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Abstract 

Currently, the IETF RSerPool WG is standardizing a generic protocol framework for 

server redundancy and session failover: Reliable Server Pooling (RSerPool). An important 

property of RSerPool is its lightweight architecture: server pool and session management can 

be realized with small CPU power and memory requirements. That is, RSerPool-based 

services can also be managed and provided by embedded systems. Up to now, there has 

already been some research on the performance of the data structures managing server 

pools. But a generic, application-independent performance analysis – in particular also 

including measurements in real system setups – is still missing. 

The aim of this article is therefore – after giving an outline of the RSerPool framework, an 

introduction to the pool management procedures and a description of our pool management 

approach – to first provide a detailed performance evaluation of the pool management 

structures themselves. Afterwards, the performance of a prototype implementation is analysed 

in order to evaluate its applicability in a real network setup. 

Keywords: RSerPool, Server Pools, Handlespace Management, SCTP, Performance, 

Measurements 

1. Introduction and Scope 

In today’s Internet, service availability is getting increasingly important. But – in strong 
contrast to the telecommunications world, where availability is ensured by redundant devices 
[1] and links – there had not been any generic, standardized approaches for the availability of 
Internet-based services. Each application had to realize its own solution and therefore to re-
invent the wheel again. This deficiency – once more arisen for the availability of SS7 
(Signalling System No. 7 [2]) services over IP networks – had been the initial motivation for 
the IETF RSerPool WG to define the Reliable Server Pooling (RSerPool) framework. The 
basic ideas of RSerPool are not entirely new (e.g. [3,4] present approaches for TCP 
connection migration), but their combination into a single, application-independent 
framework is.  

The Reliable Server Pooling (RSerPool) architecture currently under standardization by the 
IETF RSerPool WG is an overlay network framework to provide server replication and 

                                                           
1 Parts of this work have been funded by the German Research Foundation (Deutsche Forschungsgemeinschaft). 
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session failover capabilities to its applications [5,6]. In particular, server redundancy leads to 
the issues of load distribution and load balancing [7], which are also covered by RSerPool 
[8,9,10,11]. But in contrast to already available solutions in the area of GRID and high-
performance computing [12], the RSerPool architecture is intended to be “lightweight”. That 
is, RSerPool may only introduce a small computation and memory overhead for the 
management of pools and sessions [13,14]. This particularly means the limitation to a single 
administrative domain and only taking care of pool and session management – but not for 
tasks like data synchronization, locking and user management (which are considered to be 
application-specific). On the other hand, these restrictions allow for RSerPool components to 
be situated on embedded devices like telecommunications equipment or routers.  

There has already been some research on the performance of RSerPool for applications 
like SCTP-based mobility [15,16], VoIP with SIP [17], e-commerce scenarios [18], web 
server pools [19], IP Flow Information Export (IPFIX) [20,21], management of virtual 
systems [22], real-time distributed computing [6,8,10,23,11,24,25] and battlefield networks 
[26]. Furthermore, some ideas and rough performance estimations for the pool management 
have been described in our paper [14]. But up to now, a detailed performance analysis of 
these data structures, as well as an evaluation of the pool management overhead in a real 
system setup, are still missing. The goal of our work is therefore to provide these analyses. In 
particular, we intend to identify critical parameter spaces to provide guidelines for designing 
and provisioning efficient RSerPool systems. 

2. The RSerPool Architecture 

 

Figure 1. The RSerPool Architecture 

 

 

Figure 2. The RSerPool Protocol Stack 
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Figure 1 provides an illustration of the RSerPool architecture, as defined in [27]; the 
protocol stack is presented in figure 2. RSerPool consists of three component classes: servers 
of a pool are called pool elements (PE). A pool is identified by a unique pool handle (PH) in 
the handlespace, which is the set of all pools. The handlespace is managed by pool registrars 
(PR). PRs of an operation scope synchronize their view of the handlespace using the Endpoint 
haNdlespace Redundancy Protocol (ENRP [28,29]). In the operation scope, each PR is 
identified by a PR ID. An operation scope has a limited range, e.g. a company or 
organization; RSerPool does not intend to scale to the whole Internet. Nevertheless, it is 
assumed that PEs can be distributed globally, for their service to survive localized disasters 
[23,6]. 

