
Overview and Evaluation of the
Server Redundancy and Session Failover Mechanisms

in the Reliable Server Pooling Framework∗

Thomas Dreibholz, Erwin P. Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstrasse 29, 45326 Essen, Germany
{dreibh,rathgeb}@iem.uni-due.de

Abstract

The number of availability-critical Internet applications
is steadily increasing. To support the development and op-
eration of such applications, the IETF has recently defined a
new standard for a common server redundancy and session
failover framework: Reliable Server Pooling (RSerPool).
The basic ideas of the RSerPool framework are not entirely
new, but their combination into a single, resource-efficient
and unified architecture is. Service availability achieved by
the redundancy of servers directly leads to the issues of load
distribution and load balancing, which are both important
for the performance of RSerPool systems. Therefore, it is
crucial to evaluate the performance of such systems with
respect to the load balancing strategy required by the ser-
vice application.

In this article – which is an extended version of our pa-
per [1] – we first present an overview of the RSerPool ar-
chitecture with a focus on the component failure detection
and handling mechanisms. We will also shortly introduce
the underlying SCTP protocol and its link redundancy fea-
tures. After that, we will present a quantitative, application-
independent performance analysis of the failure detection
and session failover mechanisms provided by RSerPool,
with respect to important adaptive and non-adaptive load
balancing strategies.

Keywords: Reliable Server Pooling, Service Availability,
Redundancy, Session Failover, Server Selection

1 Introduction and Related Work

Service availability is becoming increasingly important
in today’s Internet. But – in contrast to the telecommuni-

∗Parts of this work have been funded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft).

cations world, where availability is ensured by redundant
links and devices [2] – there had not been any generic, stan-
dardized approaches for the availability of Internet-based
services. Each application had to realize its own solution
and therefore to re-invent the wheel. This deficiency – once
more arisen for the availability of SS7 (Signalling System
No. 7) services over IP networks – had been the initial mo-
tivation for the IETF RSerPool WG to define the Reliable
Server Pooling (RSerPool) framework. The basic ideas of
RSerPool are not entirely new (see [3, 4]), but their combi-
nation into one application-independent framework is.

Server redundancy [5] leads to the issues of load distri-
bution and load balancing [6], which are also covered by
RSerPool [7, 8]. But unlike solutions in the area of GRID
and high-performance computing [9], the RSerPool archi-
tecture is intended to be lightweight. That is, RSerPool may
only introduce a small computation and memory overhead
for the management of pools and sessions [8,10–12]. In par-
ticular, this means the limitation to a single administrative
domain and only taking care of pool and session manage-
ment – but not for higher-level tasks like data synchroniza-
tion, locking and user management. These tasks are con-
sidered to be application-specific. On the other hand, these
restrictions allow for RSerPool components to be situated
on low-end embedded devices like routers or telecommuni-
cations equipment.

While there have already been a number of publica-
tions on applicability and performance of RSerPool (see
e.g. [7, 13–17]), a generic, application-independent perfor-
mance analysis of its failover handling capabilities was
still missing. In particular, it is necessary to evaluate
the different RSerPool mechanisms for session monitor-
ing, server maintenance and failover support – as well as
the corresponding system parameters – in order to show
how to achieve a good system performance at a reason-
ably low maintenance overhead. The goal of our work is



Figure 1. A Multi-Homed SCTP Association

an application-independent quantitative characterization of
RSerPool systems, as well as a generic sensitivity analysis
on changes of workload and system parameters. Especially,
we intend to identify the critical parameter ranges in order
to provide guidelines for design and configuration of effi-
cient RSerPool-based services.

This article is an extended version of our conference
paper [1]. It contains a broader overview of the redun-
dancy mechanisms provided by RSerPool and the under-
lying SCTP protocol as well as a more detailed analysis of
the session failover mechanisms.

The document is structured as follows: in Section 2, we
present an overview of RSerPool and the underlying SCTP
protocol. A generic quantification of RSerPool systems
is introduced in Section 3. Using the RSPSIM simulation
model and setup described in Section 4, we evaluate the
server failure detection and handling features of RSerPool
in Section 5.

2 The RSerPool Architecture

RSerPool is based on the SCTP transport protocol.
Therefore, it is necessary to shortly introduce this protocol
and its link failure handling features first.

2.1 Data Transport and Motivation

The Stream Control Transmission Protocol (SCTP,
see [18,19]) is a connection-oriented, general-purpose, uni-
cast transport protocol which provides reliable transport of
user messages. An SCTP connection is denoted as associ-
ation. Each SCTP endpoint can use multiple IPv4 and/or
IPv6 addresses to provide network fault tolerance. The ad-
dresses used by the endpoints are negotiated during asso-
ciation setup, a later update is possible using dynamic ad-
dress reconfiguration (Add-IP, see [20]). Add-IP can also

be applied to allow for endpoint mobility. This link redun-
dancy feature is called multi-homing [21,22] and illustrated
in Figure 1. An endpoint sees each remote address as unidi-
rectional path. In each direction, one of the paths is selected
as so-called primary path. This path is used for the trans-
port of user data. The other paths are backup paths, which
are used for retransmissions only. Upon failure of the pri-
mary path, SCTP selects a new primary path from the set of
possible backup paths. That is, as long as there is at least
one usable path in each direction, the association remains
usable despite of link failures. However, multi-homing can-
not protect a service against endpoint failures. To cope with
this problem, the IETF has defined the RSerPool architec-
ture on top of SCTP.

