
A New Server Selection Strategy for
Reliable Server Pooling in Widely Distributed Environments∗

Xing Zhou
Hainan University

College of Information Science and Technology
570228 Haikou, Hainan, China

xing.zhou@uni-due.de

Thomas Dreibholz, Erwin P. Rathgeb
University of Duisburg-Essen

Institute for Experimental Mathematics
Ellernstrasse 29, 45326 Essen, Germany
{dreibh,rathgeb}@exp-math.uni-essen.de

Abstract

In order to provide a generic, application-
independent and resource-efficient framework for
server redundancy and session failover, the IETF
RSerPool WG is currently standardizing the Reliable
Server Pooling (RSerPool) framework. Server redun-
dancy has to take load distribution and load balancing
into consideration since these issues are crucial for the
system performance.

There has already been some research on the server
selection strategies of RSerPool for different applica-
tion scenarios. In particular, it has been shown that
the adaptive Least Used selection usually provides the
best performance. This strategy requires up-to-date load
information of the services, which has to be propa-
gated among distributed pool management components.
But network delay (which is realistic for systems be-
ing widely distributed to achieve availability in case of
regional servers failures) as well as caching of informa-
tion may both lead to obsolete load information. There-
fore, the purpose of this paper is to analyse and evaluate
the performance of a new server selection rule to cope
with update latencies. Especially, we will also analyse
the impact of different workload parameters on the per-
formance of the new server selection strategy.

Keywords: Reliable Server Pooling, Load Balanc-
ing, Least-Used Selection, Latency

1 Introduction and Scope

In today’s Internet, the availability of services (e.g.
e-commerce) gets increasingly crucial. But in contrast
with the telecommunications world – where availability
is ensured by redundant links and devices [21] – no
standards approaches have been available for Internet
services. If required, each application had to realize
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its home-grown approach, re-inventing the wheel again
and again. This has been the motivation of the IETF
for the foundation of the RSerPool WG to define the
Reliable Server Pooling (RSerPool) framework [9,20] –
a generic, application-independent framework for pool
management and session handling.

RSerPool provides a framework for server replica-
tion [7] as well as session management1 including ses-
sion failover capabilities [2, 12] to its applications. Ef-
ficiently handling server redundancy requires load dis-
tribution and load balancing [18], which are also cov-
ered by RSerPool [7, 8, 16, 28–30]. Two classes of load
distribution algorithms [18] are supported by RSer-
Pool: non-adaptive and adaptive algorithms. Adaptive
strategies base their assignment decisions on the cur-
rent status of the servers (which requires up-to-date in-
formation); non-adaptive algorithms do not need such
data.

In strong contrast to existing frameworks for GRID
and high-performance computing (see [17] for details),
the fundamental property of RSerPool is intended to be
“light-weight”, i.e. it must be usable on equipment pro-
viding only scarce CPU power and memory resources
(in particular: routers and other telecommunications
equipment). Of course, its application is not restricted
to low-end hardware [3]. The “light-weight”-property
restricts the scope of the RSerPool architecture to the
session handling and pool management, but on the
other hand it allows for highly efficient realization [6,9].

Up to now, there has already been research on the
usage of RSerPool for various scenarios: SCTP-based
mobility [5], VoIP with SIP [1], web server pools [3],
IP Flow Information Export (IPFIX) [4], real-time dis-
tributed computing [3,7,16,27,28] and battlefield net-
works [24]. A generic application model for RSerPool
systems has been defined in [7]. This model includes
performance metrics for the provider side (pool utiliza-
tion) and user side (request handling speed). Based on
this model, the load balancing quality of different pool
policies has been evaluated [3, 7, 16].

1RSerPool will be the IETF’s first Session Layer standard.



