported PE. If the rate in equation (1) exceeds the
configured threshold MaxEURate, the unreachability report is silently ignored. The time
complexity as well as the space complexity for this operation are in O(1).

Handle resolution flooding attack countermeasures

In order to cope with handle resolution flooding, a hash-based approach similar to our
countermeasure against PE impeachment attacks can be applied by introducing the
handle resolution rate threshold MaxHRRate. When this threshold is exceeded, the PR
returns an empty list in the ASAP handle resolution response. This indicates a currently
empty pool and a legitimate PU would therefore try again some time (e.g., one minute)
later.

 568 T. Dreibholz et al.

5.4 Countermeasure alternatives

Schöttle et al. (2008) presents statistical anomaly detection as an alternative approach for
detecting and handling attacks: instead of specifying fixed thresholds, the behaviour of
the majority of nodes is assumed to be ‘normal’. Differing behaviour – which is
necessary for an effective attack – is denoted as an anomaly. However, this approach can
– by definition – only detect attackers if their number is smaller than the number
of legitimate components. Furthermore, obtaining the ‘normal’ behaviour is more
resource-intensive than simple thresholds. But the advantage of this approach is that the
system can automatically adapt to a changing environment, e.g., the deployment or
testing of new applications.

6 Quantifying an RSerPool system

As application model for our quantitative performance analysis, we use the model of
Dreibholz (2007): the service provider side of an RSerPool system consists of a pool of
PEs. Each PE has a request handling capacity, which we define in the abstract unit of
calculations per second. An application-specific view of capacity may be mapped to this
definition, e.g., CPU cycles. Each request consumes a certain number of calculations; we
call this number request size. A PE can handle multiple requests simultaneously – in a
processor sharing mode as provided by multitasking operating systems.

On the service user side, there is a set of PUs. The number of PUs can be given by the
ratio between Pus and PEs (PU:PE ratio), which defines the parallelism of the request
handling. Each PU generates a new request in an interval denoted as request interval.
Requests are queued and sequentially assigned.

The total delay for handling a request dHandling is defined as the sum of queuing delay
dQueuing, startup delay dStartup (dequeuing until reception of acceptance acknowledgement)
and processing time dProcessing (acceptance until finish):

Handling Queuing Startup Processing .d d d d= + + (2)

That is, dHandling not only incorporates the time required for processing the request, but
also the latencies of queuing, server selection and message transport. The user-side
performance metric is the handling speed, which is defined as:

Handling

RequestSizeHandlingSpeed .
d

=

For convenience, the handling speed (in calculations/s) is represented in % of the average
PE capacity.

Using the definitions above, it is possible to delineate the average system utilisation U
(for NumPEs servers and total pool capacity PoolCapacity) as:

RequestSize
RequestIntervalU NumPEs*puToPERatio* .
PoolCapacity

= (3)

 On the security of reliable server pooling systems 569

Obviously, the provider-side performance metric is the system utilisation, since only
utilised servers gain revenue. In practise, a well-designed client/server system is
dimensioned for a certain target system utilisation of e.g., 50%. By setting any two of the
parameters (PU:PE ratio, request interval and request size), the value of the third one can
be calculated using equation (3) (see also Dreibholz, 2007; Dreibholz and Rathgeb,
2005b).

7 System setup

For our performance analysis, we have used our OMNeT++-based RSerPool simulation
model RSPSIM (see Dreibholz and Rathgeb, 2005b) as well as our implementation
RSPLIB (see Dreibholz and Rathgeb, 2007; Dreibholz, 2007; Zhou et al., 2010) [which is
also the RSerPool reference implementation of the IETF, see Lei et al. (2008), Chapter 5]
for measurements in a PlanetLab setup. Both – simulation model and implementation –
contain the protocols ASAP and ENRP, a PR module, an attacker module and PE as well
as PU modules for the request handling application defined in Section 6.

The PlanetLab (see Peterson and Roscoe, 2006) setup distributes the components to
different machines in the USA. This country provides a sufficient number of PlanetLab
nodes and a country-wide setup is also realistic for an RSerPool setup in a large
company, in order to protect a critical service against e.g., earthquakes, power failures or
terrorist attacks. By ping-based tests, we have observed inter-node network delays of
about 20 ms to 30 ms.

