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Abstract: In order to cope with the requirements of availability-critical internet 
services, reliable server pooling (RSerPool) has been developed as the new 
IETF standard for a lightweight server redundancy and session failover 
framework. While the service and pool management performance of RSerPool 
had already been the topic of various research papers, its security has not yet 
been widely examined. But security for availability-critical systems is crucial, 
since service outages – regardless of whether being caused by system failures 
or intentional denial of service (DoS) attacks – are not acceptable for the users 
of such systems. 
 In this article, we first introduce RSerPool as well as the underlying SCTP 
protocol. In an analysis of the attack threats, we will show the possibilities of 
an attacker to degrade the service provided by an RSerPool system. We will 
furthermore introduce possible countermeasures, in order to prevent attacks and  
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improve the robustness of the systems. We will finally show the effectiveness 
of our proposed countermeasures using simulations. In order to validate our 
simulation results, we furthermore compare them to measurements from a  
real-world internet setup using the PlanetLab. 

Keywords: reliable server pooling; RSerPool; security; attacks; robustness; 
performance analysis; PlanetLab. 
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1 Introduction and scope 

When the internet was designed a long time ago, its main applications were e-mail and 
file transfer. On failures of servers, routers or network links, the users just waited for 
some time and tried again. This worked quite well for the application of that time, but 
new applications – which are widely used today – have a significantly higher demand for 
availability. For example, in the area of e-commerce, a service not being available will 
not gain any revenue. Also, there are many competitors on the internet. Potential 
customers can simply use the service of such a competitor – without ever coming back. In 
order to cope with the requirements of availability-critical services, the IETF has just 
published a generic, application-independent server pool (see Dreibholz and Rathgeb, 
2008a) and session management (see Dreibholz, 2007) framework as RFCs: reliable 
server pooling (RSerPool) (see Lei et al., 2008). It is responsible for the required server 
redundancy and session management. Various research papers have already been 
published on the load balancing (see Dreibholz and Rathgeb, 2005b; Dreibholz, 2007) 
and server failure handling (see Dreibholz and Rathgeb, 2009) features of RSerPool, but 
there have only been simulations of some security concepts by Schöttle et al. (2008), 
Dreibholz et al. (2008) and a corresponding evaluation in a lab setup by Zhou et al. 
(2009a). 

In our paper Dreibholz et al. (2009c) for the ConTEL 2009, we have presented an 
experimental evaluation of the mechanisms described in Zhou et al. (2009a) and 
Dreibholz et al. (2008) in a real-world internet setup, based on the PlanetLab (see 
Peterson and Roscoe, 2006). This article is the extended version of this paper, extending 
the content of our paper by a detailed description of the attack threats on RSerPool 
systems. Also, we cover the endpoint handlespace redundancy protocol (ENRP) protocol 
as well as the underlying stream control transmission protocol (SCTP) protocol, which 
have not been addressed by the paper. 

This article is structured as follows. First, we introduce the SCTP protocol in  
Section 2. Next, we present the RSerPool framework in Section 3. In Section 4, we offer 
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an overview of attack threats on RSerPool systems. Our proposed attack countermeasures 
are presented in Section 5. Finally, by using the performance metrics introduced in 
Section 6 and our simulative and experimental PlanetLab setups described in Section 7, 
we provide an evaluation of the most important security mechanisms in Section 8. 

2 The SCTP protocol 

The SCTP protocol – which is defined as RFC by Stewart (2007) – is a  
connection-oriented, general-purpose, unicast transport protocol providing the reliable 
transport of user messages. An SCTP connection is denoted as association. Each SCTP 
endpoint can use multiple IPv4 and/or IPv6 addresses to provide network fault tolerance. 
The addresses used by the endpoints are negotiated during association setup. This 
redundancy feature is called multi-homing and is illustrated in Figure 2 (see also 
Jungmaier et al., 2001; Dreibholz et al., 2003, for more details). User data and control 
information is transported in so-called chunks, which are bundled into SCTP packets. 

Several SCTP extensions have been developed and standardised. The most important 
extensions with relevance to this article are: 

• The dynamic address reconfiguration extension (Add-IP) defined as RFC by Stewart 
et al. (2007) provides interface and address changes during association runtime. In 
particular, it allows for mobility as examined by Dreibholz et al. (2003) or an 
interruption-free IPv6 site renumbering – or even a seamless migration from IPv4 to 
IPv6 as explained by Dreibholz and Rathgeb (2005a). 

• The chunk authentication extension defined as RFC by Tüxen et al. (2007) provides 
the authenticity and integrity for the chunks of an SCTP association by using keys 
negotiated during association setup or pre-shared keys. Chunk authentication is 
required to avoid association hijacking when using Add-IP. However, it does not 
provide confidentiality. 

• The packet drop extension defined by Stewart et al. (2009) allows for notifying a 
sender of dropped packets due to bit errors. In this case, retransmissions can be sent 
without reducing the congestion window. This feature improves the association 
throughput over low-quality, high-delay satellite links. 

• CMT-SCTP (see Iyengar et al., (2006); Dreibholz et al., 2010b) is a concurrent 
multipath transfer (CMT) extension for SCTP. Unlike standard SCTP as defined in 
Stewart (2007), it utilises all paths for data transport (not just a designated primary 
path). Combined with resource pooling (RP), the CMT/RP-SCTP extension 
introduced by Dreibholz et al. (2010a) allows for TCP-friendly CMT transport over 
the internet. 

Furthermore, SCTP provides some security features: first, SCTP applies a four-way 
handshake for association setup – in contrast to the three-way handshake of TCP which is 
susceptible to the SYN-flooding attack. The principle of the four-way handshake is 
illustrated in Figure 1: the endpoint A starts establishing an association to the endpoint B 
using an INIT chunk. Endpoint B stores all information about the new association into a 
signed cookie, which is returned to endpoint A in an INIT ACK chunk. After that, 
endpoint B releases all resources associated with the new association. The cookie is 
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returned from endpoint A in a COOKIE ECHO chunk. By checking its signature, 
endpoint B can ensure that the cookie is valid and unaltered as well as that the other 
endpoint is existing and reachable (since the cookie has been returned by endpoint A, its 
address cannot be spoofed). Using the association information from the cookie, endpoint 
B can restore the corresponding data structures. The successful association establishment 
is finally signalised by a COOKIE ACK chunk. 