Figure 1. The RSerPool Architecture

2 The RSerPool Architecture

An overview of the RSerPool architecture [3, 11, 20]
is illustrated in figure 1: servers of a pool are called pool
elements (PE), a client is denoted as pool user (PU).
Proxy PEs and PUs may provide a migration path for
non-RSerPool components. The handlespace – which
is the set of all pools – is managed by redundant pool
registrars (PR). Within the handlespace, each pool is
identified by a unique pool handle (PH). PRs of an
operation scope synchronize their view of the hand-
lespace using the Endpoint haNdlespace Redundancy
Protocol (ENRP [26]), transported via SCTP [19]. An
operation scope has a limited range, e.g. a whole orga-
nization or only a wiring closet. Unlike GRID comput-
ing [17], it is restricted to a single administrative do-
main, in order to allow an efficient management [6, 9].
Nevertheless, PEs may be distributed globally for their
service to survive localized disasters [10,15].

PEs choose an arbitrary PR of the operation scope
to register into a pool by using the Aggregate Server
Access Protocol (ASAP [22]), again transported via
SCTP. Upon registration at a PR, the chosen PR be-
comes the Home-PR (PR-H) of the newly registered
PE. A PR-H is responsible for monitoring its PEs’
availability by keep-alive messages (to be acknowledged
by the PE within a given timeout) and propagates the
information about its PEs to the other PRs of the op-
eration scope via ENRP updates.

In order to access the service of a pool given by its
PH, a PU requests a PE selection from an arbitrary
PR of the operation scope, using the Aggregate Server
Access Protocol (ASAP [22]), transported via SCTP.
As illustrated in figure 2, the PR selects the requested
list of PE identities by applying a pool-specific selec-
tion rule, called pool policy. Adaptive and non-adaptive
pool policies are defined in [23]; relevant for this pa-
per are the non-adaptive policies Round Robin (RR)
and Random (RAND) as well as the adaptive policy
Least Used (LU). LU selects the least-used PE, accord-

Figure 2. The Server Selection by PR and PU

ing to up-to-date application-specific load information.
Round robin selection is applied among multiple least-
loaded PEs [6]. Detailed discussions of pool policies
can be found in [3, 7, 8].

The PU writes the list of PE identities selected by
the PR into its local cache (denoted as PU-side cache).
From this cache, the PU selects – again using the pool’s
policy – one element to contact for the desired service.
The PU-side cache constitutes a local, temporary and
partial copy of the handlespace. Its contents expire
after a certain timeout, denoted as stale cache value.
In many cases, the stale cache value is simply 0s, i.e.
the cache is used for a single handle resolution only [7].

3 Least-Used with Degradation Policy

Due to the latency on the connections between PE
and PR-H as well as among PRs, the load state infor-
mation of a PE may already be out of date when it has
reached all handlespace copies. And this deprecation
gets even worse because of the usage of the PU-side
cache. Since all PE selections for LU are based on the
load state information in different copies of the hand-
lespace (PRs and PU-side caches), the load balancing
quality may suffer.

In [13], we have considered the so-called Least Used
with Degradation (LUD) policy as part of our future
work. For this policy, each PE may specify a load incre-
ment constant providing the load increase by a newly
accepted request. In each selection instance (i.e. PR
or PU-side cache), the actual load value is incremented
by this constant on each selection of the corresponding
PE. An update by the PE again resets the load infor-
mation to the most up-to-date value. For example, let
the load of a PE be 50% and the load increment 10%.
On each of the following three selections, the load value
is increased by another 10%, i.e. it will be 80% after
that. Upon the next re-registration (and therefore load
information update), the load value will be reset to the



reported value (i.e. the latest known load state).
The LUD policy has yet to be examined in detail.

Therefore, the goal of this paper is the performance
analysis and evaluation of LUD. We also intend to iden-
tify the workload and system parameter configuration
for which LUD provides a benefit over plain LU.

4 Quantifying a RSerPool System

In order to evaluate the performance of a RSerPool
system, it is necessary to quantify it. We therefore use
the model of [7], in which the service provider side of
a RSerPool system consists of a pool of PEs. Each
PE has a request handling capacity, which we define
in the abstract unit of calculations per second2. Each
request consumes a certain number of calculations; we
call this number request size. A PE can handle multiple
requests simultaneously, in a processor sharing mode as
provided by multitasking operating systems.