The Linux-based PlanetLab nodes only support the protocols TCP and UDP, i.e., in
particular the Linux Kernel SCTP module (LK-SCTP) is not provided. Unlike for our lab
measurements in Zhou et al. (2009a), we therefore had to use our own userland SCTP
implementation of Jungmaier (2005). The restriction of PlanetLab to TCP and UDP
furthermore made it necessary to tunnel our SCTP traffic over UDP using the ‘SCTP over
UDP’ encapsulation defined in Tüxen and Stewart (2007). Since our ASAP and ENRP
messages are small compared to the usual MTU (i.e., 1,500 bytes) and bandwidth is not
the limiting factor, the additional per-packet overhead of 8 bytes is negligible.

For our simulation and measurement setup, which is depicted in Figure 8, we use the
following parameter settings unless otherwise specified:

• The target system utilisation is 50%. Request size and request interval are
randomised using a negative exponential distribution [in order to provide a generic
and application-independent analysis (see Dreibholz and Rathgeb, 2005b)]. There are
10 PEs; each one provides a capacity of 106 calculations/s.

• A PU:PE ratio of 3 is used [i.e., a non-critical setting as explained in Dreibholz
(2007)].

• We use a request size:PE capacity setting of 10; i.e., being processed exclusively, the
average processing takes 10s – see also Dreibholz and Rathgeb (2005b).

• There is a single PR only, since we do not examine PR failure scenarios here (see
Zhou et al., 2009b for such scenarios). PEs re-register every 30s (registration
lifetime) and on every load change of the adaptive LU and LUD policies.

 570 T. Dreibholz et al.

• MaxBadPEReports is set to 3 (default in RFC Stewart et al., 2008). A PU sends an
endpoint unreachable if a contacted PE fails to respond within 10s (see also
Dreibholz and Rathgeb, 2009).

• The system is attacked by a single attacker node.

• For the simulation, the simulated real-time is 120 min; each simulation run is
repeated at least 24 times with a different seed in order to achieve statistical
accuracy. The inter-component network delay is 25 ms, which corresponds to the
PlanetLab observations above.

• Each measurement run takes 15 min; each run is repeated at least 12 times.

For statistical post-processing of the results, the SimProcTC tool-chain described by
Dreibholz et al. (2009b) is used. Each resulting plot shows the average values and their
95% confidence intervals.

Figure 8 The RSerPool system setup used for the analyses (see online version for colours)

8 Performance evaluation

The PR-based attack threats on RSerPool systems (see Section 4) can be solved by just
applying authentication. We neglect the possibility of malicious PRs here, since
mechanisms to judge the trustworthiness of PRs (see Subsection 5.1) would exceed the
scope of this article. Registration and deregistration hijacking as well as (re-)registration
and deregistration flooding can be solved easily with a modified authentication procedure
(as described in Subsection 5.2), which is quite obvious.

 On the security of reliable server pooling systems 571

Therefore, the focus of our performance evaluation is to show the impact of the most
severe attack threats – fake registration, handle resolution flooding and PE impeachment
– as well as the performance of our countermeasures proposed in Section 5.

8.1 The impact of a fake registration attack without countermeasures

The intention of an attacker performing a fake registration (see Sub-subsection 4.2.2)
attack is to send ASAP Registrations to a PR. Each registration request only has to
contain another (e.g., randomly chosen) PE ID. The policy parameters can be set
appropriately – e.g., a load of 0% (LU and LUD) and a load increment of 0% (LUD) – in
order to ensure that the fake PE entry is chosen upon a handle resolution as frequently as
possible.

Figure 9 presents the simulation results for the average request handling speed during
a fake registration attack. Since the corresponding PlanetLab measurement results show a
similar behaviour, a plot for the measurements has been omitted. The number of fake
registrations per second – denoted as attack frequency F – is varied from 0s–1 (no attack)
to 1s–1. Already for F = 0.1s–1 – which means just one fake registration every 10s – a
significant degradation of the service performance can be observed. For using the LUD
policy Zhou et al. (2008), this already leads to a complete DoS: an unloaded PE (i.e., its
load is 0%) whose load never increases when accepting a new request (i.e., its load
increment is 0%) appears to be a really good choice for a PU. As a result, the PUs will
exclusively select the fake PE entries. Using F = 0.8s–1, the attacker also achieves a
complete DoS for the other policies. That is, already for sending less than one attack
message per second – which is easily feasible over a modem connection – the attacker
can entirely stem a service.