2.2 Architecture

Figure 2 illustrates the RSerPool architecture, as de-
fined in [23]. It consists of three major component classes:
servers of a pool are called pool elements (PE). Each pool is
identified by a unique pool handle (PH) in the handlespace,
i.e. the set of all pools. The handlespace is managed by
pool registrars (PR), which are also shortly denoted as reg-
istrars. PRs of an operation scope synchronize their view
of the handlespace using the Endpoint haNdlespace Redun-
dancy Protocol (ENRP [24]), transported via SCTP. An op-
eration scope has a limited range, e.g. a company or orga-
nization; RSerPool does not intend to scale to the whole
Internet. This restriction results in a very small pool man-
agement overhead (see also [8,10,25]), which allows to host
a PR service on routers or embedded systems. Neverthe-
less, it is assumed that PEs can be distributed worldwide,
for their service to survive localized disasters [26, 27].

A client is called pool user (PU) in RSerPool terminol-
ogy. To use the service of a pool given by its PH, a PU
requests a PE selection from an arbitrary PR of the oper-
ation scope, using the Aggregate Server Access Protocol
(ASAP [28, 29]). The PR selects the requested list of PE
identities using a pool-specific selection rule, called pool
policy. Adaptive and non-adaptive pool policies are defined
in [30]; relevant for this article are the non-adaptive policies
Round Robin and Random and the adaptive policy Least
Used. Least Used selects the least-used PE, according to
up-to-date load information. The actual definition of load is
application-specific: for each pool the corresponding appli-
cation has to specify the actual meaning of load (e.g. CPU
utilization or storage space usage) and present it to RSer-
Pool in form of a numeric value. Among multiple least-
loaded PEs, Least Used applies Round Robin selection (see
also [8]). Some more policies are evaluated in [26, 27, 31].

A PE can register into a pool at an arbitrary PR of the op-
eration scope, again using ASAP transported via SCTP. The



Figure 2. The RSerPool Architecture

chosen PR becomes the Home PR (PR-H) of the PE and is
also responsible for monitoring the PE’s health by endpoint
keep-alive messages. If not acknowledged, the PE is as-
sumed to be dead and removed from the handlespace. Fur-
thermore, PUs may report unreachable PEs; if the threshold
MAX-BAD-PE-REPORT of such reports is reached, a PR
may also remove the corresponding PE. The PE failure de-
tection mechanism of a PU is application-specific.

Proxy Pool Elements (PPE) allow for the usage of
non-RSerPool servers in RSerPool-based environments.
Respectively, non-RSerPool clients can use Proxy Pool
Users (PPU) to access RSerPool-based services.

2.3 Protocol Stack

The protocol stack of the three RSerPool components is
illustrated in Figure 3: a PR provides ENRP and ASAP ser-
vices to PRs and PEs/PUs respectively. But between PU
and PE, ASAP provides a Session Layer protocol in the OSI
model1. From the perspective of the Application Layer, the
PU side establishes a session with a pool. ASAP takes care
of selecting a PE of the pool, initiating and maintaining the
underlying transport connection and triggering a failover
procedure when the PE becomes unavailable.

2.4 Session Failover Handling

While RSerPool allows the usage of arbitrary mecha-
nisms to realize the application-specific resumption of an
interrupted session on a new server, it contains only one

1ASAP [28] is the first IETF standard for a Session Layer protocol.

built-in mechanism: Client-Based State Sharing. This
mechanism has been proposed by us in our paper [32] and it
is now part of the ASAP standard [28]. Using this feature,
which is illustrated in Figure 4, a PE can send its current
session state to the PU in form of a state cookie. The PU
stores the latest state cookie and provides it to a new PE
upon failover. Then, the new PE simply restores the state
described by the cookie. For RSerPool itself, the cookie is
opaque, i.e. only the PE-side application has to know about
its structure and contents. The PU can simply handle it as a
vector of bytes (However, as we will describe in Subsubsec-
tion 5.2.2, a more complex handling concept may improve
application efficiency). Cryptographic methods can ensure
the integrity, authenticity and confidentiality of the state in-
formation. In the usual case, this can be realized easily by
using a pool key which is known by all PEs (i.e. a “shared
secret”).

2.5 Applications

The initial motivation of RSerPool has been to ensure
the availability of SS7 (Signalling System No. 7, see [33])
services over IP networks. However, since component
availability is a very common problem for computer net-
work applications, RSerPool has been designed for ap-
plication independence. The current research on appli-
cability and performance of RSerPool includes applica-
tion scenarios (described in detail by [7, Section 3.6])
like VoIP with SIP [17], SCTP-based mobility [34], web
server pools [7, Section 3.6], e-commerce systems [32],
video on demand [15], battlefield networks [16], IP Flow



Figure 3. The RSerPool Protocol Stack

Figure 4. Client-Based State Sharing

Information Export (IPFIX) [35] and workload distribu-
tion [7, 13, 14, 26, 27, 31, 36–39].

Since RSerPool has just reached a major milestone by
the publication of its basic protocol documents as RFCs in
September 2008, a wide deployment of RSerPool-based ap-
plications is expected for the future [40].

