
Load Distribution Performance of the Reliable Server
Pooling Framework

Thomas Dreibholz1 and Erwin P. Rathgeb1 and Michael Tüxen2

1 University of Duisburg-Essen
Institute for Experimental Mathematics

Ellernstraße 29, D-45326 Essen, Germany
Tel: +49 201 183-7637, Fax: +49 201 183-7673
dreibh@exp-math.uni-essen.de
2 University of Applied Sciences, Münster
Fachbereich Elektrotechnik und Informatik

Stegerwaldstraße 39, D-48565 Steinfurt, Germany
Tel: +49 2551 962550

tuexen@fh-muenster.de

Abstract. The Reliable Server Pooling (RSerPool) protocol suite currently un-
der standardization by the IETF is designed to build systems providing highly
available services by providing mechanisms and protocols for establishing, con-
figuring, accessing and monitoring pools of server resources.
While availability is one main aspect of RSerPool, load distribution is another.
Since most of the time a server pool system runs without component failures, op-
timal performance is an extremely important issue for the productivity and cost-
efficiency of the system. In this paper, we therefore focus especially on the load
distribution performance of RSerPool in scenarios without failures, presenting a
quantitative performance comparison of the different load distribution strategies
(called pool policies) defined in the RSerPool specifications. Based on the results,
we propose some new pool policies providing significant performance enhance-
ments compared to those currently defined in the standards documents.

1 The Reliable Server Pooling Architecture

The convergence of classical circuit-switched networks (i.e. PSTN/ISDN) and data net-
works (i.e. IP-based) is rapidly progressing. This implies that SS7 PSTN signalling [1]
has to also be transported over IP networks. Since SS7 signalling networks offer a very
high degree of availability (e.g. at most 10 minutes downtime per year for any sig-
nalling relation between two signalling endpoints; for more information see [2]), all
links and components of the network devices must be fault-tolerant, and this is achieved
through having multiple links, and using the link redundancy concept of SCTP [3].
When transporting signalling over IP networks, such concepts also have to be applied
to achieve the required availability. Link redundancy in IP networks is supported using
the Stream Control Transmission Protocol (SCTP) providing multiple network paths
and fast failover [4,5]; redundancy of network device components is supported by the
SGP/ASP (signalling gateway process/application server process) concept. However,
this concept has some limitations: there is no support of dynamic addition and removal
of components; it has only limited ways of server selection and no specific failover
procedures and inconsistent application to different SS7 adaptation layers.

To cope with the challenge of creating a unified, lightweight, realtime, scalable and
extendable redundancy solution (see [6] for details), the IETF Reliable Server Pooling

Working Group was founded to specify and define the Reliable Server Pooling Con-
cept. An overview of the architecture currently under standardization and described by
several Internet Drafts is shown in figure 1.

...

Application Protocol

ASAP Protocol

ASAP Protocol

PE3PE2

PE1

Pool Users

ENRP Protocol

Pool Elements

Name Servers

�� ����
�� ����	
 ��

�
�
�

���
���
���
���

�
�
�
�

�� ����

Fig. 1. The RSerPool Architecture

Is PE still alive?

R
eg

is
tr

at
io

n
K

ee
p

A
liv

e
R

e−
re

gi
st

ra
tio

n

PE is alive −> nothing to do

Tell other NSs (via ENRP)
New PE −> Register to namespace

PE exists −> Update its information
Tell other NSs (via ENRP)

NS
Registration

Endpoint Keep Alive Ack

PE

...
Endpoint Keep Alive

Registration

Time Time

...

...

Registration Response

Registration Response

Fig. 2. PE Registration and Monitoring

Multiple server elements providing the same service belong to a server pool to pro-
vide redundancy on one hand and scalability on the other. Server pools are identified by
a unique ID called pool handle (PH) within the set of all server pools, the namespace.
A server in a pool is called a pool element (PE) of the respective pool. The namespace
is managed by redundant name servers (NS). The name servers synchronize their view
of the namespace using the Endpoint Name Resolution Protocol (ENRP [7]). NSs an-
nounce themselves using broadcast/multicast mechanisms, i.e. it is not necessary (but
still possible) to pre-configure any NS address into the other components described in
the following.