Figure 1 SCTP association establishment by four-way handshake (see online version for colours) 

 

Figure 2 Multi-homing (see online version for colours) 

 

Another security feature of SCTP against blind flooding attacks is the so-called 
verification tag. This is a 32-bit number which is configured for each communication 
direction during association establishment. An endpoint writes its verification tag into all 
outgoing packets; an attacker trying to inject a packet into the association (e.g., in order 
to abort the association similar to the RST attack of TCP) needs to guess the verification 
tag – which requires ample bandwidth and time for brute-force trials. The peer endpoint 
simply ignores packets containing a wrong verification tag. 

In order to support authenticity, integrity and confidentiality for the user data 
transport, SCTP can – similar to TCP – also be used with transport layer security  
(TLS) by Dierks and Rescorla (2008). But since TLS has been designed for a  
byte-stream-oriented, single-homed transport, it poorly supports the enhanced protocol 
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features of SCTP – particularly its message-oriented transport, multi-homing and 
dynamic address reconfiguration. An enhanced version of TLS – denoted as datagram 
TLS (D-TLS) – and its adaptation to SCTP is described by Hohendorf et al. (2007). An 
alternative to TLS is IPsec by Kent and Seo (2005). However, multi-homing results in the 
need for a large number of security associations (SA). Using the optimisations described 
by Bellovin et al. (2003), an SCTP transport over IPsec can be realised efficiently. 
Another alternative is the secure-SCTP (S-SCTP) extension by Unurkhaan (2005), which 
directly realises authenticity, integrity and confidentiality within the SCTP stack. 

3 The RSerPool architecture 

An overview of the RSerPool architecture – which is defined as RFC by Lei et al. (2008) 
– is provided in Figure 3. There are three types of components: 

• Pool element (PE) denotes a server in a pool. PEs in the same pool provide the same 
service. 

• Pool user (PU) denotes a client using the service of a pool. 

• Pool registrar (PR) is the management component for the pools. 

Figure 3 The RSerPool architecture (see online version for colours) 

 

The set of all pools within an operation scope (e.g., an organisation, a company or a 
department) is denoted as handle-space. Clearly, a single PR would be a single point of 
failure. Therefore, PRs also have to be redundant. Within the handle-space, each pool is 
identified by a unique pool handle (PH). 

RSerPool provides support for non-RSerPool nodes by proxies: proxy PUs connect 
non-RSerPool clients to a server pool; Proxy PEs let non-RSerPool servers join a pool. 
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3.1 Registrar operations 

The PRs of an operation scope synchronise their view of the handle-space by using the 
ENRP (defined as RFC by Xie et al., 2008), transported via SCTP (see Section 2). In 
contrast to grid computing (see Foster, 2002), an operation scope is restricted to a single 
administrative domain. That is, all of its components are under the control of the same 
authority (e.g., a company). This property leads to small management overhead (details 
are described by Dreibholz and Rathgeb, 2008a, 2005a), which also allows for RSerPool 
usage on devices having only limited memory and CPU resources (e.g., 
telecommunications equipment). Nevertheless, PEs may be distributed globally to 
continue their service even in case of localised disasters (e.g., an earthquake). Such 
scenarios are examined in more detail by Dreibholz and Rathgeb (2007). Each PR in the 
operation scope is identified by a PR ID, which is a randomly chosen 32-bit number. 

3.2 PE operations 

Within their operation scope, the PEs may choose an arbitrary PR to register into a pool 
by using the aggregate server access protocol (ASAP) (defined as RFC by Stewart et al., 
2008). The registration is performed by using an ASAP registration message. Within its 
pool, a PE is characterised by its PE ID, which is a randomly chosen 32-bit number. 
Upon registration at a PR, the chosen PR becomes the home-PR (PR-H) of the newly 
registered PE. A PR-H is responsible for monitoring the availability of its PEs by ASAP 
endpoint keep alive messages (to be acknowledged by a PE via an ASAP endpoint keep 
alive ack message within a configured timeout). The PR-H propagates the information 
about its PEs to the other PRs of the operation scope via ENRP Update messages. This 
principle is illustrated in Figure 4. 

Figure 4 The principle of PE registration (see online version for colours) 

 

PEs re-register regularly in an interval denoted as registration lifetime and for 
information updates. Similar to the registration, a re-registration is performed by using 
another ASAP registration message. PEs may intentionally deregister from the pool by 
using an ASAP deregistration message. Also like for the registration, the PR-H makes the 
deregistration known to the other PRs within the operation scope by using an ENRP 
update message. 

3.3 Takeover procedure 

As soon as a PE detects the failure of its PR-H (i.e., its request is not answered within a 
given timeout), it simply tries another PR of the operation scope for its registration and 
deregistration requests. However, as a double safeguard, the remaining PRs also negotiate 
a takeover of the PEs managed by a dead PR. This ensures that each PE again gets a 
working PR-H as soon as possible. The PRs of an operation scope monitor the 
availability of each other PR by using ENRP presence messages, which are transmitted 
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regularly. If there is no ENRP presence within a given timeout, the peer is assumed to be 
dead and a so-called takeover procedure (see also Zhou et al., 2009b, for details) is 
initiated for the PEs managed by the dead PR: from all PRs having started this takeover 
procedure, the PR with the highest PR ID takes over the ownership of these PEs. The PEs 
are informed about being taken over by their new PR-H via an ASAP endpoint keep-alive 
with home-flag set. The PEs are requested to adopt the sender of this home-flagged 
message as their new PR-H. 