A PE can register into a pool at an arbitrary PR of the operation scope, using the Aggregate 
Server Access Protocol (ASAP [30,29]). In its pool, the PE will be identified by a random 32-
bit identifier which is denoted as PE ID. The PR chosen for registration becomes the Home-
PR (PR-H) of the PE and is in particular also responsible for monitoring the PE’s health by 
endpoint keep-alive messages. If not acknowledged, the PE is assumed to be dead and 
removed from the handlespace. Furthermore, PUs may report unreachable PEs; if a certain 
threshold of such reports is reached, a PR may also remove the corresponding PE. The PE 
failure detection mechanism of a PU is application-specific. A non-PR-H only sets a lifetime 
expiration timer for each PE (owned and monitored by another PR). If not updated by its PR-
H in time, a PE is simply removed from the local handlespace. 

A client is called pool user (PU) in RSerPool terminology. To use the service of a pool 
given by its PH, a PU requests a PE selection – which is called handle resolution – from an 
arbitrary PR of the operation scope, again using ASAP [30]. The PR selects the requested list 
of PE identities using a pool-specific selection rule, called pool policy. The maximum number 
of selected entries per request is defined by the constant MaxHResItems [31]. Adaptive and 
non-adaptive pool policies are defined in [32,33]; for a detailed discussion of these policies, 
see [8,9,10,11,34,35]. Relevant for this article are the non-adaptive policies Round Robin 
(RR) and Random (RAND) and the adaptive policy Least Used (LU). LU selects the least-
used PE, according to up-to-date load information; the actual definition of load is application-
specific. Round robin selection is applied among multiple least-loaded PEs [14]. 

The ASAP protocol also provides an optional Session Layer between a PU and a PE. That 
is, a PU establishes a logical session with a pool; ASAP takes care of the transport connection 
establishment, for the connection monitoring and for triggering a failover to a new PE in case 
of a failure (see [5,18]). All associations among the three RSerPool component types (see also 
figure 2) are usually based on the Stream Control Transmission Protocol (SCTP [36]), which 
in particular allows for path multi-homing (see [37,38] for details). 

3. Our Solution for an Efficient Handlespace Management 

Managing a handlespace is the crucial duty of the PR. Figure 3 presents an example for a 
handlespace. The pool with the PH “e-Shop Database” contains 3 PEs with the IDs 71, 144 
and 7466. Each PE has two IP addresses (one IPv4, one IPv6). Since the pool policy is LU, 
each PE also provides its load state as policy information. 
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Figure 3. A Handlespace Example 

 
3.1. Requirements to the Handlespace Management 

The handlespace management must provide two important properties, with regard to the 
“lightweight” requirement of the RSerPool architecture: 

• server pools may get large (up to many thousands of PEs [24,6]) and 

• there may be various pools, each one using its own policy for server selection [8,9] 
(and new applications may even introduce additional policies [23,10,11]). 

In order to keep such handlespaces maintainable, it is obviously necessary to use a unified 
storage structure (i.e. being usable for all policies) that can be realized efficiently. This 
handlespace data structure has to support the following six operations:  

1. Registration is the registration of a new PE.  
2. Deregistration denotes the removal of a PE entry.  
3. Re-Registration is an information update for an existing PE entry. In particular, a re-

registration is necessary to update the policy information of an adaptive policy (e.g. 
changing the load state for LU). 

4. Handle Resolution means the selection of PEs according to the pool’s policy (see [32] 
for details). 

5. Timer denotes scheduling and expiry of a handlespace timer (see also [6]). For a PR-H, 
this means scheduling a keep-alive transmission time, its timeout, scheduling a timeout 
for the keep-alive and cancelling it (on acknowledgement reception). For a non-PR-H, 
it denotes the scheduling of a registration’s lifetime expiration and its cancellation (for 
an update).  