3 Quantifying a RSerPool System

The service provider side of a RSerPool-based service
consists of a pool of PEs, using a certain server selection
policy. Each PE has a request handling capacity, which
we define in the abstract unit of calculations per second.
Depending on the application, an arbitrary view of capac-
ity can be mapped to this definition, e.g. CPU cycles or
memory usage. Each request consumes a certain number
of calculations, we call this number the request size. A PE
can handle multiple requests simultaneously, in a processor
sharing mode (multi-tasking principle).

On the service user side, there is a set of PUs. The

number of PUs can be given by the ratio between PUs and
PEs (PU:PE ratio), which defines the parallelism of the re-
quest handling. Each PU generates a new request in an in-
terval denoted as request interval. The requests are queued
and sequentially assigned to PEs.

Clearly, the user-side performance metric is the handling
speed – which should be as fast as possible. The total de-
lay for handling a request dhandling is defined as the sum of
queuing delay, startup delay (dequeuing until reception of
acceptance acknowledgement) and processing time (accep-
tance until finish) as illustrated in Figure 5. The handling
speed (in calculations/s) is defined as:

handlingSpeed =
requestSize
dhandling

.

For convenience reasons, the handling speed can be repre-
sented in % of the average PE capacity. Clearly, in case of
a PE failure, all work between the last checkpoint and the
failure is lost and has to be re-processed later. A failure has
to be detected by an application-specific mechanism (e.g.



Figure 5. Request Handling Delays

keep-alives) and a new PE has to be chosen and contacted
for session resumption.

Using the definitions above, the system utilization –
which is the provider-side performance metric – can be cal-
culated:

systemUtilization = puToPERatio ∗
requestSize

requestInterval

peCapacity

In practice, a well-designed RSerPool system is dimen-
sioned for a certain target system utilization. [7,14] provide
a detailed discussion of this subject.

4 The Simulation Scenario Setup

For our performance analysis, we have developed our
simulation model RSPSIM [7, 13] using OMNET++ [41]
and the SIMPROCTC [36] tool-chain, containing full imple-
mentations of the protocols ASAP [28, 29] and ENRP [24],
a PR module and PE and PU modules modelling the request
handling scenario defined in Section 3. The scenario setup
is shown in Figure 6: all components are interconnected
by a switch. Network delay is introduced by link latency
only. Component latencies are neglected, since they are not
significant (as shown in [8]). We further assume sufficient
network bandwidth for pool management and applications.
Since an operation scope is limited to a single administra-
tive domain, QoS mechanisms may be applied.

Unless otherwise specified, the used target system uti-
lization is 60%, i.e. there is sufficient over-capacity to cope
with PE failures. For the Least Used policy, we define load

Figure 6. The Simulation Setup

as the current number of simultaneously handled requests.
The capacity of a PE is 106 calculations/s, the average re-
quest size is 107 calculations. Both parameters use negative
exponential distribution – for a generic parameter sensitivity
analysis being independent of a particular application [14].
We use 10 PEs and 100 PUs, i.e. the PU:PE ratio is 10. This
is a non-critical setting for the examined policies, as shown
in [14].

Session health monitoring is performed by the PUs using
keep-alive messages in a session keep-alive interval of 1s,
to be acknowledged by the PE within a session keep-alive
timeout of 1s (parameters evaluated in Subsubsection 5.1.3).
Upon a simulated failure, the PE simply disappears and re-
appears immediately under a new transport address, i.e. the



overall pool capacity remains constant. Client-Based State
Sharing is applied for failovers; the default cookie interval
is 10% of the request size (i.e. 106 calculations; parameter
is evaluated in Subsubsection 5.2.2). Work not being pro-
tected by a checkpoint has to be re-processed on a new PE
upon session failover.

In this article, we neglect PR failures and therefore
use a single PR only (for details on PR failures, see [11,
12]). All failure reports by PUs are ignored (i.e. MAX-
BAD-PE-REPORT=∞) and the endpoint keep-alive inter-
val and timeout are 1s (parameters evaluated in Subsubsec-
tion 5.1.4). The inter-component network delay is 10ms (re-
alistic for connections within a limited geographical area,
see [26]). The simulated real-time is 60 minutes; each sim-
ulation is repeated 24 times with different seeds to achieve
statistical accuracy. The post-processing of results, i.e.
computation of 95% confidence intervals and plotting, has
been performed using GNU R [42].

5 Results

As shown in Figure 5, two components contribute to the
failure handling time:

1. The failure detection delay and

2. The failure handling delay (i.e. re-processing effort for
lost work).

Therefore, we will examine the failure detection procedures
in the following Subsection 5.1 and failover handling pro-
cedures in Subsection 5.2.

5.1 Failure Detection

5.1.1 Dynamic Pools

In the ideal case, a PE informs its PU of an oncoming
shutdown, sets a checkpoint for the session state (e.g. by
a state cookie [1, 32]) and performs a de-registration at a
PR. Then, no re-processing effort is necessary. This situ-
ation, as shown for the handling speed on the right-hand
side of Figure 7, becomes critical only for a very low PE
MTBF (Mean Time Between Failure; here: given in aver-
age request handling times) in combination with network
delay (i.e. the failover to a new PE is not for free). As being
observable for failure-free scenarios (see [14]), the best per-
formance is again provided by the adaptive Least Used pol-
icy, due to PE load state knowledge. However, the Round
Robin performance converges to the Random result for a
low MTBF: in this case, there is no stable list of PEs to se-
lect from in turn – the selection choices become more and
more random.