PEs providing a specific service can register for a corresponding pool at an arbitrary
NS using the Aggregate Server Access Protocol (ASAP [8]) as shown in figure 2. The
home NS is the NS which was chosen by the PE for initial registration. It monitors
the PE using SCTP heartbeats (layer 4, not shown in figure) and ASAP Endpoint Keep
Alives. The frequency of monitoring messages depends on the availability requirements
of the provided service. When a PE becomes unavailable, it is immediately removed
from the namespace by its home NS. A PE can also intentionally de-register from the
namespace by an ASAP de-registration allowing for dynamic reconfiguration of the
server pools. NS failures are handled by requiring PEs to re-register regularly (and
therefore chosing a new NS when necessary). Re-registration also makes it possible
for the PEs to update their registration information (e.g. transport addresses or policy
states).

The home NS, which registers, re-registers or de-registers a PE, propagates this
information to all other NS via ENRP. Therefore, it is not necessary for the PE to use
any specific NS. In case of a failure of its home NS, a PE can simply use an arbitrarily
chosen other one.

When a client requests a service from a pool, it first asks an arbitrary NS to trans-
late the pool handle to a list of PE identities selected by the pool’s selection policy (pool
policy), e.g round robin or least used (to be explained in detail in section 2). The NS
does not return the total number of identities in the pool, instead it has a constant value,
MaxNResItems, which dictates how many PE identities should be returned. For exam-
ple, if there were 5 PEs and MaxNResItems was set to 3, then the NS would select 3 of
the 5; conversely, if MaxNResItems were set to 5, and there were only 3 PEs, then all 3

PE identities would be returned. The PU adds this list of PE identities to its local cache
(denoted as PU-side cache) and again selects one entry by policy from its cache. To this
selected PE, a connection is established, using the application’s protocol, to actually use
the service. The client then becomes a pool user (PU) of the PE’s pool.

It has to be emphasized, that there are two locations where a selection by pool policy
is applied during this process: at the NS when compiling the list of PEs and in the local
PU-side cache where the target PE is selected from the list.

The default timeout of the PU-side cache, called stale cache value is 30s [8]. That is,
within this time period, subsequent name resolutions of the PU may be satisfied directly
from the PU-side cache, saving the effort and bandwidth for asking the NS.

If the connection to the selected PE fails, e.g. due to overload or failure of the PE,
the PU selects another PE from its list and tries again. Optionally, the PU can report a
PE failure to a NS, which may then decide to remove this PE from the namespace. If
the PE failure occurs during an active connection, a new connection to another available
PE is established and an application-specific failover procedure is invoked.

RSerPool supports optional client-based state synchronization [9] for failover. That
is, a PE can store its current state with respect to a specific connection in a state cookie
which is sent to the corresponding PU. When a failover to a new PE is necessary, the
PU can send this state cookie to the new PE, which can then restore the state and re-
sume service at this point. However, RSerPool is not restricted to client-based state
synchronization, any other application-specific failover procedure can be used as well.

The lightweight, realtime, scalable and extendable architecture of RSerPool is not
only applicable to transport of SS7-based telephony signalling. Other application sce-
narios include reliable SIP based telephony [10], mobility management [11] and the
management of distributed computing pools [12,13]. Furthermore, additional applica-
tion scenarios in the area of load distribution and balancing are currently under discus-
sion within the IETF RSerPool Working Group.

Currently, there are two existing implementations of RSerPool: the authors’ own
GPL-licensed Open Source prototype rsplib [12] and a closed source version, by Mo-
torola [14]. The standards documents are currently Internet Drafts, having some open
issues. These open questions are: evaluation of reliability aspects, state synchronization
between PEs and load distribution among PEs.

In this paper, we focus our attention on the third point above – the open topic of
load distribution among PEs, which is crucial for the efficient operation of server pools.

2 Load Distribution and Balancing
Whilst reliability is one of the obvious aspects of RSerPool, load distribution is another
important one: the choice of the pool element selection policy (pool policy) controls
the way in which PUs are mapped to PEs when they request a service. An appropriate
strategy here is to balance the load among the PEs to avoid excessive response times
due to overload in some servers, while others run idle.

For RSerPool, load only denotes a constant in the range from 0% (not loaded) to
100% (fully loaded) which describes a PE’s actual normalized resource utilization.
The definition of a mapping from resource utilization to a load value is application-
dependent. Formally, such a mapping function is defined as m(u) := u

Umax−Umin

,
u ∈ {Umin, ..., Umax}⊂ R, where Umin denotes the application’s minimum and Umax

the maximum possible resource utilization.
A file transfer application could define the resource utilization as the number of

users currently handled by a server. Under the assumption of a maximum amount of 20
simultaneous users: Umin = 0 and Umax = 20. Therefore, m(u) := u

20
.

