
Reliable Server Pooling –
A Novel IETF Architecture for Availability-Sensitive Services∗

Thomas Dreibholz, Erwin P. Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstrasse 29, 45326 Essen, Germany
{thomas.dreibholz,erwin.rathgeb}@uni-due.de

Abstract

Reliable Server Pooling (RSerPool) is a light-weight pro-
tocol framework for server redundancy and session failover,
currently still under standardization by the IETF RSer-
Pool WG. While the basic ideas of RSerPool are not new,
their combination into a single, resource-efficient and uni-
fied architecture is. Server redundancy directly leads to the
issues of load distribution and load balancing, which are
both important for the performance of RSerPool systems.
Therefore, it is crucial to evaluate the performance of such
systems with respect to the load balancing strategy required
by the application.

The goal of our paper is – after presenting a short
overview of the RSerPool architecture and its application
cases – to provide a quantitative, application-independent
performance analysis of RSerPool’s server failure handling
capabilities with respect to important adaptive and non-
adaptive load balancing strategies. We will also analyse
the impact of RSerPool protocol parameters on the perfor-
mance of the server failure handling functionalities and the
network overhead.

Keywords: RSerPool, Availability, Redundancy,
Failover, Server Selection

1 Introduction and Scope

Service availability is getting increasingly important in
today’s Internet. But – in contrast to the telecommunica-
tions world, where availability is ensured by redundant links
and devices [21] – there had not been any generic, stan-
dardized approaches for the availability of Internet-based
services. Each application had to realize its own solution
and therefore to re-invent the wheel. This deficiency – once
more arisen for the availability of SS7 (Signalling System
No. 7) services over IP networks – had been the initial mo-
tivation for the IETF RSerPool WG to define the Reliable
Server Pooling (RSerPool) framework. The basic ideas of
RSerPool are not entirely new (see [1,23]), but their combi-
nation into one application-independent framework is.

∗Parts of this work have been funded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft).

Server redundancy leads to the issues of load distribution
and load balancing [17], which are also covered by RSer-
Pool [5, 9]. But unlike solutions in the area of GRID and
high-performance computing [16], the RSerPool architec-
ture is intended to be lightweight. That is, RSerPool may
only introduce a small computation and memory overhead
for the management of pools and sessions [9,13]. In partic-
ular, this means the limitation to a single administrative do-
main and only taking care of pool and session management
– but not for higher-level tasks like data synchronization,
locking and user management. These tasks are considered
to be application-specific. On the other hand, these restric-
tions allow for RSerPool components to be situated on low-
end embedded devices like routers or telecommunications
equipment.

While there has already been some research on the appli-
cability of RSerPool for applications like SCTP-based mo-
bility [7], web server pools [5], real-time distributed com-
puting [10, 12, 15, 28–30], Voice over IP [2], IP Flow Infor-
mation Export (IPFIX) [6], and battlefield networks [25],
a generic, application-independent performance analysis of
its failover handling capabilities is still missing. In par-
ticular, it is necessary to evaluate the different RSerPool
mechanisms for session monitoring, server maintenance
and failover support – as well as the corresponding sys-
tem parameters – in order to show how to achieve a good
system performance at a reasonably low maintenance over-
head. The goal of our work is an application-independent
quantitative characterization of RSerPool systems, as well
as a generic sensitivity analysis on changes of workload and
system parameters. Especially, we intend to identify the
critical parameter ranges in order to provide guidelines for
design and configuration of efficient RSerPool-based ser-
vices.

2 The RSerPool Architecture

Figure 1 illustrates the RSerPool architecture, as de-
fined in [19]. It consists of three major component classes:
servers of a pool are called pool elements (PE). Each pool is
identified by a unique pool handle (PH) in the handlespace,
i.e. the set of all pools. The handlespace is managed by reg-
istrars (PR). PRs of an operation scope synchronize their
view of the handlespace using the Endpoint haNdlespace

Figure 1. The RSerPool Architecture

Redundancy Protocol (ENRP [27]), transported via SCTP1.
An operation scope has a limited range, e.g. a company or
organization; RSerPool does not intend to scale to the whole
Internet. This restriction results in a very small pool man-
agement overhead (see also [9, 13]), which allows to host
a PR service on routers or embedded systems. Neverthe-
less, it is assumed that PEs can be distributed worldwide,
for their service to survive localized disasters [14, 30].