Figure 9 The impact of a fake registration attack without countermeasures (see online version for
colours)

 572 T. Dreibholz et al.

8.2 Applying countermeasures against malicious PEs

To countermeasure the fake registration attack, we now apply our approach presented in
Subsection 5.2. Figure 10 presents the handling speed results for an attack frequency of
F = 10s–1 (i.e., a ten times higher attack intensity than in the DoS case of the unprotected
scenario presented in Subsection 8.1) per attacker for varying the number of attackers α
from 0 (i.e., no attack, for comparison) to 10. The left-hand plot presents the simulation
results, the right-hand plot shows the PlanetLab measurement results. Note that α = 10
attacker PEs means to have as many attackers as there are legitimate PEs in the pool. In
particular, the attacker would have to steal 10 registration authorisation tickets in order to
perform such an attack. That is, a significant effort by the attacker is necessary.

Obviously, our countermeasure approach is quite effective: even for α = 10, the
handling speed only halves at most – but the service which is provided by the 10 real PEs
of the pool still remains operational and the attack impact is not even close to a DoS. The
results obtained from the PlanetLab measurements correspond to the simulation results,
i.e., our countermeasure approach also works effectively in a real-world internet setup as
well.

It is important to note that the slightly different handling speed levels of the
RSPLIB-based PlanetLab measurements in comparison to the RSPSIM simulation results
are caused by the latencies of nodes (e.g., background PlanetLab slices, kernel, operating
system, applications) and SCTP associations (e.g., packet scheduling, delay and jitter of
the internet transport and packet retransmissions). These are – due to their complexity –
not fully incorporated into the RSPSIM simulation model. Nevertheless, the tendency of
the results is observed reasonably well.

Figure 10 Applying countermeasures against pool-element-based attacks (see online version for
colours)

8.3 The impact of a malicious PU without countermeasures

By performing a handle resolution flooding attack (see Sub-subsection 4.2.3), an attacker
tries to flood the PR with handle resolution requests. Since the server selection procedure

 On the security of reliable server pooling systems 573

can be realised very efficiently – as shown by Dreibholz and Rathgeb (2008a) – a very
high attack bandwidth would be necessary to overload the CPU of the PR. However, even
by just requesting a few handle resolutions – without actually using the service of a
selected PE – the performance of the service may be affected. As an example, the impact
of a handle resolution attack on the request handling performance of the simulation for
varying the attack frequency F (i.e., the delay between two consecutive handle resolution
requests) is shown in Figure 11. Since the PlanetLab measurement results are quite
similar, we omit a further plot here. For the PE entries chosen by a handle resolution, an
ASAP endpoint unreachable report (see Section 3) is sent with probability u, i.e., a PE
impeachment attack is performed. We present the two extreme cases: u = 0% (i.e., no
unreachability reports – represented by solid lines) and u = 100% (i.e., worst case –
represented by dotted lines).

Due to the stateful operation of the RR policy, the performance is even degraded for
this policy by a setting of u = 0%: some PEs of the ‘in turn’ selection are skipped (since
they are not actually used for processing a request), leading to the usage of less
appropriate PEs for real requests. LUD is affected in a similar way by increased load
values. Since LU and RAND are ‘stateless’, they are not affected by this kind of attack.

The impact of reporting all PEs as being unreachable by ASAP endpoint unreachables
– i.e., u = 100% – is dramatic: PEs are kicked out of the handlespace, and the handling
speed quickly sinks and leads – here at about F = 10s–1, i.e., only 10 reports/s – to a
complete DoS.

Again, a modem or ISDN connection provide sufficient bandwidth to perform this
kind of attack.