6. Synchronization is the step-wise traversal of the complete handlespace, in order to 
support the block-wise transfer of the handlespace contents to another PR via ENRP 
(see [6] for a detailed example). 
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Figure 4. The Handlespace Structure 

 
3.2. Handlespace Structure and Realization of Pool Policies  

In [14], we have already proposed to realize the handlespace in form of multiple sets. 
Figure 4 illustrates our approach: a handlespace consists of a set of pools (Pools Set). Each 
pool contains a set of PE references sorted by PE ID (Index Set) and a set of these references 
sorted by a policy-specific sorting order (Selection Set). A policy is simply realized by 
specifying a sorting order for the Selection Set as well as defining a corresponding selection 
procedure. Usually, the selection procedure simply takes the first PE from the Selection Set. 
On selection of a PE entry, its position in the Selection Set is updated. In order to simplify the 
policy definition, we introduce two helper constructs: 

Sequence Numbers: Each pool element PEi of a pool containing PE1 to PEm gets a PE 
sequence number si, which is unique within the pool. The pool sequence number S is defined 
as:  

}},...,1{|max{1 misS i ∈+= , (1) 
 

i.e. the largest PE sequence number of the pool plus one. Upon registration, re-registration 
and selection of an element PEj, its sequence number sj is set to S and therefore S is increased 
by one according to its definition in equation 1 (i.e. uniqueness is preserved). Obviously, this 
operation can be realized in O(1)2 time.  

Weights and Weight Sum: Furthermore, each pool element PEi gets a weight constant 
wi>0. Then, the weight sum W of a pool is defined as 

 
 
 

Now, for any number r∈[1,…,W], exactly one PE j fulfils the condition  
 

     (2) 
 

Obviously, the weight sum maintenance can also be realized in O(1) time. 
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Using our helper constructs, the definition of policies gets rather easy. For example, the 
Selection Set sorting order for the LU policy is:  

1. The load state in ascending order and 
2. The sequence number in ascending order. 
The selection procedure is simply to take the first PE of the Selection Set. While the load 

state obviously ensures that a least-utilized PE is selected, the sequence number not only 
ensures uniqueness of the composed sorting key, but also provides a round robin selection 
among multiple least-loaded PEs. 

For RAND selection, the weight constant wi of each PE i corresponds to the PE’s 
proportional selection probability3. The selection procedure is to choose a random number 
r∈R[1,…,W] and take the element PEi that uniquely satisfies equation 2. Using a uniform 
distribution for the choice of r, the selection provides the desired behaviour of the RAND 
policy. For further policy examples, see [14,39]. 
 

3.3. Timer Schedule 

Next to policy realization, the handlespace management also has to maintain the PE timers: 
• A keep-alive transmission timer schedules the transmission of an ASAP keep-alive 

to a PE.  
• A keep-alive timeout timer schedules the timeout for the PE’s answer. 
• A lifetime expiry timer schedules the expiration of a PE entry on a non-PR-H.  

At any given time, exactly one of these timers is scheduled for each PE. This means that 
each PE entry only has to contain the type of the timer and the expiration time stamp. Then, 
the timer schedule is simply another set of PE entries (sorted by time stamp, of course), as 
illustrated in figure 4. 
 

3.4. Checksum and Ownership Set 

Handlespace synchronization is the duty of ENRP [28]. In order to detect discrepancies in 
the handlespace views of different PRs, each PR calculates a checksum4 of its own PE entries 
(i.e. the PEs for which it is in the role of a PR-H). These checksums can be transmitted to 
other PRs, which can compare the value expected from their own handlespace view with the 
announced value. In case of a difference, the synchronization procedure requires to traverse 
all PE entries belonging to a certain PR. This functionality can be realized by introducing the 
so called Ownership Set – containing all PE references sorted by PR-H (see figure 4). 

 
4. The Performance Evaluation Setup 
 

In [14], the pool management workload of a PR has already been examined for different 
implementation strategies of the Set datatype – but only for a very specific setup. A detailed 
analysis of the handlespace operations throughput was missing.  