On the service user side, there is a set of PUs. The
number of PUs can be given by the ratio between PUs
and PEs (PU:PE ratio), which defines the parallelism
of the request handling. Each PU generates a new re-
quest in an interval denoted as request interval. The
requests are queued and sequentially assigned to PEs.
The total delay for handling a request dHandling is de-
fined as the sum of queuing delay dQueuing, startup de-
lay dStartup (dequeuing until reception of acceptance
acknowledgement) and processing time dProcessing (ac-
ceptance until finish):

dHandling = dQueuing + dStartup + dProcessing. (1)

That is, dHandling not only incorporates the time re-
quired for processing the request, but also the laten-
cies of queuing, server selection and protocol mes-
sage transport. The handling speed is defined as:
handlingSpeed = requestSize

dhandling
. For convenience reasons,

the handling speed (in calculations/s) is represented
in % of the average PE capacity. Clearly, the user-
side performance metric is the handling speed – which
should be as fast as possible.

Using the definitions above, it is possible to delineate
the average system utilization (for a pool of NumPEs
servers and a total pool capacity of PoolCapacity) as:

systemUtilization = NumPEs ∗ puToPERatio ∗
requestSize

requestInterval

PoolCapacity
.

(2)

Obviously, the provider-side performance metric is the
system utilization, since only utilized servers gain rev-
enue. In practise, a well-designed client/server system
is dimensioned for a certain target system utilization,
e.g. 80%. That is, by setting any two of the parame-
ters (PU:PE ratio, request interval and request size),
the value of the third one can be calculated using equa-
tion 2 (see [3, 7] for details).

2An application-specific view of capacity may be mapped to
this definition, e.g. CPU cycles or memory usage.

Figure 3. The Simulation Setup

5 The Simulation Setup

For the performance analysis, the RSerPool simula-
tion model rspsim [3, 7] has been used. This model is
based on the OMNeT++ [25] simulation environment
and contains the protocols ASAP [22] and ENRP [26],
a PR module and PE as well as PU modules for the re-
quest handling scenario defined in section 4. Network
latency is introduced by link delays only. Therefore,
only the network delay is significant. The latency of
the pool management by PRs is negligible [6, 9].

Unless otherwise specified, the basic simulation
setup – which is also presented in figure 3 – uses the
following parameter settings:

• The target system utilization is 80%; the request
size and request interval are randomized using a
negative exponential distribution (in order to pro-
vide a generic and application-independent analy-
sis [7]).

• There are 10 PEs; each providing a capacity of
106 calculations/s (i.e. we use a homogeneous ca-
pacity distribution). We have set that each PE can
handle up to 4 requests simultaneously. There-
fore, the load increment of LUD is 25%. Further
requests get rejected [28].

• The inter-component network delay is 500ms,
which is realistic for satellite-based connections
(we will analyse latency variation in subsec-
tion 6.1).

• We use a single PR only, since we do not exam-
ine failure scenarios here (we will analyse the PR
number variation in subsection 6.3).

• The simulated real-time is 60 minutes; each sim-
ulation run is repeated at least 25 times with a
different seed in order to achieve statistical accu-
racy.

GNU R has been used for the statistical post-
processing of our results – including the computation of
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Figure 4. Variation of the Network Delay

95% confidence intervals – and plotting. Each resulting
plot shows the average values and their corresponding
confidence intervals.

6 Performance Analysis

Clearly, the intention of the LUD policy is to be able
to perform better in case of synchronization latency.
Therefore, our first simulation in subsection 6.1 pro-
vides a proof of concept under varying network delay
for selected workload settings. An analysis of changing
the workload parameter settings will be presented in
subsection 6.2. The performance impact of modifying
the number of PRs will be shown in subsection 6.3 and
the cache usage will be analysed in subsection 6.4.