The results for the system utilization, shown on the left-
hand side of Figure 7, are very similar to the handling speed
behaviour: except for extremely low MTBF settings, the
utilization remains at the expected target system utilization
of 60%.

An approach to utilize the failover capabilities of
RSerPool-based systems for improving the server selection
performance is described by [38, 39]: “Reject and Retry”.
When a PE is highly loaded due to non-optimal server selec-
tion (e.g. due to temporary capacity changes), it may sim-
ply reject a new request. The failover capabilities of RSer-
Pool then retry at another PE. Since the failover handling
of RSerPool is quite efficient, this can lead – despite of the
failure handling – to a significant performance improvement
in certain scenarios.

5.1.2 De-Registrations and Failures

In real scenarios, PEs may fail without warning. That is,
a PU has to detect the failure of its PE in order to trig-
ger a failover. For the simulated application, this detec-
tion mechanism has been realized by keep-alive messages.
The general effects of a decreasing amount of “clean” shut-
downs (i.e. the PE simply disappears) are presented in Fig-
ure 8. Clearly, the less “clean” shutdowns, the higher the
re-processing effort for lost work: this leads to a higher uti-
lization and lower handling speed. As expected, this effect
is smallest for Least Used (due to superior load balancing)
and highest for Random. There is almost no reaction of the
utilization to an increased session keep-alive interval (given
in average request handling times): a PU does not utilize
resources while it waits for a timeout. However, the impact
on the handling speed is significant: waiting increases the
failover handling time and leads to a lower handling speed.
For that reason, a tight session health monitoring interval is
crucial for the system performance.

5.1.3 Session Health Monitoring

To emphasize the impact of the session health monitoring
granularity, Figure 9 shows the utilization (left-hand side)
and handling speed (right-hand side) results for varying this
parameter in combination with the endpoint keep-alive in-
terval, for a target utilization of 40% (higher settings be-
come critical too quickly). The utilization results have been
omitted, since they are obvious. Again, the performance
results for varying the policy and session keep-alive inter-
val reflect the importance of a quick failure detection for
the handling speed – regardless of the policy used. How-
ever, the policy has a significant impact on the utilization:
as shown in [14], the selection quality of Least Used is bet-
ter than Round Robin, and Round Robin is better than Ran-
dom. A better selection quality results in better handling



Figure 7. The Performance for Dynamic Pools

Figure 8. The Impact of Clean Shutdowns



Figure 9. The Impact of Session Monitoring

speeds. Since the handling speed for Random is lowest, the
amount of lost work is highest here. This results in an in-
creased amount of re-processing, which can be observed by
the higher utilization: about 47% for Random, about 45%
for Round Robin but only about 43.5% for Least Used at a
target system utilization of 40%.

It has to be noted that a small monitoring granularity
does not necessarily increase overhead: e.g. a PU requesting
transactions by a PE could simply set a transaction timeout.
In this case, session monitoring even comes for free. Un-
like the session monitoring, the impact of the PR’s endpoint
keep-alive interval is quite small here: even a difference of
two orders of magnitude only results in at most a perfor-
mance difference of 10%.

5.1.4 Server Health Monitoring

The endpoint keep-alive interval gains increasing impor-
tance when the request size becomes small. Then, the
startup delay becomes significant, as illustrated in Figure 5.
In order to show the general effects of the PE health mon-
itoring based on endpoint keep-alives, Figure 10 presents
the utilization (left-hand side) and handling speed results
(right-hand side) for a request size:PE capacity ratio of 1
and a target system utilization of 25% (otherwise, the sys-
tem becomes unstable too quickly).

While the policy ranking remains as expected, it is
clearly observable that the higher the endpoint keep-alive
interval and the smaller the MTBF, the more probable is
the selection of an already failed PE. That is, the PU has
to detect the failure of its PE by itself (by session monitor-

ing, see Subsubsection 5.1.3) and trigger a new PE selec-
tion. The result is a significantly reduced request handling
speed. Furthermore, for a very low MTBF, the utilization
decreases: instead of letting PEs re-process lost work, the
PUs spend more and more time on waiting for request time-
outs. For these reasons, a PR-based PE health monitoring
becomes crucial for such scenarios. But this monitoring re-
sults in network overhead for the keep-alives and acknowl-
edgements as well as for the SCTP transport. So, is there a
possibility to reduce this overhead?

The mechanism for overhead reduction is to utilize the
session health monitoring (which is necessary anyway, as
shown in Subsubsection 5.1.3) for PE monitoring by letting
PUs report the failure of PEs. If MAX-BAD-PE-REPORT
failure reports have been received, the PE is removed from
the handlespace. The effectiveness of this mechanism is
demonstrated by the results in Figure 11 (for the same pa-
rameters as above): even if the endpoint keep-alive over-
head is reduced to 1

30 th, there is only a handling speed de-
crease of about 4% for MAX-BAD-PE-REPORT=1. The
higher MAX-BAD-PE-REPORT, the more important the
endpoint keep-alive granularity.