A client is called pool user (PU) in RSerPool terminol-
ogy. To use the service of a pool given by its PH, a PU
requests a PE selection from an arbitrary PR of the oper-
ation scope, using the Aggregate Server Access Protocol
(ASAP [22]). The PR selects the requested list of PE iden-
tities using a pool-specific selection rule, called pool pol-
icy. Adaptive and non-adaptive pool policies are defined
in [24], relevant for this paper are the non-adaptive policies
Round Robin (RR) and Random (RAND) and the adaptive
policy Least Used (LU). LU selects the least-used PE, ac-
cording to up-to-date load information; the actual definition
of load is application-specific. Round robin selection is ap-
plied among multiple least-loaded PEs [9].

A PE can register into a pool at an arbitrary PR of the op-
eration scope, again using ASAP transported via SCTP. The
chosen PR becomes the Home PR (PR-H) of the PE and is
also responsible for monitoring the PE’s health by endpoint
keep-alive messages. If not acknowledged, the PE is as-
sumed to be dead and removed from the handlespace. Fur-
thermore, PUs may report unreachable PEs; if the threshold
MAX-BAD-PE-REPORT of such reports is reached, a PR
may also remove the corresponding PE. The PE failure de-
tection mechanism of a PU is application-specific.

While RSerPool allows use of arbitrary mechanisms to
realize the application-specific resumption of an interrupted
session on a new server, it contains only one built-in mech-
anism: client-based state sharing [3,11]. Using this feature,
a PE can send its current session state to the PU in form
of a state cookie. The PU stores the latest state cookie and
provides it to a new PE upon failover. Then, the new PE
simply restores the state described by the cookie. Crypto-
graphic methods can ensure the integrity, authenticity and
confidentiality of the state information.

1Stream Control Transmission Protocol, see [18].

3 Quantifying a RSerPool System

The service provider side of a RSerPool-based service
consists of a pool of PEs, using a certain server selection
policy. Each PE has a request handling capacity, which
we define in the abstract unit of calculations per second.
Depending on the application, an arbitrary view of capac-
ity can be mapped to this definition, e.g. CPU cycles or
memory usage. Each request consumes a certain number
of calculations, we call this number the request size. A PE
can handle multiple requests simultaneously, in a processor
sharing mode (multi-tasking principle).

On the service user side, there is a set of PUs. The
number of PUs can be given by the ratio between PUs and
PEs (PU:PE ratio), which defines the parallelism of the re-
quest handling. Each PU generates a new request in an in-
terval denoted as request interval. The requests are queued
and sequentially assigned to PEs.

Clearly, the user-side performance metric is the handling
speed – which should be as fast as possible. The total de-
lay for handling a request dhandling is defined as the sum of
queuing delay, startup delay (dequeuing until reception of
acceptance acknowledgement) and processing time (accep-
tance until finish) as illustrated in figure 2. The handling
speed (in calculations/s) is defined as:

handlingSpeed =
requestSize
dhandling

.

For convenience reasons, the handling speed can be repre-
sented in % of the average PE capacity. Clearly, in case of
a PE failure, all work between the last checkpoint and the
failure is lost and has to be re-processed later. A failure has
to be detected by an application-specific mechanism (e.g.
keep-alives) and a new PE has to be chosen and contacted
for session resumption.

Using the definitions above, the system utilization –
which is the provider-side performance metric – can be cal-
culated:

systemUtilization = puToPERatio ∗
requestSize

requestInterval

peCapacity

In practice, a well-designed RSerPool system is dimen-
sioned for a certain target system utilization. [5,10] provide
a detailed discussion of this subject.

4 The Simulation Scenario Setup

For our performance analysis, we have developed our
simulation model RSPSIM [5] using OMNET++ [26], con-
taining full implementations of the protocols ASAP [22]
and ENRP [27], a PR module and PE and PU modules mod-
elling the request handling scenario defined in section 3.
The scenario setup is shown in figure 3: all components are
interconnected by a switch. Network delay is introduced by
link latency only. Component latencies are neglected, since
they are not significant (as shown in [9]). We further assume

Figure 2. Request Handling Delays

Figure 3. The Simulation Setup

sufficient network bandwidth for pool management and ap-
plications. Since an operation scope is limited to a single
administrative domain, QoS mechanisms may be applied.