6.1 Variation of the Network Delay

The handling speed results of varying the inter-
component latency are presented in figure 4. Since the
utilization always remains at 80% (target utilization),
a plot has been omitted. As already observed in [7], it
can be observed that a smaller setting of the PU:PE ra-
tio r is more critical and therefore leads to a slower han-
dling speed: the smaller r, the higher the per-PU load
put on the system. Therefore, inappropriate schedul-
ing leads to queuing and increases the overall request
handling time (see equation 1). Furthermore, the rank-
ing of the policies (LU is better than RR, RR is better
than RAND) can be observed.

Clearly, the adaptive LU policy has a better perfor-
mance than the non-adaptive RR and RAND. How-
ever, the higher the network latency, the more out-
of-date the load information in the handlespace when
it actually gets used for PE selection. In this case,
the LUD policy achieves a significant benefit: e.g.
at 500ms (which is quite realistic for inter-continental

and satellite-based connections) for r=10, the speed in-
creases from 41% to 45% (a gain of ca. 10%); for r=3,
it increases from 27% to 31% – which is even a gain
of 15%. That is, the LUD policy significantly improves
the service performance for the user.

In summary, the behaviour of the new LUD policy
is as expected for the selected workload settings in the
proof-of-concept simulation. But how will a variation
of the workload parameters (PU:PE ratio, request in-
terval and request size) influence its performance?

6.2 Variation of the Workload Parameters

The PU:PE ratio is the most critical workload pa-
rameter (see [7] for an analysis for RR, RAND and
LU), since it defines the parallelism in request han-
dling. Since the RR and RAND results are already
known, we only show LU and LUD in the following.
Figure 5 presents the utilization (left-hand side) and
handling speed (right-hand side) results for varying the
PU:PE ratio r from 1 to 10 for different request in-
terval settings. Clearly, smaller settings of r lead to
a reduced handling speed. However, it also sinks for
larger settings: according to equation 2, the request
size decreases with a rising PU:PE ratio for a fixed
request interval setting. That is, a small request in-
terval in combination with large PU:PE ratio results
in very short requests. Clearly, this leads to signifi-
cant overhead for transmission in equation 1 (i.e. the
handling speed gets low). Comparing LUD and LU, a
significant gain can be observed: while e.g. a setting
of r=7 and a request interval of i=10 is critical for
LU and leads to an unusable performance (a handling
speed of almost 0%; utilization is less than 80%), the
system performance is acceptable for LUD (handling
speed of 19% at the target utilization).

Taking a look at the performance results for vary-
ing the request interval (as shown in figure 6), it can
be observed that the gain achieved by LUD is highest
between a request interval of about i=5 (for smaller i,
the request size gets too critical – the utilization drops
below 80%) and about i=20 (for larger settings of i, the
network delay gets negligible) for r=3 and r=10. How-
ever, for r=1 (see also the left-hand plot), the results
of LU and LUD are equal: here, each PU should be
mapped to an exclusive PE. This is already achieved by
the round-robin selection among least-loaded PEs [6],
which has – for r=1 – an effect similar to LUD.

Plots for the request size variation have been omit-
ted, since the results can be derived from the previous
results (using equation 2) and therefore provide no new
insights.

In summary, the LUD policy is especially useful for
situations where a small PU:PE ratio occurs in com-
bination with a small request interval: this leads to a
significant penalty on requests being scheduled inap-
propriately due to deprecated load information.
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6.3 Varying the Number of Registrars

For redundancy reasons, a RSerPool system has to
contain multiple PRs3. Since each PR is an indepen-
dent selection component, the number of PRs has an
impact on the performance. In order to demonstrate
this effect, figure 7 shows the handling speed for vary-
ing the number of PRs. An utilization plot has been
omitted, since it is 80% (target utilization) for the
shown values. The PUs have been distributed equally
among the PRs.