Figure 11 The impact of a malicious endpoint unreachable report attack without countermeasures
(see online version for colours)

 574 T. Dreibholz et al.

8.4 Applying countermeasures against malicious PUs

To countermeasure the handle resolution and PE impeachment attacks, we apply our
approach presented in Subsection 5.3 by setting MaxHRRate = 1s–1 (i.e., 60 times
more than the actual handle resolution rate of the application) and MaxEURate = 1s–1
(i.e., by orders of magnitude higher than a realistic PE failure rate) for varying the
attack frequency of one attacker. The resulting request handling speed performance
is shown in Figure 12; the left-hand plot presents the simulation results and the
right-hand plot displays the corresponding PlanetLab measurement results. The
probabilities for sending ASAP endpoint unreachable reports (i.e., for actually
performing PE impeachment attacks) are u = 100% (worst case) and u = 0% (for
comparison).

For the stateful policies RR and LUD, the attacker is able to reduce the handling
speed until triggering the countermeasure mechanism. After that, the attacker is ignored
and the performance remains as for attacker-free scenarios. For the stateless RAND
policy, the attack has no impact; for the LU policy, the attacker only has an impact when
using unreachability reports. Interestingly, this effect is stronger for the PlanetLab
measurements than for the simulation: this effect is caused by the latency of the PE load
state updates in the internet (which may vary due to node latencies and congestion): since
the load value of a PE only changes on re-registration, a least-loaded PE entry may be
selected multiple times in sequence. That is, the attacker will send multiple unreachability
reports for the same PE. As long as the rate threshold is not yet reached, the PE entry may
be impeached. However, the attacker is ignored and the performance returns to the
original level of an attacker-free system setup as soon as the countermeasure threshold is
reached.

Figure 12 Applying countermeasures against handle resolution flooding and PE impeachment
attacks (see online version for colours)

 On the security of reliable server pooling systems 575

Figure 13 Varying the number of pool-user-based attackers with applying countermeasures
(see online version for colours)

Just a single attacker using an attack frequency of F = 10s–1 has been able to cause a
complete DoS when not applying countermeasures (see Subsection 8.3). Therefore,
Figure 13 presents the performance results for applying our countermeasures at F = 10s–1
and u = 100% (i.e., the worst case of a PE impeachment attack) and a varying number of
attackers α from 0 (i.e., no attack, for comparison) to 10. Again, the simulation results are
presented in the left-hand plot while the PlanetLab measurement results can be found in
the right-hand plot. Obviously, the presented results show that even α =10 attackers have
no significant impact on the system performance – neither in the simulation nor in the
real-world internet setup – any more. Furthermore, ten attackers means that the
authorisation data of ten legitimate components has been stolen. Inside the restricted
operation scope of an RSerPool setup (see Section 3), the effort of applying such an
attack is assumed to be quite high and non-trivial.

9 Conclusions

In this article, we have given an overview of the DoS attack threats on RSerPool systems
and have shown countermeasures to improve the robustness of the systems against them.
Authentication of components alone cannot fully prevent such attacks. We have shown
that fake registration, handle resolution flooding and PE impeachment attacks can easily
cause a complete DoS. In order to cope with this threat, we have introduced
countermeasure approaches which have shown to be effective – in simulations as well as
in reality. The simulation results correspond to the measurements, i.e., we have also
validated the correctness of our simulation model. Furthermore, our approaches are
efficiently realisable – which is necessary to keep the RSerPool architecture lightweight.

The IETF standardisation process for RSerPool has just reached a major milestone by
publication of its basic protocol documents as RFCs. Since the early beginnings of this
process we have contributed our ideas, evaluations and improvements for the RSerPool
framework. The goal of our ongoing work is to provide comprehensive security and
configuration guidelines for application developers and users of the new RSerPool
standard.

 576 T. Dreibholz et al.

Acknowledgements

This article has been funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft) and the State Administration of Foreign Experts Affairs, China
(Funding Number 20084600036).

References
Aberer, K. and Despotovic, Z. (2001) ‘Managing trust in a peer-2-peer information system’, in

Proceedings of the 10th International Conference on Information and Knowledge Management
(CIKM), New York, USA., ACM, pp.310–317, ISBN 1-58113-436-3, available at
http://doi.acm.org/10.1145/502585.502638.

Bellovin, S., Ioannidi, J., Keromytis, A. and Stewart, R. (2003) ‘On the use of stream control
transmission protocol (SCTP) with IPsec’, Standards Track RFC 3554, IETF, July.