Unless otherwise specified, the used target system uti-
lization is 60%, i.e. there is sufficient over-capacity to cope
with PE failures. For the LU policy, we define load as the
current number of simultaneously handled requests. The
capacity of a PE is 106 calculations/s, the average request
size is 107 calculations. Both parameters use negative ex-
ponential distribution – for a generic parameter sensitivity
analysis being independent of a particular application [12].
We use 10 PEs and 100 PUs, i.e. the PU:PE ratio is 10. This
is a non-critical setting for the examined policies, as shown
in [10].

Session health monitoring is performed by the PUs us-
ing keep-alive messages in a session keep-alive interval
of 1s, to be acknowledged by the PE within a session keep-
alive timeout of 1s (parameters evaluated in subsection 5.3).
Upon a simulated failure, the PE simply disappears and re-
appears immediately under a new transport address, i.e. the
overall pool capacity remains constant. Client-based state
sharing is applied for failovers; the default cookie interval
is 10% of the request size (i.e. 106 calculations; parameter
is evaluated in subsection 5.5). Work not being protected by

a checkpoint has to be re-processed on a new PE.
In this paper, we neglect PR failures and therefore use a

single PR only. All failure reports by PUs are ignored (i.e.
MAX-BAD-PE-REPORT=∞) and the endpoint keep-alive
interval and timeout are 1s (parameters evaluated in subsec-
tion 5.4). The inter-component network delay is 10ms (re-
alistic for connections within a limited geographical area,
see [14]). The simulated real-time is 60 minutes; each sim-
ulation is repeated 24 times with different seeds to achieve
statistical accuracy. The post-processing of results, i.e.
computation of 95% confidence intervals and plotting, has
been performed using GNU R [20].

5 Results

As shown in figure 2, two components contribute to the
failure handling time: the failure detection delay and the
re-processing effort for lost work.

5.1 Dynamic Pools

In the ideal case, a PE informs its PU of an oncoming
shutdown, sets a checkpoint for the session state (e.g. by
a state cookie [3]) and performs a de-registration at a PR.
Then, no re-processing effort is necessary. This situation,
as shown for the handling speed in figure 4, becomes crit-
ical only for a very low PE MTBF (Mean Time Between
Failure; here: given in average request handling times) in
combination with network delay (i.e. the failover to a new
PE is not for free). As being observable for failure-free sce-
narios (see [10,12]), the best performance is again provided
by the adaptive LU policy, due to PE load state knowledge.
However, the RR performance converges to the RAND re-
sult for a low MTBF: in this case, there is no stable list of
PEs to select from in turn – the selection choices become
more and more random. Since the system utilization results
are similar to the handling speed behaviour, a plot has been
omitted.

0 25 50 75 100

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

Probability of a Clean Shutdown [%]

S
y
s
te

m
 U

ti
li
z
a
ti

o
n

[%

]

Provider's Perspective

Pool Policy p / SKA Interval j [s/(Req.Size/PE Capacity)]

p=RoundRobin, j=0.1
p=RoundRobin, j=1
p=RoundRobin, j=10
p=Random, j=0.1
p=Random, j=1
p=Random, j=10
p=LeastUsed, j=0.1
p=LeastUsed, j=1
p=LeastUsed, j=10

0 25 50 75 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Probability of a Clean Shutdown [%]

A
v
e
ra

g
e
 R

e
q

u
e
s
t

H
a
n

d
li
n

g
 S

p
e
e
d

[%

 o
f

P
E

 C
a
p

a
c
it

y
]

User's Perspective

Pool Policy p / SKA Interval j [s/(Req.Size/PE Capacity)]

p=RoundRobin, j=0.1
p=RoundRobin, j=1
p=RoundRobin, j=10
p=Random, j=0.1
p=Random, j=1
p=Random, j=10
p=LeastUsed, j=0.1
p=LeastUsed, j=1
p=LeastUsed, j=10

Figure 5. The Impact of Clean Shutdowns

0 1 2 3 4 5

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

MTBF [s/(Req.Size/PE Capacity)]

A
v
e
ra

g
e
 R

e
q

u
e
s
t

H
a
n

d
li
n

g
 S

p
e
e
d

[%

 o
f

P
E

 C
a
p

a
c
it

y
]

User's Perspective

Pool Policy p / Network Delay d [ms]

p=RoundRobin, d=0
p=RoundRobin, d=50
p=Random, d=0
p=Random, d=50
p=LeastUsed, d=0
p=LeastUsed, d=50