3.4 PU operations 

In order to access the service of a pool given by its PH, a PU requests a PE selection from 
an arbitrary PR of the operation scope, again by using ASAP. This selection procedure is 
denoted as handle resolution. Upon reception of a so-called ASAP handle resolution 
message the PR selects the requested list of PE identities and returns them in an ASAP 
handle resolution response message. The pool-specific selection rule is denoted as pool 
policy. Two classes of load distribution policies are supported: non-adaptive and adaptive 
strategies (a detailed overview is provided by Dreibholz, 2007; Dreibholz and Rathgeb, 
2005b, 2008a). While adaptive strategies base their selections on the current PE state 
(which requires up-to-date information), non-adaptive algorithms do not need such data. 
A basic set of adaptive and non-adaptive pool policies is defined as RFC by Dreibholz 
and Tüxen (2008). 

Relevant for this article are the non-adaptive policies round robin (RR) and random 
(RAND) as well as the adaptive policies least used (LU) and least used with degradation 
(LUD). LU selects the least-used PE, according to up-to-date application-specific load 
information. RR selection is applied among multiple least-loaded PEs. LUD, which is 
evaluated by Zhou et al. (2008), furthermore introduces a load decrement constant which 
is added to the actual load each time a PE is selected. This mechanism compensates 
inaccurate load states due to delayed updates. An update resets the load to the actual load 
value. It is important to differentiate policies between stateful and stateless, as is 
explained by Dreibholz and Rathgeb (2005b): for a stateful policy, a selection is 
influenced by the previous choice. For example, the ‘in turn’ selection of RR is stateful. 
LUD is also stateful. On the order hand, LU and RAND are stateless; they will – 
regardless of a previous selection – return a least-loaded or random element. 

A PE may fail, e.g., due to hardware or network failures. Since there is a certain 
latency between the actual failure of a PE and the removal of its entry from the  
handle-space – depending on the interval and timeout for the ASAP endpoint keep alive 
monitoring – the PUs may report unreachable PEs to a PR by using an ASAP endpoint 
unreachable message. A PR locally counts these reports for each PE and when reaching 
the threshold MaxBadPEReports (default is 3, as defined in the RFC by Stewart et al., 
2008), the PR may decide to remove the PE from the handle-space. The counter of a PE 
is reset upon its re-registration. More details on this threshold and guidelines for its 
configuration can be found in Dreibholz and Rathgeb (2009). 

3.5 A handle-space example 

Figure 5 depicts an example of a handle-space containing four pools. The pool using the 
PH ‘compute pool’ consists of 3 dual-homed PEs (IPv4 and IPv6). Since its pool policy is 
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LU, the handle-space also stores the latest known load state of each PE. Clearly, the next 
handle resolution in this pool will return PE #7466, since its load state is lowest. 

Figure 5 A handlespace example (see online version for colours) 

 

3.6 Automatic configuration 

RSerPool components need to know the PRs of their operation scope. While it is of 
course possible to configure a list of PRs into each component, RSerPool also provides 
an auto-configuration feature: PRs may send so-called announces, i.e., ASAP announce 
and ENRP Presence messages which are regularly sent over UDP via IP multicast. Unlike 
broadcasts, multicast messages can also be transported over routers (at least, this is easily 
possible within LANs). The announces of the PRs can be heard by the other components, 
which can maintain a list of currently available PRs. That is, RSerPool components are 
usually just turned on and everything works automatically. 

An example is provided by Figure 6 for the ASAPbased PU/PE configuration: all PEs 
and PUs within the multicast domain (e.g., a company or department LAN) can learn the 
identity of the PE automatically. Components outside of this domain (e.g., off-site 
systems in the internet) need manual configuration. 

3.7 The RSerPool protocol stack 

Figure 7 presents an illustration of the RSerPool protocol stack: a PR provides ENRP and 
ASAP services to PRs and PEs/PUs respectively. But between PU and PE, ASAP 
provides a session layer protocol in the OSI model. This makes ASAP the first IETF 
standard for a session layer protocol. From the perspective of the application layer, the 
PU side establishes a session with a pool. ASAP takes care of selecting a PE of the pool, 
initiating and maintaining the underlying transport connection and triggering a failover 
procedure when the PE becomes unavailable. 

The transport layer protocol is by default SCTP over possibly multi-homed  
IPv4 and/or IPv6 – except for the UDP-based automatic configuration announces  
(see Subsection 3.6) which are not shown here for readability reasons. 
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Figure 6 Automatic configuration by ASAP announces (see online version for colours) 

 

Figure 7 The RSerPool protocol stack (see online version for colours) 

 

3.8 Application scenarios 

While the initial motivation of RSerPool has been the availability of SS7 (Signalling 
System No. 7, see ITU-T, 1993) services over IP networks, it has been designed for 
application independence. Current research on the applicability and the performance of 
RSerPool includes application scenarios like VoIP with SIP (see Conrad et al., 2002), 
SCTP-based mobility (see Dreibholz et al., 2003), web server pools, e-commerce systems 
(see Dreibholz, 2002), video on demand (see Maharana and Rathna, 2006), battlefield 
networks (see Uyar et al., 2004), IP flow information export (IPFIX) (see Dreibholz et 
al., 2009a) and workload distribution (see Dreibholz and Rathgeb, 2008b). 

A detailed comparison of the RSerPool architecture to other frameworks and 
protocols for load balancing and service availability – including DNS, CORBA and 
Layer-4/Layer-7 switching – is provided by Loughney et al. (2005). We neglect a further 
overview here, since this would exceed the scope of this article. 
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4 Attack threats on RSerPool systems 

The SCTP protocol – as introduced in Section 2 – already contains the four-way 
handshake and the verification tag as countermeasures against blind flooding attacks  
(see also Hohendorf et al., 2007). Furthermore, chunk authentication can be applied to 
avoid association hijacking, which is particularly useful when using dynamic address 
reconfiguration in changing network environments. SCTP as the underlying transport 
protocol already prevents simple address spoofing attacks: each network-layer address 
under which a PE is registered must be part of the SCTP association between PE and PR. 
The ASAP protocol (see Stewart et al., 2008) requires the addresses to be validated by 
SCTP. But it is just sufficient for an attacker to hold a registration association to the PR 
and silently drop all incoming PU requests. 