Conrad, P., Jungmaier, A., Ross, C., Sim, W-C. and Tüxen, M. (2002) ‘Reliable IP telephony
applications with SIP using RSerPool’, in Proceedings of the State Coverage Initiatives,
Mobile/Wireless Computing and Communication Systems II, Orlando, Florida, USA, July,
Vol. X, ISBN 980-07-8150-1.

Crosby, S.A. and Wallach, D.S. (2003) ‘Denial of service via algorithmic complexity attacks’, in
Proceedings of the 12th USENIX Security Symposium, Washington, DC, USA, August,
pp.29–44.

Dierks, T. and Rescorla, E. (2008) ‘The transport layer security (TLS) protocol version 1.2’,
Standards Track RFC 5246, IETF, August.

Dreibholz, T. (2002) ‘An efficient approach for state sharing in server pools’, in Proceedings of the
27th IEEE Local Computer Networks Conference (LCN), Tampa, Florida, USA, October,
pp.348–352, ISBN 0-7695-1591-6.

Dreibholz, T. (2007) ‘Reliable server pooling – evaluation, optimization and extension of a novel
IETF architecture’, PhD thesis, University of Duisburg-Essen, Faculty of Economics, Institute
for Computer Science and Business Information Systems, March.

Dreibholz, T. and Mulik, J. (2009) ‘Reliable server pooling MIB module definition’, RFC 5525,
IETF, RSerPool Working Group, April.

Dreibholz, T. and Rathgeb, E.P. (2005a) ‘Implementing the reliable server pooling framework’, in
Proceedings of the 8th IEEE International Conference on Telecommunications (ConTEL),
Zagreb, Croatia, June, Vol. 1, pp.21–28, ISBN 953-184-081-4.

Dreibholz, T. and Rathgeb, E.P. (2005b) ‘On the performance of reliable server pooling systems’,
in Proceedings of the IEEE Conference on Local Computer Networks (LCN) 30th
Anniversary, Sydney, Australia, November, pp.200–208, ISBN 0-7695-2421-4.

Dreibholz, T. and Rathgeb, E.P. (2007) ‘On improving the performance of reliable server pooling
systems for distance-sensitive distributed applications’, in Proceedings of the 15. ITG/GI
Fachtagung Kommunikation in Verteilten Systemen (KiVS), Bern, Switzerland, February,
pp.39–50, ISBN 978-3-540-69962-0.

Dreibholz, T. and Rathgeb, E.P. (2008a) ‘An evaluation of the pool maintenance overhead in
reliable server pooling systems’, SERSC International Journal on Hybrid Information
Technology (IJHIT), April, Vol. 1, No. 2, pp.17–32, ISSN 1738-9968.

Dreibholz, T. and Rathgeb, E.P. (2008b) ‘a powerful tool-chain for setup, distributed processing,
analysis and debugging of OMNeT++ simulations’, in Proceedings of the 1st ACM/ICST
OMNeT++ Workshop, Marseille, France, March, ISBN 978-963-9799-20-2.

Dreibholz, T. and Rathgeb, E.P. (2009) ‘Overview and evaluation of the server redundancy and
session failover mechanisms in the reliable server pooling framework’, International Journal
on Advances in Internet Technology (IJAIT), June, Vol. 2, No. 1, pp.1–14, ISSN 1942-2652.

 On the security of reliable server pooling systems 577

Dreibholz, T. and Tüxen, M. (2008) ‘Reliable server pooling policies’, RFC 5356, IETF,
September.

Dreibholz, T., Becke, M., Pulinthanath, J. and Rathgeb, E.P. (2010a) ‘Applying TCP-friendly
congestion control to concurrent multipath transfer’, in Proceedings of the 24th IEEE
International Conference on Advanced Information Networking and Applications (AINA),
Perth, Australia, April, pp.312–319.

Dreibholz, T., Becke, M., Pulinthanath, J. and Rathgeb, E.P. (2010b) ‘Implementation and
evaluation of concurrent multipath transfer for SCTP in the INET framework’, in Proceedings
of the 3rd ACM/ICST OMNeT++ Workshop, Málaga, Spain, March, ISBN 78-963-9799-87-5.