Figure 4. The Performance for Dynamic Pools

5.2 De-Registrations and Failures

In real scenarios, PEs may fail without warning. That
is, a PU has to detect the failure of its PE in order to trig-
ger a failover. For the simulated application, this detec-
tion mechanism has been realized by keep-alive messages.
The general effects of a decreasing amount of “clean” shut-
downs (i.e. the PE simply disappears) are presented in fig-
ure 5. Clearly, the less “clean” shutdowns, the higher the
re-processing effort for lost work: this leads to a higher uti-
lization and lower handling speed. As expected, this effect
is smallest for LU (due to superior load balancing) and low-
est for RAND. There is almost no reaction of the utilization
to an increased session keep-alive interval (given in average
request handling times): a PU does not utilize resources
while it waits for a timeout. However, the impact on the
handling speed is significant: waiting increases the failover

0 1 2 3 4 5 6 7 8 9 10

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Session Keep−Alive Interval [s/(Req.Size/PE Capacity)]

A
v
e
ra

g
e
 R

e
q

u
e
s
t

H
a
n

d
li
n

g
 S

p
e
e
d

[%

 o
f

P
E

 C
a
p

a
c
it

y
]

User's Perspective

Pool Policy p / Endpoint Keep−Alive Interval e [s]

p=RoundRobin, e=1
p=RoundRobin, e=10
p=RoundRobin, e=100
p=Random, e=1
p=Random, e=10
p=Random, e=100
p=LeastUsed, e=1
p=LeastUsed, e=10
p=LeastUsed, e=100

Figure 6. The Impact of Session Monitoring

handling time and leads to a lower handling speed. For that
reason, a tight session health monitoring interval is crucial
for the system performance.

5.3 Session Health Monitoring

To emphasize the impact of the session health monitor-
ing granularity, figure 6 shows the handling speed results
for varying this parameter in combination with the endpoint
keep-alive interval, for a target utilization of 40% (higher
settings become critical too quickly). The utilization results
have been omitted, since they are obvious. Again, the per-
formance results for varying the policy and session keep-
alive interval reflect the importance of a quick failure detec-
tion – regardless of the policy used. Furthermore, it has to
be noted that a small monitoring granularity does not neces-
sarily increase overhead: e.g. a PU requesting transactions
by a PE could simply set a transaction timeout. In this case,

0 5 10 15 20 25 30

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Endpoint Keep−Alive Interval [s]

A
v
e
ra

g
e
 R

e
q

u
e
s
t

H
a
n

d
li
n

g
 S

p
e
e
d

[%

 o
f

P
E

 C
a
p

a
c
it

y
]

User's Perspective

Pool Policy p / MTBF m [s/(Req.Size/PE Capacity)]

p=RoundRobin, m=2
p=RoundRobin, m=5
p=RoundRobin, m=10
p=Random, m=2
p=Random, m=5
p=Random, m=10
p=LeastUsed, m=2
p=LeastUsed, m=5
p=LeastUsed, m=10

Figure 7. The Impact of PE Health Monitoring

session monitoring even comes for free. Unlike the session
monitoring, the impact of the PR’s endpoint keep-alive in-
terval is quite small here: even a difference of two orders of
magnitude only results in at most a performance difference
of 10%.

5.4 Server Health Monitoring

The endpoint keep-alive interval gains increasing impor-
tance if the request size gets small. Then, the startup de-
lay becomes significant, as illustrated in figure 2. In or-
der to show the general effects of the PE health monitoring
based on endpoint keep-alives, figure 7 presents the han-
dling speed results for a request size:PE capacity ratio of 1
and a target system utilization of 25% (otherwise, the sys-
tem becomes unstable too quickly). Since the results for the
system utilization are as expected, a plot has been omitted.

While the policy ranking remains as expected, it is
clearly observable that the higher the endpoint keep-alive
interval and the smaller the MTBF, the more probable is the
selection of an already failed PE. That is, the PU has to de-
tect the failure of its PE by itself (by session monitoring, see
subsection 5.3) and trigger a new PE selection. The result
is a significantly reduced request handling speed. There-
fore, a PR-based PE health monitoring becomes crucial for
such scenarios. But this monitoring results in network over-
head for the keep-alives and acknowledgements as well as
for the SCTP transport. So, is there a possibility to reduce
this overhead?