For an e-commerce database transaction system, response times are crucial; e.g. a
customer should get a response in less than 5 seconds. In this case, utilization can be
defined as a server’s average response time. Then, Umin = 0s and Umax = 5s and
m(u) := u

5s
. Other arbitrary schemes can be defined as well, e.g. CPU usage, memory

utilization etc.
Depending on the used pool element selection policy, RSerPool can try to achieve

a balanced load of the PEs within a pool. That is, if the application defines its load as
a function of the amount of users, RSerPool will balance the amount of users. And if
load is defined as average response time, RSerPool will balance response times.

Currently, the drafts [8] and [15] define the following four pool policies: Round
Robin (RR), Weighted Round Robin (WRR), Least Used (LU) and Leased Used with
Degradation (LUD). The RR and WRR policies are called static policies because they
do not require and incorporate any information on the actual load state of the active
PEs when making the selection. However, they are "stateful" in a sense that the current
selection depends on the selection made in the previous request. This can – if carelessly
implemented - lead to a severe performance degradation in some situations as shown in
section 5.1. The LU and LUD policies try to select the PEs which currently carry the
least load. Therefore, the PEs are required to propagate their load information into the
namespace (by doing a re-registration) regularly or upon changes. These required dy-
namic policy information changes lead to the term dynamic policy. It is obvious that the
dynamic policies have the potential to provide a better load sharing resulting in a better
overall performance. However, the tradeoff is that these policies require additional sig-
nalling overhead in order to keep the load information sufficiently current. These effects
will be quantified in section 5.2.

3 Detailed Definition of Pool Policies

Even though the pool policies are mentioned in the current standards documents, their
definitions are not sufficient for a consistent implementation. E.g. it was not defined how
to perform the load degradation in the LUD policy. Therefore, to be able to do the im-
plementation as well as the simulation study, we refined the definition of these policies
in a first step as described below and introduced these definitions into the standardiza-
tion process as Internet Draft [16]. Furthermore, based on our quantitative evaluation
described in section 5 we propose modifications as well as additional, more efficient
policies.

3.1 Policies defined in the standards documents

Round Robin (RR) and Weighted Round Robin (WRR) Using this policy, the ele-
ments in a list of PEs should be used in a round robin fashion, starting with the first PE.
If all elements of the list have been used, selection starts again from the beginning of
the list.

The RR policy does not take into account the fact that servers may have different
capacities. Therefore, WRR tries to improve the overall performance by selecting more
powerful servers more often. The capacity of a PE is reflected by its integer weight
constant. This constant specifies how many times per round robin round a PE should
be selected. For example, this can be realized using a round robin list where each PE
gets as many entries as its weight constant specifies. Obviously, RR can be viewed as a
special case of WRR with all weight factors set to identical values.

Least Used (LU) The effort to serve a request may – in some application scenarios –
vary significantly. Therefore, the LU policy tries to incorporate the actual load value of
a server into the selection decision. When selecting a PE under the LU policy, the least
loaded PE is chosen. That is, a NS executing the selection has to know the current load
states of all PEs. For the case that there are multiple PEs of the same load, round robin
selection between these equal-loaded PEs should be applied.

Least Used with Degradation (LUD) When using the LU policy, load information up-
dates are propagated among the NSs using ENRP Peer Update messages [7]. However,
they are not propagated immediately to the PU-side caches as these are only updated by
ASAP Name Resolutions [8]. To keep the resulting namespace inconsistencies small,
the LUD policy extends LU by a per-PE load degradation constant (this was not defined
by the original ASAP draft, it had to be added by us to make this policy useful [16]).
This load degradation constant specifies in units of the load how much a new request to
the PE will increase its load. For the file transfer example above, a new request means
a new user on this PE. Therefore, its load increases by m(1) = 1

20
= 5%. That is, the

load degradation constant should be set to 5%.
Each selecting component, i.e. NS or PU-side cache, has to keep a local per-PE

degradation counter which is initialized with 0%. Whenever a PE is selected, this local
counter is incremented by the load degradation constant. On update, i.e. the PE re-
registers with its up-to-date load information and the information is spread via ENRP,
the local degradatation counter is reset. For selection, the PE having the lowest sum
of load value and degradation counter is selected. If there are PEs having equal sums,
round robin selection is applied.