Dreibholz, T., Coene, L. and Conrad, P. (2009a) ‘Reliable server pooling applicability for IP flow
information exchange’, Internet-Draft Version 08, IETF, Individual Submission, July.

Dreibholz, T., Jungmaier, A. and Tüxen, M. (2003) ‘A new scheme for IP-based internet mobility’,
in Proceedings of the 28th IEEE Local Computer Networks Conference (LCN), Königswinter,
Germany, November, pp.99–108, ISBN 0-7695-2037-5.

Dreibholz, T., Rathgeb, E.P. and Zhou, X. (2008) ‘On robustness and countermeasures of reliable
server pooling systems against denial of service attacks’, in Proceedings of the IFIP
Networking, Singapore, May, pp.586–598, ISBN 978-3-540-79548-3.

Dreibholz, T., Zhou, X. and Rathgeb, E.P. (2009b) ‘SimProcTC – the design and realization of a
powerful tool-chain for OMNeT++ simulations’, in Proceedings of the 2nd ACM/ICST
OMNeT++ Workshop, Rome, Italy, March, ISBN 978-963-9799-45-5.

Dreibholz, T., Zhou, X., Rathgeb, E.P. and Du, W. (2009c) ‘A PlanetLab-based performance
analysis of RSerPool security mechanisms’, in Proceedings of the 10th IEEE International
Conference on Telecommunications (ConTEL), Zagreb, Croatia, June, ISBN 978-953-184-
131-3.

Eastlake, D. and Jones, P. (2001) US Secure Hash Algorithm 1 (SHA1). Informational RFC 3174,
IETF, September.

Foster, I. (2002) ‘What is the grid? A three point checklist’, GRID Today, July.
Hohendorf, C., Rathgeb, E.P., Unurkhaan, E. and Tüxen, M. (2007) ‘Secure end-to-end transport

over SCTP’, Journal of Computers, June, Vol. 2, No. 4, pp.31–40, ISSN 1796-203X.
ITU-T. (1993) ‘Introduction to CCITT signalling system No. 7’, Technical Report

Recommendation Q.700, International Telecommunication Union, March.
Iyengar, J.R., Amer, PD. and Stewart, R. (2006) ‘Concurrent multipath transfer using SCTP

multihoming over independent end-to-end paths’, IEEE/ACM Transactions on Networking,
October, Vol. 14, No. 5, pp.951–964, ISSN 1063-6692, available at
http://dx.doi.org/10.1109/TNET.2006.882843.

Jungmaier, A. (2005) ‘Das transportprotokoll SCTP’, PhD thesis, Universität Duisburg-Essen,
Institut für Experimentelle Mathematik, August.

Jungmaier, A., Rathgeb, E.P., Schopp, M. and Tüxen, M. (2001) ‘A multi-link end-to-end protocol
for IP-based networks’, AEÜ – International Journal of Electronics and Communications,
January, Vol. 55, No. 1, pp.46–54, ISSN 1434-8411.

Jungmaier, A., Rescorla, E. and Tüxen M. (2002) ‘Transport layer security over stream control
transmission protocol’, Standards Track RFC 3436, IETF, December 2002.

Kent, S. and Seo, K. (2005) ‘Security architecture for the internet protocol’, Standards Track RFC
4301, IETF, December 2005.

Lei, P., Ong, L., Tüxen, M. and Dreibholz, T. (2008) ‘An overview of reliable server pooling
protocols’, Informational RFC 5351, IETF, September.

Loughney, J., Stillman, M., Xie, Q., Stewart, R. and Silverton, A. (2005) ‘Comparison of protocols
for reliable server pooling’, Internet-Draft Version 10, IETF, RSerPool Working Group, July.

Maharana, A. and Rathna, G.N. (2006) ‘Fault-tolerant video on demand in RSerPool architecture’,
in Proceedings of the International Conference on Advanced Computing and Communications
(ADCOM), Bangalore, India, December, pp.534–539, ISBN 1-4244-0716-8.

 578 T. Dreibholz et al.

Neuman, C., Yu, T., Hartman, S. and Raeburn, K. (2005) ‘The Kerberos network authentication
service (V5)’, Standards Track RFC 4120, IETF, July.