However, while the failure report mechanism is highly
effective for all three policies, care has to be taken for se-
curity: trusting in failure reports gives PUs the power to
impeach PEs! Approaches for improving the security of
RSerPool systems against Denial of Service attacks are pre-
sented by [43–46].



Figure 10. The Impact of Pool Element Health Monitoring

Figure 11. Utilizing Failure Reports



Figure 12. Using “Abort and Restart”

5.2 Failover Mechanisms

5.2.1 “Abort and Restart”

After detecting a PE failure and contacting a new server, the
session state has to be restored for the re-processing of lost
work and the application resumption. The simplest mech-
anism is “Abort and Restart” [7]: the session is restarted
from scratch. The essential effects of applying this mecha-
nism are presented in Figure 12: As expected, the impact of
using “Abort and Restart” on the average system utilization
(left-hand side of Figure 12) is small, as long as the PEs
remain sufficiently available: for a MTBF of 100 times the
time required to exclusively process a request having a re-
quest size:PE capacity of 10, the utilization increment is al-
most invisible. Furthermore, the decrement of the handling
speed (right-hand side of Figure 12) is also small. Clearly,
the rare necessity to restart a session has no significant per-
formance impact.

However, for a sufficiently small MTBF, the results
change: at a MTBF of 5, a significant utilization rise – as
well as a handling speed decrease – can be observed for
Round Robin and Random if the request size:PE capacity
ratio s is increased. The effect on Least Used is smaller:
as expected from the dynamic pool performance results of
Subsubsection 5.1.1, this policy is able to provide a better
processing speed due to superior request load distribution.
That is, the probability for a request of a fixed size to be af-
fected by PE failures is smaller if using Least Used instead
of Round Robin and Random. Note that the utilization of
Least Used almost reaches 95% for a MTBF of 2 and larger
request size:PE capacity ratios s, due to its better load dis-

tribution capabilities. In the same situation – i.e. high over-
load, of course – the Round Robin and Random policies
only achieve an utilization of less than 85%.

In summary, “Abort and Restart” is fairly simple and
useful in case of short transactions on sufficiently available
PEs. But in all other cases, it is instead useful to define
checkpoints to allow for session resumption from the latest
checkpoint.

5.2.2 Client-Based State Sharing

Client-Based State Sharing (see Subsection 2.4) using state
cookies offers a simple but effective solution for the state
transfer. It is applicable as long as the state information re-
mains sufficiently small2. To show the general effects of
using this mechanism, Figure 13 presents the performance
results for varying the cookie interval CookieMaxCalcs
(given as the ratio between the number of calculations and
the average request size) for different policy and PE MTBF
settings.

The larger the cookie transmission interval and the
smaller the PE MTBF, the lower the system performance:
work (i.e. processed calculations) not being conserved by
the cookie is lost. This results in an increased utilization,
due to re-processing effort. Furthermore, this additional
workload leads to a reduction of the request handling speed.
Clearly, the better a policy’s load balancing capabilities,
the better the system utilization and request handling speed
(Least Used better than Round Robin better than Random,
as for failure-free scenarios [7, 14]).

2The maximum state cookie size is less than 64 KiB [28].



Figure 13. Using Client-Based State Sharing for the Session Failover

Figure 14. The Number of Cookies

In order to configure an appropriate cookie interval, the
overhead of the state cookie transport has to be taken into
account. The average loss of calculations per failure can be
estimated as the half cookie interval CookieMaxCalcs (in
calculations, as multiple of the average request size):

AvgLoss =
CookieMaxCalcs

2
.

Given an approximation of the PE MTBF (in average re-
quest handling times) and AvgCap the average PE capacity,

the goodput ratio can be estimated as follows:

Goodput =
(MTBF ∗AvgCap)−AvgLoss

MTBF ∗AvgCap
.

Then, the cookie interval CookieMaxCalcs for a given
goodput ratio is:

CookieMaxCalcs = −2 ∗MTBF ∗AvgCap ∗ (Goodput− 1).
(1)

Figure 14 illustrates the cookies per request (i.e.
1

CookieMaxCalcs ) for varying the goodput ratio and MTBF in
equation 1. As shown for realistic MTBF values (i.e. MTBF
� a request time), the number of cookies per request keeps
small unless the required goodput ratio becomes extremely
high: accepting a few lost calculations (e.g. a goodput ratio
of 98% for a MTBF of 10 request times) – and the corre-
sponding re-processing effort on a new PE – leads to rea-
sonable overhead at good system performance.

The size of a state cookie is usually in the range of a few
bytes up to multiple kilobytes (some examples are provided
by [7, Subsubsection 9.4.2.2]). In order to further reduce
the overhead, it is useful to examine the contents of a ses-
sion state [32]. Usually, it consists of some long-term sub-
states (which mostly remain constant) and some short-term
sub-states (which change frequently). A useful strategy is
to only transmit the changed fractions of the state as partial
state cookie. Then, the PU can combine them with the al-
ready known long-term part sent in a full state cookie. Of
course, the need to combine long-term and short-term parts
in order to apply this so-called state splitting technique re-
quires the PU to be aware of the cookie structure.