As defined for RSerPool in the RFC by Stillman et al. (2008), the application of TLS 
(see Jungmaier et al., 2002), IPsec (see Bellovin et al., 2003) or secure SCTP  
(see Unurkhaan, 2005) is required in order to ensure authenticity, integrity and 
confidentiality. Nevertheless, relying on these techniques alone is still not sufficient: a 
component having authenticated successfully may still be misbehaving – for example 
when it is taken over by an attacker. Therefore, it is important to analyse the implications 
to the service under denial of service (DoS) attack situations, in order to apply effective 
attack countermeasures. Such counter-measures should at least reduce the impact of 
attacks on the performance of the system. 

Table 1 lists the attack threats on RSerPool systems for the protocols ENRP and 
ASAP. These attack threats and their impact will be explained in the following 
subsections. 

Table 1 Attack threats on the RSerPool systems 

Protocol Attacker role Threat Solved by authentication 

ENRP Registrar Fake ENRP announce Yes 
ENRP Registrar Handlespace manipulation Yes 
ENRP Registrar Takeover manipulation Yes 
ASAP Registrar Fake ASAP announce Yes 
ASAP Registrar Hostile takeover Yes 
ASAP Registrar Malicious responses to PEs Yes 
ASAP Registrar Malicious responses to PUs Yes 
ASAP PE Registration hijacking Partly 

ASAP PE Deregistration hijacking Partly 

ASAP PE Registration/re-registration flooding Partly 

ASAP PE Deregistration flooding Partly 

ASAP PE Fake registration No 
ASAP PU Handle resolution flooding No 
ASAP PU PE impeachment No 
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4.1 Threats on the ENRP protocol 

The ENRP protocol is highly security-critical. An attacker gaining ENRP access to a PR 
is able to perform the following attacks: 

• Fake ENRP announce: an attacker may announce itself as PR, using UDP-based 
multicast ENRP presence messages (see Subsection 3.6). Since UDP is  
connection-less, an attacker may even apply IP-spoofing and send such announces 
from an arbitrary location within the same multicast domain. The effort to perform 
this kind of attack is therefore very small – but its impact on the system is very high. 

• Handlespace manipulation: The attacker is able to arbitrarily manipulate the content 
of the handlespace (e.g., by adding or removing PE entries, modifying policy 
information, etc.). 

• Takeover manipulation: The ENRP takeover mechanism can be used to take 
ownership of all PEs in the handlespace. After that, the PEs will adopt the attacker’s 
PR as their PR-H and the attacker gains control over the synchronisation of all 
handlespace information with the real PRs. 

Under the assumption that an attacker cannot obtain a valid PR identity, the usage of 
authentication will solve the attack threats on ENRP. Furthermore, for redundancy 
reasons a number of 2 to 5 PRs is realistic for an operation scope (see also Zhou et al., 
2009b). The PRs can be placed at protected places (e.g., locked server rooms, etc.), so 
that the possibility of attackers to directly manipulate a PR remains small. These 
properties make the likeliness of ENRP-based attacks quite small. However, in 
Subsection 5.1, we will discuss some further countermeasures against such attacks. 

4.2 Threats on the ASAP protocol 

While the ENRP protocol is only used among the small number of PRs, ASAP is used 
among all RSerPool components. In large setups, the number of PEs and Pus may easily 
reach several thousands of PEs and PUs (see also Dreibholz and Rathgeb, 2008a) which 
are located at much less protected places (e.g., even on end-user PCs). The probability of 
attacks on the ASAP protocol is therefore significantly higher. 

4.2.1 A malicious registrar 

The first four ASAP-based attack threats are attackers in the role of malicious PRs: 

• Fake ASAP announce: Similar to ENRP-based fake announces, an attacker can send 
fake ASAP announces, via UDP-based multicast messages from anywhere in the 
multicast domain. This can lead to PEs and PUs using the attacker’s system as PR. 

• Hostile takeover: In order to let a PE adopt the attacker’s PR as PR-H, it has to send 
ASAP endpoint keep-alive messages with home-flag set (see Subsection 3.3). To 
perform this attack, the attacker only has to guess the ASAP endpoint address of the 
PE: its IP addresses are known (they may be obtained by a handle resolution), only 
the 16-bit SCTP port number has to be guessed. 
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• Malicious responses to PEs: An attacker can claim to be a PR, so that it is chosen by 
PEs as their PR-H. By just returning valid responses to the ASAP registration 
messages, the PEs will not become known in the ‘real’ pool, i.e., their service cannot 
be used by PUs. 

• Malicious responses to PUs: PUs assuming the attacker to be a PR will use it for  
PE selections. The attacker can simply return an empty list, which means for a  
PU that the pool is currently empty (and the requested service is currently 
unavailable). 

Under the assumption that an attacker cannot obtain the identity of a PR in the operation 
scope, authentication will solve the problem of malicious PRs: a PR has to authenticate to 
a PE or PU, which ensures that the PR is valid. In Subsection 5.1, we will discuss some 
mechanisms to cope with untrustworthy PRs. 

4.2.2 A malicious PE 

An attacker in the role of a PE introduces the following threats: 

• Registration hijacking registrations: and re-registrations may be performed at an 
arbitrary PR of the operation scope. If the PE is already registered, a further 
registration simply updates the existing registration. PEs are identified by their PE 
ID, i.e., an attacker just has to use the known ID of a PE to hijack its registration. 
Particularly, the registration update by the attacker could contain malicious policy 
information or wrong transport addresses. 

• Deregistration hijacking: Similar to registration hijacking, the attacker can perform 
the same kind of attack with a deregistration. A known PE (identified by its PE ID) 
will be removed from the handlespace. 

• Registration/re-registration flooding: An attacker can flood its PR-H with ASAP 
registration messages. The PR-H will propagate these updates to all other PRs  
in the handlespace. These operations consume CPU power and/or memory at the 
PRs. 

• Deregistration flooding: Like for the registration/re-registration flooding, a similar 
kind of attack is possible with deregistrations. 