For example, there is a PE of load 50% and load degradation 5% in a PU-side
cache. At first, its degradation counter is 0%. When it is selected for the first time,
it is incremented to 5%, and then to 10% for the second time. Now, a new selection
in the PE’s pool is invoked. In this case, it is only selected when its sum of load and
degradation counter (50% + 10% = 60%) is lowest within the pool (or if there are PEs
of equal sum, by round robin selection among them).

First experiments have shown that the LUD performance is highly dependent on
the scenario and generally rather unpredictable. Since no generally applicable results
for LUD have been obtained so far, this policy is not recommended for use and not
included in the quantitative comparison.

3.2 Modified and New Policies
Modified Round Robin (RRmod) and Modified Weighted Rd. Robin (WRRmod)
In some situations, the RR selection degenerates due to its statefulness as shown in sec-
tion 5.1. To avoid this, the cyclic pattern has to be broken up. Therefore, we propose to
modify the RR policy by instead of incrementing the round robin pointer by the number
of items actually selected, simply to increment it by one. The same modification should
also be applied to WRR, which is a generalization of RR, resulting in the modified
policy WRRmod.

Random Selection (RAND) and Weighted Random Selection (WRAND) Another
solution to avoid the degeneration problem is to use a static and completely stateless
selection mechanism. To achieve this, PEs are randomly selected from the pool with
equal probability (RAND) or with a probability proportional to the weight constant of
a PE (WRAND). RAND can be viewed as a special case of WRAND with all weight
factors set to identical values (as for RR and WRR).

Priority Least Used (PLU) PLU is a dynamic policy based on LU with the difference
that PEs can provide a load increment constant similar to LUD (see section 3.1). Then,
the PE having the lowest value of load + load increment constant is selected. But un-
like LUD, no local incrementation is applied to the load information by the selecting
component (NS or PU-side cache) itself. This makes the policy simpler and avoids its
sensitivity to variances of update timing and fraction of selected PEs actually used by
the PU for service.

4 The Simulation Model

To quantitatively evaluate the RSerPool concept, we have developed a simulation model
which is based on the discrete event simulation system OMNeT++ [17]. Currently, it
includes implementations of the two RSerPool protocols – ASAP [8] and ENRP [7] –
and a NS module. Furthermore, it also includes models for PE and PU components of
the distributed fractal graphics computation application described in [13]. This appli-
cation was originally created using our RSerPool prototype rsplib and tested in a lab
testbed emulating a LAN/WAN scenario.

Figure 3 shows the simulation scenario.

Switch

Pool
Elements (6)

Name Server

Pool Users (12)

LAN 1LAN 2

LAN 3
���
���
���

�
�
�

���
���
���

���
���
���

���
���
���

�
�
�

Fig. 3. RSerPool Simulation Scenario

The modelled RSerPool network consists of
3 LANs, interconnected via WAN links. The
LAN links introduce an average delay of 10ms,
WAN links an average one of 100ms (both
settings are based on the testbed LAN/WAN
scenario). Each LAN contains 1 NS, 6 PEs
(the local NS is their home NS) and 12 PUs
(using the local NS for name resolutions).

Unless otherwise specified, a PE has a
default computation capacity of C = 106

calculations per second. A PE can process several computation jobs simultaneously in a
processor sharing mode as commonly used in multitasking operating systems. At most,
MaxJobs =

⌊

C
2.5∗105

⌋

simultaneous jobs are allowed on a server to avoid overloading

and excessive response times. Therefore, for a server with the default capacity of 106

calculations per second, at most 4 jobs can be processed simultaneously. The load of
a server in our scenario has been defined as the number of currently running jobs, di-
vided by its respective job limit MaxJobs. That is, if server B has twice the computation
capacity of A, B may have a load of 50% with 4 jobs while A is already loaded 50%
with 2 jobs. A PE rejects an additional job if it is fully loaded. In this case, the PU will
try another PE (selected by pool policy, of course) after an average timeout of 100ms
to avoid overloading the NS and network with unsuccessful ASAP Name Resolution
requests (recommendation based on the results from [13]).