Knowing the state cookie structure allows for a further
optimization: by using so-called state derivation [32], the



PU can derive parts of the session state from the application
protocol data. Then, the PU itself is able to fill in parts of the
cookie, avoiding transmission overhead. This mechanism
requires further differentiation of the cookie parts:

• public parts may be read and modified,

• immutable parts may only be read (a PE can verify the
integrity by signature; see Subsection 2.4) and

• private parts (which are encrypted and therefore un-
derstandable by the PEs only; see Subsection 2.4).

An application example is an audio on demand service: a
state cookie could contain some authentication information,
the name of the media file and the current playback position.
While the authentication information is clearly private, the
media name could be immutable (it is known by the PU-
side application anyway) and the playback position could
be public. Since the playback position is transmitted in each
RTP frame [47], it can be filled in by the PU – there is no
need to transmit it in form of a new (partial) state cookie.

6 Conclusions

RSerPool is the new IETF standard for server redun-
dancy and session failover. In this article, we have intro-
duced RSerPool – including the underlying SCTP protocol
– with a focus on server failure handing. After that, we have
provided a quantitative performance analysis of its server
failure handling performance. This failover performance is
influenced by two factors: (1) the failure detection speed
and (2) the failover mechanism.

In any case, it is crucial to detect server failures as soon
as possible (e.g. by session keep-alives or an application-
specific mechanism). The PR-based server health monitor-
ing is becoming important when the request size becomes
small. Failure reports may be used to reduce its overhead
significantly – if taking care of security. Using the “Abort
and Restart” failover mechanism, a reasonable performance
is already achieved with sufficiently reliable PEs at minimal
costs. A more sophisticated but still very simple and quite
effective failover strategy is Client-Based State Sharing.
Configured appropriately, a good performance is achieved
at small overhead.

The goal of our ongoing RSerPool research is to pro-
vide configuration and optimization guidelines for applica-
tion developers and users of the new IETF RSerPool stan-
dard. As part of our future work, we are going to validate
our results in real-life scenarios. That is, we are going to
perform PLANETLAB experiments by using our RSerPool
prototype implementation RSPLIB [7, 12, 26, 43]. Further-
more, we are going to analyse the failure handling features
of the ENRP protocol in detail [11, 12].

References

[1] T. Dreibholz and E. P. Rathgeb. Reliable Server Pool-
ing – A Novel IETF Architecture for Availability-
Sensitive Services. In Proceedings of the 2nd IEEE
International Conference on Digital Society (ICDS),
pages 150–156, Sainte Luce/Martinique, February
2008. ISBN 978-0-7695-3087-1.

[2] E. P. Rathgeb. The MainStreetXpress 36190: a scal-
able and highly reliable ATM core services switch. In-
ternational Journal of Computer and Telecommunica-
tions Networking, 31(6):583–601, March 1999.

[3] L. Alvisi, T. C. Bressoud, A. El-Khashab,
K. Marzullo, and D. Zagorodnov. Wrapping
Server-Side TCP to Mask Connection Failures. In
Proceedings of the IEEE Infocom 2001, volume 1,
pages 329–337, Anchorage, Alaska/U.S.A., April
2001. ISBN 0-7803-7016-3.

[4] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Mi-
gratory TCP: Highly available Internet services using
connection migration. In Proceedings of the ICDCS
2002, pages 17–26, Vienna/Austria, July 2002.

[5] K. Echtle. Fehlertoleranzverfahren. Springer-Verlag,
Heidelberg/Germany, 1990. ISBN 3-540526-80-3.

[6] D. Gupta and P. Bepari. Load Sharing in Distributed
Systems. In Proceedings of the National Workshop on
Distributed Computing, January 1999.

[7] T. Dreibholz. Reliable Server Pooling – Evaluation,
Optimization and Extension of a Novel IETF Architec-
ture. PhD thesis, University of Duisburg-Essen, Fac-
ulty of Economics, Institute for Computer Science and
Business Information Systems, March 2007.

[8] T. Dreibholz and E. P. Rathgeb. An Evaluation of
the Pool Maintenance Overhead in Reliable Server
Pooling Systems. SERSC International Journal on
Hybrid Information Technology (IJHIT), 1(2):17–32,
April 2008.

[9] Ian Foster. What is the Grid? A Three Point Checklist.
GRID Today, July 2002.

[10] T. Dreibholz and E. P. Rathgeb. An Evaluation of the
Pool Maintenance Overhead in Reliable Server Pool-
ing Systems. In Proceedings of the IEEE Interna-
tional Conference on Future Generation Communica-
tion and Networking (FGCN), volume 1, pages 136–
143, Jeju Island/South Korea, December 2007. ISBN
0-7695-3048-6.



[11] X. Zhou, T. Dreibholz, F. Fa, W. Du, and E. P.
Rathgeb. Evaluation and Optimization of the Registrar
Redundancy Handling in Reliable Server Pooling Sys-
tems. In Proceedings of the IEEE 23rd International
Conference on Advanced Information Networking and
Applications (AINA), Bradford/United Kingdom, May
2009.

[12] X. Zhou, T. Dreibholz, E. P. Rathgeb, and W. Du.
Takeover Suggestion – A Registrar Redundancy Han-
dling Optimization for Reliable Server Pooling Sys-
tems. In Proceedings of the 10th IEEE/ACIS Inter-
national Conference on Software Engineering, Artifi-
cial Intelligence, Networking and Parallel/Distributed
Computing (SNPD 2009), Daegu, South Korea, May
2009.