 
4.1. Setup for the Performance Measurements of the Handlespace Operations 

Therefore, a performance analysis of the handlespace operations themselves will be the 
first part of this article. Our program for the corresponding measurements simply performs as 
many operations of the requested type as possible, on a pool being set up in advance. Since 

                                                           
3 Which is – for the RAND policy – the same for all PEs. Supporting Weighted Random [16] is obvious. 
4 16-bit Internet Checksum [3]; see also [8, section 3.10.5] for some additional information on the checksum. 
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registrations and deregistrations cannot be examined separately (the pool would either grow 
or shrink), these operations are examined in combination: a Registration/Deregistration 
operation simply performs the deregistration of a randomly selected element if the pool has 
the configured size; otherwise, a new PE is registered. The system being used for the 
performance measurements uses a 1.3 GHz AMD Athlon CPU – which has been state of the 
art in early 2001 (i.e. seven years ago) and whose performance seems to be realistic for 
upcoming router or embedded device generations (which could host a PR service). All 
measurements are repeated 18 times, in order to provide statistical accuracy. 

 
4.2. Setup for the Performance Measurements in a Real System 

 

Figure 5. The Measurement Setup 

While the operations throughput is useful to estimate the scalability of the handlespace 
management, the resulting question is clearly how a real system performs. In order to evaluate 
such a system, i.e. including real components, protocol stacks and network overhead, we have 
set up a lab scenario as shown in figure 5: it consists of a set of 10 PCs (each having a 2.4 
GHz Pentium IV CPU and 1 GB of memory) connected by a gigabit switch to a Linux-based 
router. Two PRs (using the same CPU as for the data structure performance evaluation, see 
subsection 1) are connected to the router over Gigabit Ethernet. On each of the hosts, a 
configurable number of test PEs, PUs and PRs can be started.  

All systems run Kubuntu Linux 6.10 “Edgy Eft”, using kernel 2.6.17-11 and the kernel 
SCTP module provided by this distribution. Our RSerPool implementation RSPLIB 
[6,41,42], version 2.2.0 has been installed on all machines. Each measurement run is repeated 
12 times to achieve statistical accuracy.  

GNU R has been used for the statistical post-processing of our results – including the 
computation of 95% confidence intervals – and plotting. All results plots show the average 
values and their confidence intervals.  

5. Performance Analysis 

As first part of our handlespace performance evaluation, we analyse the throughput of the 
six handlespace operations (as defined in subsection 1) in a “dry run”. 

 
5.1. Performance of the Handlespace Operations 

 
5.1.1. Registration/Deregistration: The registration/deregistration is the most important 

operation provided to PEs (see subsection 1) by the PR. As we have already shown in [14,6], 
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deterministic policies can lead to systematic insertion and removal operations in the Selection 
Set (see subsection 2). For example, a RR selection always takes the first PE from the 
Selection Set and re-inserts it as the last one. While this is obviously the worst case for a 
linear list, the performance of a simple (i.e. non-balanced) binary tree is even worse: the tree 
degenerates in fact to a linear list. But operations on a tree are slightly more complex than on 
an actual linear list (see [6] for a detailed performance analysis). Due to these problems, only 
a balanced tree structure is appropriate to base the Set datatype on. We have examined the 
scalability on the number of PEs for the two state-of-the-art representations of balanced 
binary trees: the red-black tree [43] (a deterministic approach) and the treap [44] (a 
randomized approach).  

 

Figure 6. The Scalability of the Registration/Deregistration and Re-Registration 
Operations 

The left-hand side of figure 6 shows the throughput of registration/deregistration 
operations per PE and second for both tree structures and classes of policies. While the 
performance difference between the two policy types is small, the treap has a slightly lower 
performance: using a deterministically balanced tree is – despite of the higher complexity of 
the insertion and removal algorithms [43] – the faster solution. For a pool of 20,000 PEs, it 
would be possible to register or deregister each PE about 2 times per second (red-black tree).  

 
5.1.2. Re-Registration: Obviously, the provided registration/deregistration performance is 

more than sufficient in realistic scenarios. But while the frequency of 
registration/deregistration operations (i.e. actual insertions of new or removals of existing 
PEs) is assumed to be rare, a re-registration (i.e. a registration update) of a PE occurs 
frequently – in particular when using an adaptive policy. For such a policy (e.g. LU), the 
position of the PE entry within the Selection Set changes (see also subsection 2). In order to 
show the impact on the re-registration operations performance, the right-hand side of figure 6 
presents the re-registrations throughput per PE and second. For the adaptive policy (here: LU), 
each re-registration updates the load value with a random value. As expected, a significant 
difference between adaptive and non-adaptive policies is shown: for 20,000 PEs, the non-
adaptive policy still achieves a throughput of about 5 operations per PE and second (red-black 
tree), while it sinks to only about 3 in the adaptive case. That is, care has to be taken of the 
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application behaviour – which actually has to decide when the policy information needs to be 
updated! Again, the performance for using a red-black tree is slightly better than using a treap.  