• Fake registration: An attacker can create fake registrations. By appropriately 
configuring the policy information of such fake entries, they will be selected upon 
handle resolution; PUs try to contact the fake PEs which of course will not provide 
any (useful) service. We will demonstrate this problem in Subsection 8.1. 

The authentication of PEs to their PR-H will not fully solve these problems: as soon as an 
attacker can obtain a valid PE authentication, [e.g., by exploiting a software bug on one 
of the possibly thousands of PEs in an operation scope (see Dreibholz and Rathgeb, 
2008a)], its ASAP registration and ASAP deregistration messages are processed by PRs. 
We will discuss the impact of such attacks and countermeasures in Subsection 5.2. 
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4.2.3 A malicious PU 

An attacker in the role of a PU introduces the following threats: 

• Handle resolution flooding: An attacker can flood a PR with ASAP handle 
resolution messages. The resulting PE selections not only consume CPU power but 
can – in combination with a stateful pool policy (see Subsection 3.4) – also influence 
the selection performance. We will demonstrate this problem in Subsection 8.3. 

• PE impeachment: When using PU-based endpoint monitoring (see Subsection 3.4), 
the attacker can use ASAP endpoint unreachable reports to impeach PEs, i.e., to let a 
PR assume them as dead and remove them from the handlespace. The performance 
impact of such an attack is very severe, as we will show in Subsection 8.3. 

Similar to the PE-based attacks, also the authentication of PUs will not fully solve these 
threats: having stolen a valid PU authorisation, the ASAP handle resolution and ASAP 
Endpoint Unreachable messages will be processed by PRs. Countermeasures to this kind 
of attacks will be presented in Subsection 5.3. 

5 Our attack countermeasure mechanisms 

5.1 Countermeasures against malicious registrars 

Under the assumption of trustworthy PRs, the ENRP-based attack treats fake ENRP 
announce, handlespace manipulation and takeover manipulation (see Subsection 4.1) as 
well as the ASAP-based threats fake ASAP announce, hostile takeover and malicious 
responses to PEs and PUs can be solved by applying authentication of PRs to other PRs 
(ENRP) and PEs as well PUs (ASAP). 

In order to cope with untrustworthy PRs, ideas from the area of peer-to-peer (P2P) 
networks – where nodes cooperate with totally unknown and possibly hostile peers – 
could be adapted. Aberer and Despotovic (2001) present data structures and algorithms 
for P2P networks to assess trust by computing the reputation of an agent from its former 
interactions with other agents. But while the application of such mechanisms is also 
adaptable to the interaction with PRs, their application adds a significant level of 
complexity to the otherwise lightweight RSerPool framework. Therefore, their usefulness 
in the – presumably – controlled single administrative domain of an RSerPool operation 
scope may be limited. A more straightforward approach to cope with malicious PR 
behaviour in the operation scope may be to keep the PRs and the performance of the 
pools under a tight control by monitoring, e.g., based on the RSerPool SNMP interface 
defined as RFC by Dreibholz and Mulik (2009). 

5.2 Countermeasures against malicious PEs 

Registration and deregistration hijacking 

In order to cope with the threats of registration and deregistration hijacking, it is 
necessary to ensure that the PE identity performing a re-registration or deregistration is 
the same that has been performed the original registration. It is therefore necessary to add 
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certified identity information into the ASAP registration and ASAP deregistration 
messages (which currently contain PH and PE ID only). Then, the PR can distribute this 
information by ENRP Update messages having this information also added. This allows 
for checking the validity of re-registrations and deregistrations by all PRs of the operation 
scope. 

(Re-)registration and deregistration flooding 

When successfully authenticated as PE, an attacker can perform (re-)registration and 
deregistration flooding, i.e., trying to overload the PR's CPU capacity by such requests. 
However, the handlespace management of RSerPool systems can be realised very 
efficiently when using appropriate data structures for the information storage. Dreibholz 
and Rathgeb (2008a) show that even a low-performance CPU is able to handle many 
thousands of such operations per second. Further combining a rate threshold with the 
authenticated identity will solve the attack problem. 

Fake registration 

Without further countermeasure mechanisms, an authenticated PE may perform an 
almost infinite number of registrations. Using a new PE ID in each ASAP registration 
message, the handlespace can be flooded with fake PE entries. Therefore, the starting 
point for a countermeasure is a restriction of the number of PE registrations a single PE 
identity is allowed to create. In order to retain the ‘lightweight’ property of RSerPool (see 
Dreibholz and Rathgeb, 2008a) and to avoid synchronising such numbers among PRs, 
our countermeasure approach first introduces a so-called registration authorisation ticket 
(suggested by us in Dreibholz et al., 2008), which consists of: 

1 the pool’s PH and a fixed PE ID (or an ID range for proxy PEs) 

2 minimum/maximum policy information settings (e.g., a lower bound on the LUD 
load decrement) 

3 a signature of the ticket by a trustworthy authority (to be explained below). 

Since ASAP messages use a TLV structure (see Dreibholz, 2007, Section 3.8, for a 
detailed description), it is easily possible to add the registration authorisation ticket to the 
ASAP registration message sent from the PE to its PR-H. Using the ticket, the PR-H can 
verify the validity of the request by checking the signature and ensuring that the PE's 
policy settings are within the valid range granted by the ticket. These checks are possible 
with additional time complexity in O(1). As a result, an attacker stealing the identity of a 
real PE would only be able to masquerade as this specific PE. Particularly, it is neither 
necessary to change the protocols (except for adding the ticket TLV structure described 
above) nor to perform additional ENRP-based synchronisation of authorisation 
information among the PRs of the operation scope. Our approach only requires a trusted 
authority for issuing the tickets, e.g., a Kerberos service (see Neuman et al., 2005, for 
details). Due to the restriction of RSerPool to a single administrative domain (as 
described in Section 3), the effort to fulfil this requirement is feasible at reasonable costs 
– and this effort is worthwhile, as we will show in Subsection 8.2. 
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5.3 Countermeasures against malicious PUs 

PE impeachment 

PU-based endpoint monitoring using ASAP endpoint unreachable messages to report 
failed PEs empowers a malicious PU to impeach PEs. In order to cope with this problem, 
we first introduce a PU identification which is certified by a trusted authority and which 
can be verified by the PR (similar to the registration authorisation ticket for PEs, as 
explained in Subsection 5.2). This allows for tracking the number of failure reports sent 
by a PU for a certain pool (given by its PH): the PR simply has to memorise (to be 
explained later) the PH for which a certain PU has reported unreachable PEs. After that, 
multiple reports coming for the same pool can simply be ignored. Since the 
unreachability count for each PE is a PR-local variable, no synchronisation among PRs is 
necessary. That is, an attacker is unable to cause harm to the service by simply sending its 
unreachability reports for the same PE to different PRs. 