[13] T. Dreibholz and E. P. Rathgeb. A Powerful Tool-
Chain for Setup, Distributed Processing, Analysis and
Debugging of OMNeT++ Simulations. In Proceed-
ings of the 1st ACM/ICST OMNeT++ Workshop, Mar-
seille/France, March 2008. ISBN 978-963-9799-20-2.

[14] T. Dreibholz and E. P. Rathgeb. On the Performance
of Reliable Server Pooling Systems. In Proceed-
ings of the IEEE Conference on Local Computer Net-
works (LCN) 30th Anniversary, pages 200–208, Syd-
ney/Australia, November 2005. ISBN 0-7695-2421-4.

[15] A. Maharana and G. N. Rathna. Fault-tolerant Video
on Demand in RSerPool Architecture. In Proceedings
of the International Conference on Advanced Com-
puting and Communications (ADCOM), pages 534–
539, Bangalore/India, December 2006. ISBN 1-4244-
0716-8.

[16] Ü. Uyar, J. Zheng, M. A. Fecko, S. Samtani, and
P. Conrad. Evaluation of Architectures for Reliable
Server Pooling in Wired and Wireless Environments.
IEEE JSAC Special Issue on Recent Advances in Ser-
vice Overlay Networks, 22(1):164–175, 2004.

[17] M. Bozinovski, L. Gavrilovska, R. Prasad, and H.-P.
Schwefel. Evaluation of a Fault-tolerant Call Control
System. Facta Universitatis Series: Electronics and
Energetics, 17(1):33–44, 2004.

[18] R. Stewart. Stream Control Transmission Protocol.
Standards Track RFC 4960, IETF, September 2007.

[19] A. Jungmaier. Das Transportprotokoll SCTP. PhD
thesis, Universität Duisburg-Essen, Institut für Exper-
imentelle Mathematik, August 2005.

[20] R. Stewart, , Q. Xie, M. Tüxen, S. Maruyama, and
M. Kozuka. Stream Control Transmission Protocol

(SCTP) Dynamic Address Reconfiguration. Standards
Track RFC 5061, IETF, September 2007.

[21] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and
M. Tüxen. Reliable IP Telephony Applications
with SIP using RSerPool. In Proceedings of the
State Coverage Initiatives, Mobile/Wireless Comput-
ing and Communication Systems II, volume X, Or-
lando, Florida/U.S.A., July 2002. ISBN 980-07-8150-
1.

[22] A. Jungmaier, E. P. Rathgeb, M. Schopp, and
M. Tüxen. A multi-link end-to-end protocol for IP-
based networks. AEÜ - International Journal of Elec-
tronics and Communications, 55(1):46–54, January
2001.

[23] P. Lei, L. Ong, M. Tüxen, and T. Dreibholz. An
Overview of Reliable Server Pooling Protocols. In-
formational RFC 5351, IETF, September 2008.

[24] Q. Xie, R. Stewart, M. Stillman, M. Tüxen, and A. Sil-
verton. Endpoint Handlespace Redundancy Protocol
(ENRP). RFC 5353, IETF, September 2008.

[25] C. S. Chandrashekaran, W. L. Johnson, and A. Lele.
Method using Modified Chord Algorithm to Bal-
ance Pool Element Ownership among Registrars in
a Reliable Server Pooling Architecture. In Proceed-
ings of the 2nd International Conference on Com-
munication Systems Software and Middleware (COM-
SWARE), pages 1–7, Bangalore/India, January 2007.
ISBN 1-4244-0614-5.

[26] T. Dreibholz and E. P. Rathgeb. On Improving
the Performance of Reliable Server Pooling Systems
for Distance-Sensitive Distributed Applications. In
Proceedings of the 15. ITG/GI Fachtagung Kommu-
nikation in Verteilten Systemen (KiVS), pages 39–50,
Bern/Switzerland, February 2007. ISBN 978-3-540-
69962-0.

[27] X. Zhou, T. Dreibholz, and E. P. Rathgeb. A New
Server Selection Strategy for Reliable Server Pool-
ing in Widely Distributed Environments. In Pro-
ceedings of the 2nd IEEE International Conference
on Digital Society (ICDS), pages 171–177, Sainte
Luce/Martinique, February 2008. ISBN 978-0-7695-
3087-1.

[28] R. Stewart, Q. Xie, M. Stillman, and M. Tüxen. Ag-
gregate Server Access Protcol (ASAP). RFC 5352,
IETF, September 2008.



[29] T. Dreibholz. Handle Resolution Option for ASAP.
Internet-Draft Version 04, IETF, Individual Submis-
sion, January 2009. draft-dreibholz-rserpool-asap-
hropt-04.txt, work in progress.

[30] T. Dreibholz and M. Tüxen. Reliable Server Pooling
Policies. RFC 5356, IETF, September 2008.

[31] T. Dreibholz, X. Zhou, and E. P. Rathgeb. A Perfor-
mance Evaluation of RSerPool Server Selection Poli-
cies in Varying Heterogeneous Capacity Scenarios.
In Proceedings of the 33rd IEEE EuroMirco Confer-
ence on Software Engineering and Advanced Applica-
tions, pages 157–164, Lübeck/Germany, August 2007.
ISBN 0-7695-2977-1.