 

Figure 7. The Scalability of the Timer Handling and Handle Resolution 
Operations 

 
5.1.3. Timer Handling: The left-hand side of figure 7 presents the timer operations 

throughput. Obviously, the two extreme cases for this operation are 0% and 100% of owned 
PEs. Therefore, the results of these two settings for both tree implementations are shown. 
However, the difference keeps very small: re-scheduling a timer is quite inexpensive – the 
CPU’s cache helps to quickly re-insert the updated structure as described in subsection 3. As 
already expected, the performance for a red-black tree is slightly better than for a treap.  

 
5.1.4. Handle Resolution: Handle resolution is the operation relevant for the PUs. Its 

performance is influenced by two factors: MaxHResItems and the type of policy – 
randomized or deterministic. For a randomized policy, it is necessary to move down the 
Selection Set tree (whose depth is O(log n) – n is the number of PEs – for red-black tree and 
treap) in order to obtain a random PE [14] – for each of the MaxHResItems entries. 
Deterministic policies, on the other hand, simply allow for taking a complete chain of PE 
entries from the list (since their order is deterministic and therefore already defined by the 
sorting order, see subsection 2), i.e. the overall runtime is O(1) instead.  

The throughput of handle resolution operations per PE and second is depicted on the right-
hand side of figure 7. Clearly, it can be observed that the higher MaxHResItems, the lower 
the throughput: it sinks from 13 at MaxHResItems h=1 to about 7.5 at h=3 for 10,000 PEs 
(deterministic policy, red-black tree). Furthermore, the performance for a randomized policy 
is clearly lower: 7 at h=1 vs. about 4 at h=3 for 10,000 PEs (red-black tree). Again, the 
performance for the treap is somewhat lower than for the red-black tree. In a real system, the 
frequency of handle resolutions strongly depends on the application’s PU workload. Having a 
PU with a high handle resolution frequency (e.g. a web proxy like [19]), it is possible to apply 
a handle resolution cache at the PU [8]. Furthermore, the handle resolution operation has an 
advantage over the previously examined operations: it can be performed independently of 
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other PRs. That is, in case of a high handle resolution workload, the PUs could be distributed 
among multiple PRs.  

 
5.1.5. Synchronization: Synchronization – the last of the handlespace operations – only 

occurs on PR startup or when an inconsistency of the handlespace views has been detected. 
Clearly, this operation is quite rare (probably only up to a few times per day). However, the 
actual performance for a pool of 30,000 PEs allows for more than 100 operations per second. 
Since this is – by orders of magnitude – more than sufficient, a plot has been omitted. 
Detailed performance results are provided in [6].  

 
5.1.6. Varying the Number of Pools: For the previous measurements, the number of PEs 

within a single pool has been increased. In fact, splitting up the PEs among a number of pools 
should not significantly change the performance of the handlespace operations. However, 
pools are identified by a PH, which is a byte vector. But comparing byte arrays takes more 
time than simply comparing numbers (e.g. PE IDs, policy information entries). For efficiency 
reasons, we have therefore decided to limit5 the PH size to 32 bytes, which are stored inside 
the pool structure itself. This size is assumed to be sufficient for all current applications.  

Our performance evaluations in [6] show that splitting up the number of PEs among 
different pools only results in some performance reduction when a really large number of PEs 
(more than 10,000) is distributed among many pools (more than 1,000). Assuming that the 
number of pools corresponds to the number of RSerPool-based applications in an operation 
scope (e.g. much less than 100), such cases are not very realistic. Therefore, no additional 
effort for a speed-up of the pool lookup has been taken yet. In future work on handlespace 
management, the usage of a hash table for the pool lookup may be considered.  