In our scenario, PUs sequentially request the processing of jobs by the pool, having
an average job size of 107 calculations and a negative exponential distribution (approx-
imation of the real system behavior, see [13]). After receiving the result of a job, a PU
waits for an average of 10 seconds (again, negative exponentially distributed) to model
the reaction time of a user. The stale cache value for the PU-side cache is set to the
default of 30s (see [8] and [15]), i.e. a stale cache period contains about 2 to 3 service
times.

The length of the simulation runs was set to 20 minutes simulated realtime. All
simulation runs have been repeated 4 times using different seeds to be able to com-
pute confidence intervals. For the statistical post-processing and plotting, GNU Octave

and GNU Plot have been used. The plots show mean values and their 95% confidence
intervals.

5 Simulation Results

5.1 RR Policy Degeneration

To show the effects of inappropriately implemented stateful policies (see section 2), we
first examine a homogeneous scenario where all PEs have the same capacity of C = 106

calculations per second.
Figure 4 shows the total number of com-

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 2 4 6 8 10 12 14 16 18

Jo
bs

 C
om

pl
et

ed
 [1

]

MaxNResItems [1]

Jobs Completed in 20 Minutes

RRmod
RR

RAND

Fig. 4. Round Robin Policy Behaviour

pleted jobs for different values of MaxNRe-
sItems, i.e. for a different number of PE iden-
tities returned per name resolution request.

For the original RR policy, a significant
periodic degeneration can be observed. If the
number of PEs in the pool is an integer mul-
tiple of the number of entries in the list sent
back by the NS, specific PEs will be system-
atically overloaded while the others will be
hardly used. Assume, e.g. that the pool con-
sists of the pool elements PE1 to PE6 and that
the configured amount of PE identities deliv-
ered by the NS in a name resolution response
is 3. Now, the first resolution query to the NS returns the set {PE1, PE2, PE3}, the fol-
lowing one will return {PE4, PE5, PE6}. Then, new resolutions again start with {PE1,
PE2, PE3} and so on. In the worst case, the pool size is lower than the configured
amount. Then, the reply is always the same (that is, the complete pool).

From the list received from the NS, the PU selects again one PE to establish the
application connection to (see section 2). Using round robin, this will always be the first
PE of the list after a refresh of the PU-side cache. The result is of course that some PEs
will be systematically overloaded. Subsequent service requests within the stale cache
period also select subsequent elements of the list with decreasing probability.

The curve for the RRmod policy shows the behaviour if the RR policy is modified as
described in section 3.2. Obviously, the problem of periodic variation has been solved.

The RAND policy shows a slightly higher performance as RRmod for this scenario.
Only if a single PE identity is returned per request, the stateful policies RR and RRmod
perform better, because PU-side caching always results in using the one PE selected by
the NS first. For higher values, the PU-side cache contains a list of multiple elements,
which are used for local round robin selection. For example, the NS replies with the list
PE1, PE2, PE3 to PU1 and PE2, PE3, PE4 to PU2. Since the elements are ordered for
round robin selection, the probability of simultaneous requests from PU1 and PU2 to
PE2 is higher than for random selection.

5.2 Performance in Heterogeneous Scenarios

In real-world application scenarios, servers usually do not have equal capacities. There-
fore, we examine two types of heterogeneous scenarios. In the first case, a specific
server has a significantly higher capacity. The second case models an evolutionary sce-
nario, where capacities vary linearly over a certain range due to several server genera-
tions in use.

Fast Server Scenario In this scenario, one server (“fast server”) in each LAN has a
capacity which is scaled up from 1 to 15 million calculations per second while all the
others have the standard capacity of 1 million calculations per second. MaxNResItems
has been set to 5.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12 14 16

Jo
bs

 C
om

pl
et

ed
 [1

]

Fast Server Capacity C [Million Calculations/s]

Jobs Completed in 20 Minutes

LU
PLU

RRmod
WRRmod
WRAND

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 2 4 6 8 10 12 14 16

P
ac

ke
ts

 [1
]

Fast Server Capacity C [Million Calculations/s]

ENRP Packets in 20 Minutes

LU
PLU

Static

Fig. 5. Fast Server Scenario: Jobs Completed and ENRP Packets

Figure 5, shows how well the increased total processing capacity can be used by
various policies (left side) and how much control overhead (number of ENRP packets) is
required (right side). It can be observed that for a homogeneous or nearly homogeneous
scenario (fast server capacity up to 4 × 106), the dynamic policies generally perform
better than the static ones. However, for more heterogeneous scenarios, the behaviour
changes significantly.