Storing each reported PE identity would be exploitable in the form of a so-called 
computational complexity attack as introduced by Crosby and Wallach (2003). An 
attacker would just have to send a large number of ASAP endpoint unreachables with 
random PE IDs to exhaust the memory of the PR. Therefore, our approach applies a  
hash-based per-PU report blackboard (as suggested by us in Zhou et al., 2009a): the hash 
function Ψ maps a PE’s PH into a bucket: 

(PH) (PH) MOD number of buckets.Ψ = Φ  

Φ denotes a hash function that is not easily guessable by the attacker. This property is 
provided by so-called universal hash functions (see Crosby and Wallach, 2003 for 
details), which are – in contrast to cryptographic hash functions like MD5 (see Rivest, 
1992) or SHA1 (see Eastlake and Jones, 2001) – very efficiently computable. 

Each bucket contains the time stamps of the latest up to MaxEntries ASAP endpoint 
unreachable messages for the corresponding bucket. Then, the endpoint unreachable 
report rate can be calculated as: 

EU
last first

Number of time stampsRate
TimeStamp TimeStamp

=
−

 (1) 

Upon reception of an ASAP Endpoint unreachable from a PU, a PR has to update the 
corresponding bucket entry of the reported PE. If the rate in equation (1) exceeds the 
configured threshold MaxEURate, the unreachability report is silently ignored. The time 
complexity as well as the space complexity for this operation are in O(1). 

Handle resolution flooding attack countermeasures 

In order to cope with handle resolution flooding, a hash-based approach similar to our 
countermeasure against PE impeachment attacks can be applied by introducing the 
handle resolution rate threshold MaxHRRate. When this threshold is exceeded, the PR 
returns an empty list in the ASAP handle resolution response. This indicates a currently 
empty pool and a legitimate PU would therefore try again some time (e.g., one minute) 
later. 
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5.4 Countermeasure alternatives 

Schöttle et al. (2008) presents statistical anomaly detection as an alternative approach for 
detecting and handling attacks: instead of specifying fixed thresholds, the behaviour of 
the majority of nodes is assumed to be ‘normal’. Differing behaviour – which is 
necessary for an effective attack – is denoted as an anomaly. However, this approach can 
– by definition – only detect attackers if their number is smaller than the number  
of legitimate components. Furthermore, obtaining the ‘normal’ behaviour is more 
resource-intensive than simple thresholds. But the advantage of this approach is that the 
system can automatically adapt to a changing environment, e.g., the deployment or 
testing of new applications. 

6 Quantifying an RSerPool system 

As application model for our quantitative performance analysis, we use the model of 
Dreibholz (2007): the service provider side of an RSerPool system consists of a pool of 
PEs. Each PE has a request handling capacity, which we define in the abstract unit of 
calculations per second. An application-specific view of capacity may be mapped to this 
definition, e.g., CPU cycles. Each request consumes a certain number of calculations; we 
call this number request size. A PE can handle multiple requests simultaneously – in a 
processor sharing mode as provided by multitasking operating systems. 

On the service user side, there is a set of PUs. The number of PUs can be given by the 
ratio between Pus and PEs (PU:PE ratio), which defines the parallelism of the request 
handling. Each PU generates a new request in an interval denoted as request interval. 
Requests are queued and sequentially assigned. 

The total delay for handling a request dHandling is defined as the sum of queuing delay 
dQueuing, startup delay dStartup (dequeuing until reception of acceptance acknowledgement) 
and processing time dProcessing (acceptance until finish): 

Handling Queuing Startup Processing .d d d d= + +  (2) 

That is, dHandling not only incorporates the time required for processing the request, but 
also the latencies of queuing, server selection and message transport. The user-side 
performance metric is the handling speed, which is defined as: 

Handling

RequestSizeHandlingSpeed .
d

=  

For convenience, the handling speed (in calculations/s) is represented in % of the average 
PE capacity. 

Using the definitions above, it is possible to delineate the average system utilisation U 
(for NumPEs servers and total pool capacity PoolCapacity) as: 

RequestSize
RequestIntervalU NumPEs*puToPERatio* .
PoolCapacity

=  (3) 
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Obviously, the provider-side performance metric is the system utilisation, since only 
utilised servers gain revenue. In practise, a well-designed client/server system is 
dimensioned for a certain target system utilisation of e.g., 50%. By setting any two of the 
parameters (PU:PE ratio, request interval and request size), the value of the third one can 
be calculated using equation (3) (see also Dreibholz, 2007; Dreibholz and Rathgeb, 
2005b). 

7 System setup 

For our performance analysis, we have used our OMNeT++-based RSerPool simulation 
model RSPSIM (see Dreibholz and Rathgeb, 2005b) as well as our implementation 
RSPLIB (see Dreibholz and Rathgeb, 2007; Dreibholz, 2007; Zhou et al., 2010) [which is 
also the RSerPool reference implementation of the IETF, see Lei et al. (2008), Chapter 5] 
for measurements in a PlanetLab setup. Both – simulation model and implementation – 
contain the protocols ASAP and ENRP, a PR module, an attacker module and PE as well 
as PU modules for the request handling application defined in Section 6. 

The PlanetLab (see Peterson and Roscoe, 2006) setup distributes the components to 
different machines in the USA. This country provides a sufficient number of PlanetLab 
nodes and a country-wide setup is also realistic for an RSerPool setup in a large 
company, in order to protect a critical service against e.g., earthquakes, power failures or 
terrorist attacks. By ping-based tests, we have observed inter-node network delays of 
about 20 ms to 30 ms. 