 
5.2. Performance in the Real System Setup 

As shown in subsection 1, our handlespace management approach using red-black trees 
can handle pools of 10,000 and more PEs. However, in realistic application scenarios, pools 
of up to a few hundreds of PEs seem to be most probable. Therefore, the following 
performance evaluation in the real system setup (as described in subsection 2) uses smaller 
pools, but with a high PR request frequency in order to show the throughput limits. 

 

Figure 8. Registrar CPU Utilization for Pool Maintenance 

                                                           
5 The Internet Draft [37] does not set any limit. In fact, it is only limited by the maximum message size of 64K. 
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5.2.1. Scalability on the Number of Pool Elements: In order to show the scalability on 

PEs, the number of PEs has been varied. The pool is using the RR policy (i.e. deterministic) 
and an inter-re-registration time between 250ms and 1000ms (such high rates may occur for 
adaptive policies). All ASAP (re-)registrations are performed on PR #1 (see figure 5), PR #2 
is synchronized by ENRP only. That is, we observe the worst case here. The CPU utilization 
of PR #1 and PR #2 are shown on the left-hand side of figure 8. Randomized policy results 
have been omitted, since the results do not differ significantly (see also subsection 1).  

Clearly, the workload on PR #1 is highest: it not only has to handle up to 3,000 
simultaneous SCTP associations to PEs (for ASAP), but also has to send out an ENRP update 
to the other PR on every update of a PE entry. This leads to a load of about 90% for 2,000 
PEs at an inter-re-registration time of a=250ms. Extending this time to a=1000ms, it is 
already possible to manage 3,000 PEs at a load of only about 25%.  

Obviously, the workload of PR #2 is significantly lower: it only has to maintain a single 
SCTP association to PR #1 to obtain the handlespace data. This results in a load of only about 
15% for 2,000 PEs at a=250ms, and about 25% for 3,000 PEs at a=1000ms. It is therefore a 
clear recommendation to try to distribute the load among the PRs of the operation scope. In 
reality, this can be achieved using the automatic configuration feature of RSerPool [26]. 
However, care has to be taken of redundancy: in case of PR failure(s), there must be a 
sufficient number of other PRs! But what about the costs of the ENRP synchronization among 
PRs?  

 
5.2.2. Scalability on the Number of Registrars: In order to show the scalability on the 

number of PRs, we have again used PR #1 for the ASAP associations and PR #2 for ENRP 
synchronization only (as shown in figure 5). Further PRs have been started on the other PCs 
(since only the utilizations of PR #1 and PR #2 are relevant). For our measurement, we have 
used a pool of 1,000 PEs and inter-re-registration times of a=250ms to a=1000ms. The CPU 
utilization results for PR #1 and PR #2 are presented on the right-hand side of figure 8.  

Clearly, the number of PRs does not significantly affect PR #2. While it has to maintain an 
association with each other PR of the operation scope, the actual workload – which remains 
constant – is only transported via the association with PR #1. On the other hand, the 
utilization for PR #1 is significantly increased with the number of PRs, in particular if the 
inter-re-registration time is small: e.g. from about 20% for a single PR to slightly more than 
60% for 6 PRs (at a=250ms). The bottleneck in this case is the interface between userland 
application (i.e. the PR) and the kernel’s SCTP API. For each PR, a separate ENRP message 
has to be passed to the kernel’s SCTP API. Clearly, the context switching and memory 
copying for this operation is time-consuming, while the actual message transport (IP packets 
via Ethernet interface) is quite efficient (a recent system can transport hundreds of thousands 
of packets per second).  

The analysis of the described userland/kernel bottleneck has led to the suggestion of a 
SCTP API extension: the SCTP_SENDALL option (see subsection 5.2.2 of [45]). Using this 
option, a message to all PRs is passed to the kernel only once – and sent via all PR 
associations. But although the new option is already a part of the SCTP API standards 
document [45], it has not been implemented for the current Linux kernel (version 2.6.20) yet. 
Therefore, a performance evaluation using this option has to be part of future work.  