The mechanism for overhead reduction is to utilize the
session health monitoring (which is necessary anyway, as
shown in subsection 5.3) for PE monitoring by letting PUs
report the failure of PEs. If MAX-BAD-PE-REPORT fail-
ure reports have been received, the PE is removed from
the handlespace. The effectiveness of this mechanism is
demonstrated by the results in figure 8 (for the same param-
eters as above): even if the endpoint keep-alive overhead
is reduced to 1

30 th, there is only a handling speed decrease

1 2 3 4 5 6 7 8 9 10

5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

MAX−BAD−PE−REPORT [1]

A
v
e
ra

g
e
 R

e
q

u
e
s
t

H
a
n

d
li
n

g
 S

p
e
e
d

[%

 o
f

P
E

 C
a
p

a
c
it

y
]

User's Perspective

Pool Policy p / Endpoint Keep−Alive Interval e [s]

p=RoundRobin, e=1
p=RoundRobin, e=5
p=RoundRobin, e=30
p=Random, e=1
p=Random, e=5
p=Random, e=30
p=LeastUsed, e=1
p=LeastUsed, e=5
p=LeastUsed, e=30

Figure 8. Utilizing Failure Reports

of about 4% for MAX-BAD-PE-REPORT=1. The higher
MAX-BAD-PE-REPORT, the more important the endpoint
keep-alive granularity. However, while the failure report
mechanism is highly effective for all three policies, care has
to be taken for security: trusting in failure reports gives PUs
to power to impeach PEs!

5.5 Failover Handling

After detecting a PE failure and contacting a new server,
the session state has to be restored for the re-processing
of lost work and the application resumption. The simplest
mechanism is “abort and restart” [5]: the session is restarted
from scratch. Of course, this mechanism is only useful if the
requests are small and the PE MTBF is sufficiently large.

Client-based state sharing [3, 11] using state cookies of-
fers a simple but effective solution for the state transfer. It
is applicable as long as the state information remains suf-
ficiently small2. To show the general effects of using this
mechanism, figure 9 presents the performance results for
varying the cookie interval CookieMaxCalcs (given as the
ratio between the number of calculations and the average
request size) for different policy and MTBF settings. The
larger to cookie transmission interval and the smaller the
PE MTBF, the lower the system performance: work (i.e.
processed calculations) not being conserved by the cookie
is lost. This results in an increased utilization, due to re-
processing effort. Furthermore, this additional workload
leads to a reduction of the request handling speed. Clearly,
the better a policy’s load balancing capabilities, the better
the system utilization and request handling speed (LU bet-
ter than RR better than RAND, as for failure-free scenar-
ios [10, 12]).

In order to configure an appropriate cookie interval, the
overhead of the state cookie transport has to be taken into
account – which may range from a few bytes up to kilo-
bytes (subsubsection 9.4.2.2 of [5] contains some estima-
tions). The average loss of calculations per failure can be

2The maximum state cookie size is less than 64K [22].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

6
0

6
5

7
0

7
5

8
0

8
5

Cookie Max Calculations:Request Size Ratio [1]

S
y
s
te

m
 U

ti
li
z
a
ti

o
n

[%

]

Provider's Perspective

Pool Policy p / MTBF m [s/(Req.Size/PE Capacity)]

p=RoundRobin, m=5
p=RoundRobin, m=10
p=Random, m=5
p=Random, m=10
p=LeastUsed, m=5
p=LeastUsed, m=10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Cookie Max Calculations:Request Size Ratio [1]

A
v
e
ra

g
e
 R

e
q

u
e
s
t

H
a
n

d
li
n

g
 S

p
e
e
d

[%

 o
f

P
E

 C
a
p

a
c
it

y
]

User's Perspective

Pool Policy p / MTBF m [s/(Req.Size/PE Capacity)]

p=RoundRobin, m=5
p=RoundRobin, m=10
p=Random, m=5
p=Random, m=10
p=LeastUsed, m=5
p=LeastUsed, m=10

Figure 9. Using State Cookies for the Session Failover

95.0 96.0 97.0 98.0 99.0 100.0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Goodput Ratio [%]

C
o

o
k
ie

s
 p

e
r

R
e
q

u
e
s
t

 [
1
]

Provider's Perspective

MTBF [Request Times]

100

10

5

2

1

0.75

0.5

Figure 10. The Number of Cookies

estimated as the half cookie interval CookieMaxCalcs (in
calculations, as multiple of the average request size):

AvgLoss =
CookieMaxCalcs

2
.

Given an approximation of the PE MTBF (in average re-
quest handling times) and AvgCap the average PE capacity,
the goodput ratio can be estimated as follows:

Goodput =
(MTBF ∗AvgCap)−AvgLoss

MTBF ∗AvgCap
.

