
An Overview of the Reliable Server Pooling Architecture

Thomas Dreibholz (dreibh@exp-math.uni-essen.de)
University of Duisburg-Essen, Institute for Experimental Mathematics

26th August 2004

Abstract

The convergence of classical PSTN and IP networks requires the
transport of SS7 signalling over IP. Since SS7 has very strict avail-
ability requirements to the signalling components, redundancy is
mandatory. The goal of the IETF RSerPool working group is to de-
fine a lightweight, flexible and realtime redundancy concept to fulfil
the availability requirements of SS7: reliable server pooling (RSer-
Pool). RSerPool is currently under standardization, its functionality
and improvement are subject of our research.

Our poster presents our RSerPool proof-of-concept implementa-
tion and a research oriented, discrete event based simulation model.
We provide simulation results showing limitations of the server
selection procedures defined in the standards and a way to solve
them. These improvements are now going into standardization by
the IETF. Furthermore, we present some of our results on efficient
algorithms and data structures for pool management. The poster
concludes with an outlook on our currently progressing evaluations
of service reliablity in failure scenarios.

1 What is Reliable Server Pooling

The convergence of classical circuit-switched networks (i.e.
PSTN/ISDN) and data networks (i.e. IP-based) is rapidly progress-
ing. This implies that PSTN signalling via the SS7 protocol is trans-
ported over IP networks. Since SS7 signalling networks offer a
very high degree of availability (e.g. at most 10 minutes down-
time per year for any signalling relation between two signalling
endpoints; for more information see [5]), all links and components
of the network devices must be redundant. When transporting sig-
nalling over IP networks, such redundancy concepts also have to be
applied to achieve the required availability. Link redundancy in IP
networks is supported using the Stream Control Transmission Proto-
col (SCTP); redundancy of network device components is supported
by the SGP/ASP (signalling gateway process/application server pro-
cess) concept. However, this concept has some limitations: no sup-
port of dynamic addition and removal of components, limited ways
of server selection, no specific failover procedures and inconsistent
application to different SS7 adaptation layers.

To cope with the challenge of creating a unified, lightweight, re-
altime and flexible redundancy solution, the IETF Reliable Server
Pooling Charter has been founded. An overview of their concept Re-
liable Server Pooling (RSerPool), which is currently in the standard-
ization process and described by several Internet Drafts, is shown in
figure 1. Redundant servers providing the same service belong to a
so calledserver pool, identified by a unique ID calledpool handle
within the set of all server pools, the so callednamespace. A server
in a pool is calledpool element(PE) of its pool. The namespace is
managed by redundantname servers(NSs), they synchronize their
view of the namespace using the Endpoint Name Resolution Pro-
tocol (ENRP). NSs announce themselves using broadcast/multicast,
i.e. it is not necessary to configure any NS address to other compo-
nents described in the following.

Pool User

Po
ol

 E
le

m
en

t P
E

2

Pool Element PE1

ASAP Protocol

ENRP Protocol

Application Protocol

...

Pool UserPool User

Proxy

Legacy Clients

Name Server #1

Name Server #2

Pool Element PE3

������
������

������
������

�� ������

������
���
������
���

	
 ���� � ������

���
�
����

���
�
����

Figure 1: An Overview of the RSerPool Architecture

PEs can register to a pool of the namespace at an arbitrary NS us-
ing the Aggregate Server Access Protocol (ASAP). The NS chosen
by the PE for registration monitors the PE using SCTP heartbeats
and ASAP keep-alives; the frequency of monitoring messages de-
pends on the provided service’s availability requirements. When a
PE becomes unavailable, it is immediately removed from the names-
pace. A PE can also intentionally deregister from the namespace by
an ASAP deregistration. NS failures are handled by requiring PEs to
re-register regularly (and therefore choosing a new NS when neces-
sary) and by NSs monitoring their peer NSs and invoking an ENRP
takeover procedure in case of failure.

When a client requests a service a from a pool, it asks an arbitrary
NS to translate the pool handle to a list of PE transport addresses
selected by the pool’s selection policy (pool policy), e.g round robin
or least used (see [7] for additional standardized policies). Then, it
selects again one PE and establishes a transport connection to this PE
using the application’s protocol. The client then becomes a so called
pool user(PU) of the PE’s pool. In case of PE failure, the procedure
is repeated to establish a connection to a new PE. Optionally, a PU
can report a PE failure to a NS, which may decide to remove this PE
from the namespace.

RSerPool supports optional client-based state synchronization [1]
for failover. That is, a PE can provide its current state asstate cookie
to the PU. When a failover to a new PE is made, the PU can transmit
this state cookie to the new PE, which can then restore this state.
RSerPool is not restricted to client-based state synchronization, any
other application-specific failover procedure can be used as well by
the application layer itself.

The lightweight, realtime and flexible architecture of RSerPool
is not only usable for SS7-based telephony signalling. Other ap-
plication scenarios include SIP, mobility management [3] and the
management of distributed computing pools [4, 8].

2 Our Research Results

RSerPool is a completely new standard, so almost no research on the
subject of this protocol framework has been made yet. While par-
tial aspects of RSerPool like pools, availability monitoring and load

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12 14 16

R
eq

ue
st

s
H

an
dl

ed
 [1

]

Fast PE Compution Power [Scale Factor]

Total Requests Handled

Least Used
Weighted Round Robin

Priority Least Used
Weighted Random

Figure 2: A Pool Policy Load Distribution Performance Result

distribution themselves are not completely new ideas, their combi-
nation into RSerPool is. The goal of our RSerPool activity is to ex-
amine and evaluate this new framework, develop improvements and
finally bring them into the standardization process. One of our suc-
cessful contributions to the standard is the concept of client-based
state synchronization using state cookies, which we first described
in [1] and which is now part of the ASAP draft.