The Linux-based PlanetLab nodes only support the protocols TCP and UDP, i.e., in 
particular the Linux Kernel SCTP module (LK-SCTP) is not provided. Unlike for our lab 
measurements in Zhou et al. (2009a), we therefore had to use our own userland SCTP 
implementation of Jungmaier (2005). The restriction of PlanetLab to TCP and UDP 
furthermore made it necessary to tunnel our SCTP traffic over UDP using the ‘SCTP over 
UDP’ encapsulation defined in Tüxen and Stewart (2007). Since our ASAP and ENRP 
messages are small compared to the usual MTU (i.e., 1,500 bytes) and bandwidth is not 
the limiting factor, the additional per-packet overhead of 8 bytes is negligible. 

For our simulation and measurement setup, which is depicted in Figure 8, we use the 
following parameter settings unless otherwise specified: 

• The target system utilisation is 50%. Request size and request interval are 
randomised using a negative exponential distribution [in order to provide a generic 
and application-independent analysis (see Dreibholz and Rathgeb, 2005b)]. There are 
10 PEs; each one provides a capacity of 106 calculations/s. 

• A PU:PE ratio of 3 is used [i.e., a non-critical setting as explained in Dreibholz 
(2007)]. 

• We use a request size:PE capacity setting of 10; i.e., being processed exclusively, the 
average processing takes 10s – see also Dreibholz and Rathgeb (2005b). 

• There is a single PR only, since we do not examine PR failure scenarios here (see 
Zhou et al., 2009b for such scenarios). PEs re-register every 30s (registration 
lifetime) and on every load change of the adaptive LU and LUD policies. 
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• MaxBadPEReports is set to 3 (default in RFC Stewart et al., 2008). A PU sends an 
endpoint unreachable if a contacted PE fails to respond within 10s (see also 
Dreibholz and Rathgeb, 2009). 

• The system is attacked by a single attacker node. 

• For the simulation, the simulated real-time is 120 min; each simulation run is 
repeated at least 24 times with a different seed in order to achieve statistical 
accuracy. The inter-component network delay is 25 ms, which corresponds to the 
PlanetLab observations above. 

• Each measurement run takes 15 min; each run is repeated at least 12 times. 

For statistical post-processing of the results, the SimProcTC tool-chain described by 
Dreibholz et al. (2009b) is used. Each resulting plot shows the average values and their 
95% confidence intervals. 

Figure 8 The RSerPool system setup used for the analyses (see online version for colours) 

 

8 Performance evaluation 

The PR-based attack threats on RSerPool systems (see Section 4) can be solved by just 
applying authentication. We neglect the possibility of malicious PRs here, since 
mechanisms to judge the trustworthiness of PRs (see Subsection 5.1) would exceed the 
scope of this article. Registration and deregistration hijacking as well as (re-)registration 
and deregistration flooding can be solved easily with a modified authentication procedure 
(as described in Subsection 5.2), which is quite obvious. 
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Therefore, the focus of our performance evaluation is to show the impact of the most 
severe attack threats – fake registration, handle resolution flooding and PE impeachment 
– as well as the performance of our countermeasures proposed in Section 5. 

8.1 The impact of a fake registration attack without countermeasures 

The intention of an attacker performing a fake registration (see Sub-subsection 4.2.2) 
attack is to send ASAP Registrations to a PR. Each registration request only has to 
contain another (e.g., randomly chosen) PE ID. The policy parameters can be set 
appropriately – e.g., a load of 0% (LU and LUD) and a load increment of 0% (LUD) – in 
order to ensure that the fake PE entry is chosen upon a handle resolution as frequently as 
possible. 

Figure 9 presents the simulation results for the average request handling speed during 
a fake registration attack. Since the corresponding PlanetLab measurement results show a 
similar behaviour, a plot for the measurements has been omitted. The number of fake 
registrations per second – denoted as attack frequency F – is varied from 0s–1 (no attack) 
to 1s–1. Already for F = 0.1s–1 – which means just one fake registration every 10s – a 
significant degradation of the service performance can be observed. For using the LUD 
policy Zhou et al. (2008), this already leads to a complete DoS: an unloaded PE (i.e., its 
load is 0%) whose load never increases when accepting a new request (i.e., its load 
increment is 0%) appears to be a really good choice for a PU. As a result, the PUs will 
exclusively select the fake PE entries. Using F = 0.8s–1, the attacker also achieves a 
complete DoS for the other policies. That is, already for sending less than one attack 
message per second – which is easily feasible over a modem connection – the attacker 
can entirely stem a service. 

Figure 9 The impact of a fake registration attack without countermeasures (see online version for 
colours) 
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8.2 Applying countermeasures against malicious PEs 

To countermeasure the fake registration attack, we now apply our approach presented in 
Subsection 5.2. Figure 10 presents the handling speed results for an attack frequency of  
F = 10s–1 (i.e., a ten times higher attack intensity than in the DoS case of the unprotected 
scenario presented in Subsection 8.1) per attacker for varying the number of attackers α 
from 0 (i.e., no attack, for comparison) to 10. The left-hand plot presents the simulation 
results, the right-hand plot shows the PlanetLab measurement results. Note that α = 10 
attacker PEs means to have as many attackers as there are legitimate PEs in the pool. In 
particular, the attacker would have to steal 10 registration authorisation tickets in order to 
perform such an attack. That is, a significant effort by the attacker is necessary. 

Obviously, our countermeasure approach is quite effective: even for α = 10, the 
handling speed only halves at most – but the service which is provided by the 10 real PEs 
of the pool still remains operational and the attack impact is not even close to a DoS. The 
results obtained from the PlanetLab measurements correspond to the simulation results, 
i.e., our countermeasure approach also works effectively in a real-world internet setup as 
well. 