[32] T. Dreibholz. An Efficient Approach for State
Sharing in Server Pools. In Proceedings of the
27th IEEE Local Computer Networks Conference
(LCN), pages 348–352, Tampa, Florida/U.S.A., Octo-
ber 2002. ISBN 0-7695-1591-6.

[33] ITU-T. Introduction to CCITT Signalling System
No. 7. Technical Report Recommendation Q.700, In-
ternational Telecommunication Union, March 1993.

[34] T. Dreibholz, A. Jungmaier, and M. Tüxen. A new
Scheme for IP-based Internet Mobility. In Pro-
ceedings of the 28th IEEE Local Computer Net-
works Conference (LCN), pages 99–108, Königswin-
ter/Germany, November 2003. ISBN 0-7695-2037-5.

[35] T. Dreibholz, L. Coene, and P. Conrad. Reliable
Server Pooling Applicability for IP Flow Information
Exchange. Internet-Draft Version 07, IETF, Individ-
ual Submission, January 2009. draft-coene-rserpool-
applic-ipfix-07.txt, work in progress.

[36] T. Dreibholz, X. Zhou, and E. P. Rathgeb. Sim-
ProcTC – The Design and Realization of a Power-
ful Tool-Chain for OMNeT++ Simulations. In Pro-
ceedings of the 2nd ACM/ICST OMNeT++ Workshop,
Rome/Italy, March 2009. ISBN 978-963-9799-45-5.

[37] T. Dreibholz and E. P. Rathgeb. The Performance of
Reliable Server Pooling Systems in Different Server
Capacity Scenarios. In Proceedings of the IEEE
TENCON ’05, Melbourne/Australia, November 2005.
ISBN 0-7803-9312-0.

[38] X. Zhou, T. Dreibholz, and E. P. Rathgeb. A New
Approach of Performance Improvement for Server Se-
lection in Reliable Server Pooling Systems. In Pro-
ceedings of the 15th IEEE International Conference
on Advanced Computing and Communication (AD-
COM), pages 117–121, Guwahati/India, December
2007. ISBN 0-7695-3059-1.

[39] X. Zhou, T. Dreibholz, and E. P. Rathgeb. Im-
proving the Load Balancing Performance of Reliable
Server Pooling in Heterogeneous Capacity Environ-
ments. In Proceedings of the 3rd Asian Internet
Engineering Conference (AINTEC), volume 4866 of
Lecture Notes in Computer Science, pages 125–140.
Springer, November 2007. ISBN 978-3-540-76808-1.

[40] T. Dreibholz and E. P. Rathgeb. Towards the Future
Internet – An Overview of Challenges and Solutions in
Research and Standardization. In Proceedings of the
2nd GI/ITG KuVS Workshop on the Future Internet,
Karlsruhe/Germany, November 2008.

[41] A. Varga. OMNeT++ Discrete Event Simulation Sys-
tem User Manual - Version 3.2. Technical University
of Budapest/Hungary, March 2005.

[42] R Development Core Team. R: A language and envi-
ronment for statistical computing. R Foundation for
Statistical Computing, Vienna/Austria, 2005. ISBN
3-900051-07-0.

[43] T. Dreibholz and E. P. Rathgeb. A PlanetLab-Based
Performance Analysis of RSerPool Security Mech-
anisms. In Proceedings of the 10th IEEE Interna-
tional Conference on Telecommunications (ConTEL),
Zagreb/Croatia, June 2009.

[44] P. Schöttle, T. Dreibholz, and E. P. Rathgeb. On the
Application of Anomaly Detection in Reliable Server
Pooling Systems for Improved Robustness against
Denial of Service Attacks. In Proceedings of the
33rd IEEE Conference on Local Computer Networks
(LCN), pages 207–214, Montreal/Canada, October
2008. ISBN 978-1-4244-2413-9.

[45] X. Zhou, T. Dreibholz, W. Du, and E. P. Rathgeb.
Evaluation of Attack Countermeasures to Improve
the DoS Robustness of RSerPool Systems by Sim-
ulations and Measurements. In Proceedings of the
16. ITG/GI Fachtagung Kommunikation in Verteilten
Systemen (KiVS), pages 217–228, Kassel/Germany,
March 2009. ISBN 978-3-540-92665-8.

[46] T. Dreibholz, E. P. Rathgeb, and X. Zhou. On Robust-
ness and Countermeasures of Reliable Server Pooling
Systems against Denial of Service Attacks. In Pro-
ceedings of the IFIP Networking, pages 586–598, Sin-
gapore, May 2008. ISBN 978-3-540-79548-3.

[47] T. Dreibholz. Management of Layered Variable Bi-
trate Multimedia Streams over DiffServ with Apriori
Knowledge. Masters Thesis, University of Bonn, In-
stitute for Computer Science, February 2001.


	Introduction and Related Work
	The RSerPool Architecture
	Data Transport and Motivation
	Architecture
	Protocol Stack
	Session Failover Handling
	Applications

	Quantifying a RSerPool System
	The Simulation Scenario Setup
	Results
	Failure Detection
	Dynamic Pools
	De-Registrations and Failures
	Session Health Monitoring
	Server Health Monitoring

	Failover Mechanisms
	``Abort and Restart''
	Client-Based State Sharing


	Conclusions