As expected, the simple RRmod policy is obviously not able to exploit the increased
capacity due to the fact that the policy selects all PEs with the same probability irre-
spective of their capacity. For WRRmod, a metric for the capacity is added in form of a
weight constant per PE. The resulting performance for this policy is, therefore, signif-
icantly higher: up to 500 additional jobs can be completed within 20 minutes. The LU
policy achieves a slightly better performance than WRRmod. However, it also requires
about 7000 to 15000 ENRP control packets in 20 minutes, compared to 444 for the
static policies.

The LU policy does not take into account the fact that a new job on a high-capacity
PE increases the load less than a new job on a low-capacity one. The PLU policy pro-
posed in section 3.2 does exactly that resulting in a significantly improved performance.
However, since the number of re-registrations to update the load information in the NS
is directly related to the number of accepted jobs, the overhead increases in a similar
way3.

Finally, the result for the WRAND policy proposed in section 3.2 is very promising.
It achieves a performance close to that of the dynamic PLU policy with the minimum
overhead of a static policy. Again, as explained in section 5.1 for the comparison of
RRmod and RAND, the local selection in the PU-side cache leads to a higher proba-
bility of simultaneous requests to the same PE for WRRmod. WRAND therefore obvi-
ously performs much better.

Evolutionary Scenario While the scenario examined in section 5.2 used selected PEs
with high capacities, this examination uses an evolutionary scenario using PEs with
linearly varying capacities. For each LAN, the PEs have capacities of c(n) = n∗ϑ∗106

3 The average size of an ENRP packet is usually less than 250 bytes, so even a slow 10 MBit/s
Ethernet could handle this amount in less than 10 seconds.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1 2 3 4 5
Jo

bs
 C

om
pl

et
ed

 [1
]

Power Scale Factor ϑ

Jobs Completed in 20 Minutes

LU
PLU

RRmod
WRRmod
WRAND

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 1 2 3 4 5

P
ac

ke
ts

 [1
]

Power Scale Factor ϑ

ENRP Packets in 20 Minutes

LU
PLU

Static

Fig. 6. Evolutionary Scenario: Jobs Completed and ENRP Packets

calculations per second, where n denotes the PE number and ϑ is a constant scale factor.
That is, for ϑ = 1, the first PE in a LAN has a capacity of 106 calculations per second,
the second one 2 × 106 and so on. All other parameters remain unchanged.

As expected, the number of completed jobs for RRmod is lowest, since this policy
does not take into account the different server capacities. As in the fast server scenario,
the LU and WRRmod policies again show similar performance with the static WRRmod
policy requiring significantly less control overhead. While the dynamic policies again
generally perform slightly better in relatively homogeneous scenarios (scale factors up
to 1), the picture changes for heterogeneous settings. The performance ranking among
the policies is the same as for the fast server case although the differences are smaller.
Again, the static WRAND policy performs remarkably well with minimum overhead.

6 Conclusion and Outlook

In this paper, we have presented the results of a study looking in detail at the issue of
policy based load distribution in the Reliable Server Pooling concept currently under
standardization in the IETF. Load distribution is one of the crucial aspects for RSer-
Pool, as it significantly influences RSerPool’s scalability and its capability to cope with
realtime requirements while remaining "lightweight" in a sense that it keeps control
overhead at an acceptable level.

As part of this work, we have detailed the incomplete specifications for the pool
policies contained in the existing IETF RSerPool drafts [8] and [15] to a level which
allows a consistent implementation.

Based on the results of our simulation studies, we proposed a modification of the
Round Robin policy which avoids pathological patterns resulting in severe performance
degradation in some cases. In addition, we proposed new static (RAND and WRAND)
and dynamic (PLU) policies which perform significantly better than the original policies
in realistic scenarios where the servers of a pool have different processing capacities.

As a consequence of this study, we have created the Internet Draft [16] containing
the refinements and modifications for the already defined policies as well as the proposal
to add our WRAND and PLU policies to the list of standard policies. This draft has been
presented at the IETF RSerPool Working Group meeting at the 60th IETF meeting and
has become a working group draft [18] of the IETF RSerPool Working Group.