It is important to note that the slightly different handling speed levels of the  
RSPLIB-based PlanetLab measurements in comparison to the RSPSIM simulation results 
are caused by the latencies of nodes (e.g., background PlanetLab slices, kernel, operating 
system, applications) and SCTP associations (e.g., packet scheduling, delay and jitter of 
the internet transport and packet retransmissions). These are – due to their complexity – 
not fully incorporated into the RSPSIM simulation model. Nevertheless, the tendency of 
the results is observed reasonably well. 

Figure 10 Applying countermeasures against pool-element-based attacks (see online version for 
colours) 

 

8.3 The impact of a malicious PU without countermeasures 

By performing a handle resolution flooding attack (see Sub-subsection 4.2.3), an attacker 
tries to flood the PR with handle resolution requests. Since the server selection procedure 
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can be realised very efficiently – as shown by Dreibholz and Rathgeb (2008a) – a very 
high attack bandwidth would be necessary to overload the CPU of the PR. However, even 
by just requesting a few handle resolutions – without actually using the service of a 
selected PE – the performance of the service may be affected. As an example, the impact 
of a handle resolution attack on the request handling performance of the simulation for 
varying the attack frequency F (i.e., the delay between two consecutive handle resolution 
requests) is shown in Figure 11. Since the PlanetLab measurement results are quite 
similar, we omit a further plot here. For the PE entries chosen by a handle resolution, an 
ASAP endpoint unreachable report (see Section 3) is sent with probability u, i.e., a PE 
impeachment attack is performed. We present the two extreme cases: u = 0% (i.e., no 
unreachability reports – represented by solid lines) and u = 100% (i.e., worst case – 
represented by dotted lines). 

Due to the stateful operation of the RR policy, the performance is even degraded for 
this policy by a setting of u = 0%: some PEs of the ‘in turn’ selection are skipped (since 
they are not actually used for processing a request), leading to the usage of less 
appropriate PEs for real requests. LUD is affected in a similar way by increased load 
values. Since LU and RAND are ‘stateless’, they are not affected by this kind of attack. 

The impact of reporting all PEs as being unreachable by ASAP endpoint unreachables 
– i.e., u = 100% – is dramatic: PEs are kicked out of the handlespace, and the handling 
speed quickly sinks and leads – here at about F = 10s–1, i.e., only 10 reports/s – to a 
complete DoS. 

Again, a modem or ISDN connection provide sufficient bandwidth to perform this 
kind of attack. 

Figure 11 The impact of a malicious endpoint unreachable report attack without countermeasures 
(see online version for colours) 
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8.4 Applying countermeasures against malicious PUs 

To countermeasure the handle resolution and PE impeachment attacks, we apply our 
approach presented in Subsection 5.3 by setting MaxHRRate = 1s–1 (i.e., 60 times  
more than the actual handle resolution rate of the application) and MaxEURate = 1s–1 
(i.e., by orders of magnitude higher than a realistic PE failure rate) for varying the  
attack frequency of one attacker. The resulting request handling speed performance  
is shown in Figure 12; the left-hand plot presents the simulation results and the  
right-hand plot displays the corresponding PlanetLab measurement results. The 
probabilities for sending ASAP endpoint unreachable reports (i.e., for actually 
performing PE impeachment attacks) are u = 100% (worst case) and u = 0% (for 
comparison). 

For the stateful policies RR and LUD, the attacker is able to reduce the handling 
speed until triggering the countermeasure mechanism. After that, the attacker is ignored 
and the performance remains as for attacker-free scenarios. For the stateless RAND 
policy, the attack has no impact; for the LU policy, the attacker only has an impact when 
using unreachability reports. Interestingly, this effect is stronger for the PlanetLab 
measurements than for the simulation: this effect is caused by the latency of the PE load 
state updates in the internet (which may vary due to node latencies and congestion): since 
the load value of a PE only changes on re-registration, a least-loaded PE entry may be 
selected multiple times in sequence. That is, the attacker will send multiple unreachability 
reports for the same PE. As long as the rate threshold is not yet reached, the PE entry may 
be impeached. However, the attacker is ignored and the performance returns to the 
original level of an attacker-free system setup as soon as the countermeasure threshold is 
reached. 

Figure 12 Applying countermeasures against handle resolution flooding and PE impeachment 
attacks (see online version for colours) 
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Figure 13 Varying the number of pool-user-based attackers with applying countermeasures  
(see online version for colours) 

 

Just a single attacker using an attack frequency of F = 10s–1 has been able to cause a 
complete DoS when not applying countermeasures (see Subsection 8.3). Therefore, 
Figure 13 presents the performance results for applying our countermeasures at F = 10s–1 
and u = 100% (i.e., the worst case of a PE impeachment attack) and a varying number of 
attackers α from 0 (i.e., no attack, for comparison) to 10. Again, the simulation results are 
presented in the left-hand plot while the PlanetLab measurement results can be found in 
the right-hand plot. Obviously, the presented results show that even α =10 attackers have 
no significant impact on the system performance – neither in the simulation nor in the 
real-world internet setup – any more. Furthermore, ten attackers means that the 
authorisation data of ten legitimate components has been stolen. Inside the restricted 
operation scope of an RSerPool setup (see Section 3), the effort of applying such an 
attack is assumed to be quite high and non-trivial. 

9 Conclusions 

In this article, we have given an overview of the DoS attack threats on RSerPool systems 
and have shown countermeasures to improve the robustness of the systems against them. 
Authentication of components alone cannot fully prevent such attacks. We have shown 
that fake registration, handle resolution flooding and PE impeachment attacks can easily 
cause a complete DoS. In order to cope with this threat, we have introduced 
countermeasure approaches which have shown to be effective – in simulations as well as 
in reality. The simulation results correspond to the measurements, i.e., we have also 
validated the correctness of our simulation model. Furthermore, our approaches are 
efficiently realisable – which is necessary to keep the RSerPool architecture lightweight. 

The IETF standardisation process for RSerPool has just reached a major milestone by 
publication of its basic protocol documents as RFCs. Since the early beginnings of this 
process we have contributed our ideas, evaluations and improvements for the RSerPool 
framework. The goal of our ongoing work is to provide comprehensive security and 
configuration guidelines for application developers and users of the new RSerPool 
standard. 
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