As already observed in [7], the number of PRs has
no impact on the RAND policy: this policy is “state-
less” [13], i.e. the content of the next selection does not
depend on the current one. On the other hand, RR and
LU as well as LUD are “stateful” [13]. That is, since
there is no synchronization among the PRs on which

3A single PR would be a single point of failure.
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Figure 8. Using the Handle Resolution Cache

PEs to select next, the performance slightly decreases:
e.g. PR #1 and PR #2 could simultaneously select the
same least-loaded PE for LU. Nevertheless, for a re-
alistic number of PRs – e.g. 2 or 3 – the LUD policy
still achieves a significant performance gain over LU.
But what about the PU-side cache – which, if used,
also acts as an independent selection component? In
particular, the number of caches is much higher than
the number of PRs!

6.4 Using the Handle Resolution Cache

While the general recommendation on cache config-
uration is to turn it off [7], it gets useful in scenarios
having a significant network delay (which is realistic
for critical services being distributed globally [10]) and
short requests. In such situations, the cache can avoid
time-consuming PR queries. This is especially useful
when requests get rejected by their selected PE during
the startup phase (see section 4) and further trials at
other PEs become necessary [7].

In order to show the impact of the cache usage on
the system performance, figure 8 presents the handling
speed of an example simulation. A plot for the system
utilization has been omitted, since the target utiliza-
tion of 80% is reached. Therefore, it is important that
small settings of the stale cache value even increase
the handling speed of all policies, in particular if r is
also small: according to equation 2, the request inter-
val rises proportional to the PU:PE ratio for a fixed
request size. That is, the smaller r, the more critical
the workload settings. In this case, the cache reduces
the startup time of requests, which results in a reduc-
tion of “request jams” due to excessive waiting in the
queue.

For the adaptive policies, the load states clearly get
deprecated the higher the setting of the stale cache

value c. For sufficiently small settings (here: c ≤ 20) –
which in particular cover the startup phase and there-
fore the main use case of the PU-side cache – the LUD
policy achieves almost a constant gain of about 10%.
Clearly, for higher settings of c, LUD becomes more
and more incapable to compensate the deprecated state
information and the performance gain shrinks.

7 Conclusions

In this paper, we have analysed the performance of
the Least Used with Degradation (LUD) pool policy.
This new policy extends the plain Least Used selec-
tion with load increment information, which is used by
selection instances to estimate the deviation from the
latest known load state in case of delayed information
updates. The LUD policy gets useful in case of network
delay, which is very realistic when PEs are distributed
over a large geographical area for redundancy reasons.
Our simulations have shown that LUD can achieve a
significant gain over the plain LU policy – particularly
in case of critical workload parameter settings.

We are currently validating our simulative per-
formance results in real-life scenarios by using our
RSerPool prototype implementation rsplib [3, 14] in
the PlanetLab. First results of our PlanetLab-
based evaluations and performance optimizations can
be found in [3, 10]. Furthermore, we are actively pro-
moting the IETF standardization process of RSerPool:
the LUD policy is now part of the Internet Draft defin-
ing the pool policies [23].
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and M. Tüxen. Reliable IP Telephony Applications
with SIP using RSerPool. In Proceedings of the
State Coverage Initiatives, Mobile/Wireless Comput-
ing and Communication Systems II, volume X, Or-
lando, Florida/U.S.A., July 2002. ISBN 980-07-8150-
1.

[2] T. Dreibholz. An Efficient Approach for State Shar-
ing in Server Pools. In Proceedings of the 27th IEEE
Local Computer Networks Conference (LCN), pages
348–352, Tampa, Florida/U.S.A., Oct. 2002. ISBN 0-
7695-1591-6.

[3] T. Dreibholz. Reliable Server Pooling – Evaluation,
Optimization and Extension of a Novel IETF Archi-
tecture. PhD thesis, University of Duisburg-Essen,
Faculty of Economics, Institute for Computer Science
and Business Information Systems, Mar. 2007.

[4] T. Dreibholz, L. Coene, and P. Conrad. Reliable
Server Pooling Applicability for IP Flow Information
Exchange. Internet-Draft Version 04, IETF, Indi-
vidual Submission, June 2007. draft-coene-rserpool-
applic-ipfix-04.txt, work in progress.

[5] T. Dreibholz, A. Jungmaier, and M. Tüxen. A new
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