The main focus of our RSerPool research activity is based on a
discrete event simulation model. This model contains modules for
the ASAP and ENRP protocols as well as modules of a SGP PU and
an ASP PE. Currently, we focus our research on the load distribution
performance of pool policies defined by the IETF RSerPool Internet
Drafts.

One selected result is shown in figure 2: The standard document
defines the policies Least Used (a dynamic one, requiring distribu-
tion of PE load information) and Weighted Round Robin (a static
one, using a weight constant). While these standard policies are
sufficient for homogeneous scenarios, they become inefficient in in-
homogeneous ones: We examined their load distribution behaviour
in a scenario having a pool of 18 equal-powered PEs, scaling the
computation power of only three “fast” PEs. 36 PUs request ser-
vice computation from the pool, using an average inter-request time
of 10s (exponentially distributed). The average request handling ef-
fort is 10s (request size is exponentially distributed) on a normal PE
when being processed exclusively. A PE can handle multiple re-
quests simultaneously; in this case the computation power is shared
between them (like different Unix processes).

The expected result should be that the pool is able to handle the
more service requests the more powerful the fast PEs become. But
as it is shown, the gradient of total requests handled is small. For
higher scale factors than 7, even no significant gain can be observed.
The reason is, that Least Used does not incorporate the fact that a fast
PE may be able to process a new request faster than a lower-loaded
normal one. For higher scale factors, the results for the dynamic
policy are even worse than for the static Weighted Round Robin.

Our goal was to improve the load distribution behaviour by adding
two new policies. The first one is Priority Least Used, which is Least
Used with an information on how much a PE’s load increases when
answering a new request. This additional information is provided by
the PE itself. As figure 2 shows, the total amount of requests handled
by the pool almost linearly increases now. For every scale factor, our
Priority Least Used is at least as good as the original Least Used, but
providing much better utilization of the pool’s resources the more
inhomogeneously the scenario becomes. Our second new policy is
Weighted Random, a static policy using a weight constant for a ran-

dom distribution proportional to the PEs’ weights. Again, this policy
shows an almost linearly increasing request handling throughput for
scaling the fast PE’s computation power.

Our recommendations and improvements for the RSerPool stan-
dards have just been summarized into an Internet Draft [7], which
has been presented and discussed at the 60th IETF meeting. Now,
our results are going into standardization.

An additional result of our pool policy research is the develop-
ment and evaluation of suitable algorithms and data structures for
efficient namespace management [2]: We express pool policies in
form of sorting orders and selection procedures and then store the
namespace using multiple leaf-linked balanced binary trees. While
our management concept allows easy addition of new policies, our
performance evaluations also have shown that it is very runtime-
efficient and scalable.

In cooperation with Siemens AG, we have realized a prototype
implementation of the RSerPool framework [4, 6]. The main pur-
pose for creating and maintaining this prototype is to make proof of
concept tests and evaluations of theoretical results gained from our
simulation model. By proving results to be useful in theory and also
in practice, this supports our goal to bring our improvements into the
standards process. Our prototype has already been used for a proof
of concept on the usability of RSerPool for mobility management [3]
and in a student project to examine the usability of RSerPool for the
management of distributed computing pools [8]. Our poster will
present the prototype and some example applications.

Our next research goal is to examine the load distribution be-
haviour of the policies under failure conditions, i.e. when links, PEs
or NSs go out of service. Since RSerPool has been created to pro-
vide a service continuation by failover within strict time constrains,
this is the main aspect of our ongoing research.

References

[1] T. Dreibholz. An efficient approach for state sharing in server
pools. InProceedings of the 27th Local Computer Networks
Conference, Tampa, Florida/U.S.A., Oct 2002.

[2] T. Dreibholz. Policy Management in the Reliable Server Pool-
ing Architecture. InProceedings of the Multi-Service Networks
Conference 2004, Abingdon, Oxfordshire/United Kingdom, Jul
2004.

[3] T. Dreibholz, A. Jungmaier, and M. Tüxen. A new Scheme for
IP-based Internet Mobility. InProceedings of the 28th Local
Computer Networks Conference, Königswinter/Germany, Nov
2003.

[4] T. Dreibolz and M. Tüxen. High availability using reliable
server pooling. InProceedings of the Linux Conference Aus-
tralia 2003, Perth/Australia, Jan 2003.

[5] K. D. Gradischnig and M. Tüxen. Signaling transport over ip-
based networks using ietf standards. InProceedings of the 3rd
International Workshop on the design of Reliable Communica-
tion Networks, pages 168–174, Budapest, Hungary, 2001.

[6] Thomas Dreibholz’s RSerPool Page. http://tdrwww.exp-
math.uni-essen.de/dreibholz/rserpool.

[7] M. Tüxen and T. Dreibholz. Reliable Server Pooling Policies.
Internet-Draft Version 00, IETF, RSerPool WG, Jul 2004. draft-
tuexen-rserpool-policies-00.txt, work in progress.

[8] Y. Zhang. Distributed Computing mit Reliable Server Pooling.
Masters thesis, Universität Essen, Institut für Experimentelle
Mathematik, Apr 2004.