In summary, using a reasonably small number of PRs (e.g. two or three are usually 
sufficient to achieve redundancy), the ENRP overhead remains in an acceptable range – with 
room for future improvement on the SCTP layer. 
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Figure 9. Registrar CPU Utilization for Handle Resolution 

 
5.2.3. Scalability on the Number of Pool Users: Finally, we have evaluated the 

scalability on the number of PUs for handle resolution operations using two PRs. Again, we 
have observed the CPU utilization of PR #1 and PR #2 (see figure 5) for a pool of 1,000 PEs 
using deterministic (solid lines) and randomized policies (dotted lines), an inter-re-
registration time of 1000ms and inter-handle-resolution times between 100ms and 500ms. For 
the first measurement, we have used PR #1 for both, registrations and handle resolutions (left-
hand side), while we have put the burden of handle resolutions on PR #2 for the second 
measurement (right-hand side). 

Clearly, if using PR #1 for all operations, PR #2 only has to synchronize and therefore its 
load keeps constant. But nevertheless, the CPU load of PR #1 only slightly exceeds 25% for 
2,000 PUs and an inter-handle-resolution time of 500ms. For a higher handle resolution rate, 
however, the CPU utilization quickly grows: at 100ms, there is already a load of more than 
80% for 1,000 PUs. The performance difference between the two types of policies is small – 
even at 2,000 PEs, the CPU utilization of a randomized policy is only by less than 5% higher 
(see subsection 1). That is, compared to the protocol overhead, the pool maintenance effort is 
small for this number of PEs. 

So, with regard to these results, it is obviously a good idea to split up the workload of 
registration management and handle resolutions among the PRs. Therefore, PR #2 in the 
second measurement (right-hand side of figure 5) is responsible for all handle resolutions. 
Clearly, the system performance gets better now: at a CPU utilization below 80% (PR #2), it 
is now possible to serve 1,500 PUs with a handle-resolution rate of only 100ms – at a 
workload of about 10% for PR #1. Splitting up the workload of both operations between the 
two PRs would clearly result in an even better performance. However, a redundant system 
should always be provisioned for the worst case – which is a failure of n-1 of the n PRs. That 
is, the sum of the workloads of both PRs must remain significantly below 100%!  

 
5.3. Results Summary 

In summary, our handlespace performance analysis has shown that our approach of 
reducing the handlespace management to the storage of sets and operations on these sets is 
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efficient if using a red-black tree to actually realize the sets. Critical handlespace operations 
are the re-registration (which may occur very frequently for adaptive policies) and the handle 
resolution. But in our real system performance analysis, we have shown that even a low-
performance CPU is able to handle scenarios of significantly more than 1,000 PEs and PUs. 
As general recommendation, it is useful to distribute the PEs und PUs to different PRs of the 
operation scope to achieve the highest performance. However, care has to be taken of 
sufficient PR redundancy to cope with PR failures. Depending on the inter-re-registration and 
handle resolution frequency, also much larger scenarios are possible. A room for a further 
performance improvement will be the SCTP_SENDALL option of the SCTP stack, which 
will be realized in future SCTP implementations. 
 
6. Conclusions 

In this article, we have presented our handlespace management solution which uses red-
black trees as base structure to store the handlespace contents. All operations on the 
handlespace can be reduced to the management of balanced trees. The performance of this 
approach is sufficient to maintain handlespaces of many thousands of PEs – even on a low-
performance platform which is realistic for routers and embedded systems. Furthermore, we 
have also shown that our solution is applicable and efficient in a real-world system setup: a 
system based on the same low-performance CPU is still capable of handling the ASAP/ENRP 
protocol overhead and the maintenance of the necessary SCTP associations.  

Now, we not only use our handlespace management implementation for our Open Source 
RSerPool implementation RSPLIB [6,41,42], but also for our RSerPool simulation model 
RSPSIM [46]. As part of our future research, we are going to further evaluate our approach 
for certain RSerPool-based application scenarios. Such real-world scenarios set requirements 
on pool size and policy type as well as on re-registration and handle resolution frequency. In 
particular, we intend to estimate a lower threshold for the CPU performance needed to handle 
such application scenarios. Our ongoing work will furthermore include performance 
evaluations of using our implementation RSPLIB on Linux-based embedded systems. 
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