Peterson, L. and Roscoe, T. (2006) ‘The design principles of PlanetLab’, Operating Systems
Review, January, Vol. 40, No. 1, pp.11–16, ISSN 0163-5980.

Rivest, R. (1992) ‘The MD5 message-digest algorithm’, Informational RFC 1321, IETF, April.
Schöttle, P., Dreibholz, T. and Rathgeb, E.P. (2008) ‘On the application of anomaly detection in

reliable server pooling systems for improved robustness against denial of service attacks’, in
Proceedings of the 33rd IEEE Conference on Local Computer Networks (LCN), Montréal,
Québec, Canada, October, pp.207–214, ISBN 978-1-4244-2413-9.

Stewart, R. (2007) ‘Stream control transmission protocol’, Standards Track RFC 4960, IETF,
September.

Stewart, R., Lei, P. and Tüxen, M. (2009) ‘Stream control transmission protocol (SCTP) packet
drop reporting’, Internet-Draft Version 09, IETF, Individual Submission, December.

Stewart, R., Xie, Q., Stillman, M. and Tüxen, M. (2008) ‘Aggregate server access protcol (ASAP)’,
RFC 5352, IETF, September.

Stewart, R., Xie, Q., Tüxen, M., Maruyama, S. and Kozuka, M. (2007) ‘Stream control
transmission protocol (SCTP) dynamic address reconfiguration’, Standards Track RFC 5061,
IETF, September.

Stillman, M., Gopal, R., Guttman, E., Holdrege, M. and Sengodan, S. (2008) ‘Threats introduced
by RSerPool and requirements for security’, RFC 5355, IETF, September.

Tüxen, M. and Stewart, R. (2007) ‘UDP encapsulation of SCTP packets’, Internet-Draft Version
02, IETF, Individual Submission, November.

Tüxen, M., Stewart, R., Lei, P. and Rescorla, E. (2007) ‘Authenticated chunks for the stream
control transmission protocol (SCTP)’, Standards Track RFC 4895, IETF, August.

Unurkhaan, E. (2005) ‘Secure end-to-end transport – a new security extension for SCTP’,
PhD thesis, University of Duisburg-Essen, Institute for Experimental Mathematics, July.

Uyar, Ü., Zheng, J., Fecko, M.A., Samtani, S. and Conrad, P. (2004) ‘Evaluation of architectures
for reliable server pooling in wired and wireless environments’, IEEE JSAC Special Issue on
Recent Advances in Service Overlay Networks, Vol. 22, No. 1, pp.164–175.

Xie, Q., Stewart, R., Stillman, M., Tüxen, M. and Silverton, A. (2008) ‘Endpoint handlespace
redundancy protocol (ENRP)’, RFC 5353, IETF, September.

Zhou, X., Dreibholz, T. and Rathgeb, E.P. (2008) ‘A new server selection strategy for reliable
server pooling in widely distributed environments’, in Proceedings of the 2nd IEEE
International Conference on Digital Society (ICDS), Sainte Luce, Martinique, February,
pp.171–177, ISBN 978-0-7695-3087-1.

Zhou, X., Dreibholz, T., Becke, M., Pulinthanath, J., Rathgeb, E.P. and Du, W. (2010) ‘The
software modeling and implementation of reliable server pooling and RSPLIB’, in
Proceedings of the 8th ACIS Conference on Software Engineering Research, Management and
Applications (SERA), Montréal, Québec, Canada, May.

Zhou, X., Dreibholz, T., Du, W. and Rathgeb, E.P. (2009a) ‘Evaluation of attack countermeasures
to improve the DoS robustness of RSerPool systems by simulations and measurements’, in
Proceedings of the 16, ITG/GI Fachtagung Kommunikation in Verteilten Systemen (KiVS),
Kassel, Germany, March, pp.217–228, ISBN 978-3-540-92665-8.

Zhou, X., Dreibholz, T., Fa, F., Du, W. and Rathgeb, E.P. (2009b) ‘Evaluation and optimization of
the registrar redundancy handling in reliable server pooling systems’, in Proceedings of the
IEEE 23rd International Conference on Advanced Information Networking and Applications
(AINA), Bradford, United Kingdom, May, pp.256–262, ISBN 978-0-7695-3638-5.