After these first promising results, we are currently continuing the evaluation of the
load distribution mechanisms by examining the sensitivity with respect to a broad range
of system parameters including, e.g., the stale cache timer value, the length of the PE list
returned per name resolution request, the maximum number of simultaneous jobs per
PE and the PE capacity. In addition, we also investigate the scalability with respect to
PEs, NSs and PUs as well as the influence of different traffic and job patterns. Our goal
is to provide recommendations to implementers and users of RSerPool with respect to

tuning of system parameters and guidelines for appropriate selection of pool policies in
various application scenarios.

References

1. ITU-T. Introduction to CCITT Signalling System No. 7. Technical Report Recommendation
Q.700, International Telecommunication Union, March 1993.

2. K. D. Gradischnig and M. Tüxen. Signaling transport over ip-based networks using ietf
standards. In Proceedings of the 3rd International Workshop on the design of Reliable Com-
munication Networks, pages 168–174, Budapest, Hungary, 2001.

3. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang, and V. Paxson. Stream Control Transmission Protocol. RFC 2960, IETF, Oct
2000.

4. A. Jungmaier, E.P Rathgeb, and M. Tüxen. On the Use of SCTP in Failover-Scenarios. In
Proceedings of the SCI 2002, Volume X, Mobile/Wireless Computing and Communication
Systems II, volume X, Orlando/U.S.A., Jul 2002.

5. A. Jungmaier, M. Schopp, and M. Tüxen. Performance Evaluation of the Stream Con-
trol Transmission Protocol. In Proceedings of the IEEE Conference on High Performance
Switching and Routing, Heidelberg, Germany, June 2000.

6. M. Tüxen, Q. Xie, R. Stewart, M. Shore, L. Ong, J. Loughney, and M. Stillman. Require-
ments for Reliable Server Pooling. RFC 3227, IETF, Jan 2002.

7. Q. Xie, R. Stewart, and M. Stillman. Endpoint Name Resolution Protcol (ENRP). Internet-
Draft Version 08, IETF, RSerPool WG, Jun 2004. draft-ietf-rserpool-enrp-07.txt, work in
progress.

8. R. Stewart, Q. Xie, M. Stillman, and M. Tüxen. Aggregate Server Access Protcol (ASAP).
Internet-Draft Version 09, IETF, RSerPool WG, Jun 2004. draft-ietf-rserpool-asap-08.txt,
work in progress.

9. T. Dreibholz. An efficient approach for state sharing in server pools. In Proceedings of the
27th Local Computer Networks Conference, Tampa, Florida/U.S.A., Oct 2002.

10. P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen. Reliable IP Telephony Applica-
tions with SIP using RSerPool. In Proceedings of the SCI 2002, Mobile/Wireless Computing
and Communication Systems II, volume X, Orlando/U.S.A., Jul 2002.

11. T. Dreibholz, A. Jungmaier, and M. Tüxen. A new Scheme for IP-based Internet Mobility.
In Proceedings of the 28th Local Computer Networks Conference, Königswinter/Germany,
Nov 2003.

12. T. Dreibolz and M. Tüxen. High availability using reliable server pooling. In Proceedings of
the Linux Conference Australia 2003, Perth/Australia, Jan 2003.

13. Y. Zhang. Distributed Computing mit Reliable Server Pooling. Masters thesis, Universität
Essen, Institut für Experimentelle Mathematik, Apr 2004.

14. Qiaobing Xie. Private communication at the 60th IETF meeting, San Diego/California,
U.S.A., August 2004.

15. R. Stewart, Q. Xie, M. Stillman, and M. Tüxen. Aggregate Server Access Protocol (ASAP)
and Endpoint Name Resolution Protocol (ENRP) Parameters. Internet-Draft Version 06,
IETF, RSerPool WG, Jun 2004. draft-ietf-rserpool-common-param-05.txt, work in progress.

16. M. Tüxen and T. Dreibholz. Reliable Server Pooling Policies. Internet-Draft Version 00,
IETF, RSerPool WG, Jul 2004. draft-tuexen-rserpool-policies-00.txt, work in progress.

17. OMNeT++ Discrete Event Simulation System. http://www.omnetpp.org.
18. M. Tüxen and T. Dreibholz. Reliable Server Pooling Policies. Internet-Draft Version 00,

IETF, RSerPool WG, Oct 2004. draft-ietf-rserpool-policies-00.txt, work in progress.