Then, the cookie interval CookieMaxCalcs for a given
goodput ratio is:

CookieMaxCalcs = −2 ∗MTBF ∗AvgCap ∗ (Goodput− 1).
(1)

Figure 10 illustrates the cookies per request (i.e.
1

CookieMaxCalcs) for varying the goodput ratio and MTBF
in equation 1. As shown for realistic MTBF values (i.e.�

a request time), the number of cookies per request keeps
small unless the required goodput ratio becomes extremely
high: accepting a few lost calculations (e.g. a goodput ratio
of 98% for a MTBF of 10 request times) – and the corre-
sponding re-processing effort on a new PE – leads to an ac-
ceptable overhead while still achieving a good system per-
formance.

6 Conclusions

In this paper, we have provided a quantitative perfor-
mance analysis of the server failure handling performance
in RSerPool systems. Since server redundancy implies load
distribution and balancing strategies, we have also analysed
the behaviour of different server selection policies. In gen-
eral, the adaptive LU policy provides the best performance,
due to server load information. RR is better than random
selection as long as there is a stable list of servers; for a
too small MTBF, its performance converges to the results
of RAND.

Two factors influence the failover performance: the fail-
ure detection and the failover mechanisms. In any case,
it is crucial to detect server failures as quickly as possible
(e.g. by session keep-alives or an application-specific mech-
anism). The PR-based server health monitoring only gets
important when the request size becomes small. Failure re-
ports may be used to reduce its overhead significantly – if
taking care of security. A very simple and quite effective
failover mechanism is client-based state sharing. Config-
ured appropriately, a good performance is achieved at small
overhead.

As part of our future work, it will be necessary to anal-
yse and evaluate the handling of PR failures by the ENRP
protocol. Furthermore, our goal is to also validate our re-
sults in real-life scenarios. That is, we are going to perform
PLANETLAB experiments by using our RSerPool prototype
implementation RSPLIB [4, 5, 8]. Particularly, we will also
evaluate the impact of changing network conditions.

References

[1] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and
D. Zagorodnov. Wrapping Server-Side TCP to Mask Con-
nection Failures. In Proceedings of the IEEE Infocom 2001,
volume 1, pages 329–337, Anchorage, Alaska/U.S.A., Apr.
2001. ISBN 0-7803-7016-3.

[2] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen.
Reliable IP Telephony Applications with SIP using RSer-
Pool. In Proceedings of the State Coverage Initiatives,
Mobile/Wireless Computing and Communication Systems II,
volume X, Orlando, Florida/U.S.A., July 2002. ISBN 980-
07-8150-1.

[3] T. Dreibholz. An Efficient Approach for State Sharing in
Server Pools. In Proceedings of the 27th IEEE Local Com-
puter Networks Conference (LCN), pages 348–352, Tampa,
Florida/U.S.A., Oct. 2002. ISBN 0-7695-1591-6.

[4] T. Dreibholz. Das rsplib–Projekt – Hochverfügbarkeit mit
Reliable Server Pooling. In Proceedings of the LinuxTag,
Karlsruhe/Germany, June 2005.

[5] T. Dreibholz. Reliable Server Pooling – Evaluation, Opti-
mization and Extension of a Novel IETF Architecture. PhD
thesis, University of Duisburg-Essen, Faculty of Economics,
Institute for Computer Science and Business Information
Systems, Mar. 2007.

[6] T. Dreibholz, L. Coene, and P. Conrad. Reliable Server
Pooling Applicability for IP Flow Information Exchange.
Internet-Draft Version 04, IETF, Individual Submission,
June 2007. draft-coene-rserpool-applic-ipfix-04.txt, work in
progress.

[7] T. Dreibholz, A. Jungmaier, and M. Tüxen. A new Scheme
for IP-based Internet Mobility. In Proceedings of the 28th
IEEE Local Computer Networks Conference (LCN), pages
99–108, Königswinter/Germany, Nov. 2003. ISBN 0-7695-
2037-5.

[8] T. Dreibholz and E. P. Rathgeb. An Application Demonstra-
tion of the Reliable Server Pooling Framework. In Proceed-
ings of the 24th IEEE INFOCOM, Miami, Florida/U.S.A.,
Mar. 2005. Demonstration and poster presentation.

[9] T. Dreibholz and E. P. Rathgeb. Implementing the Re-
liable Server Pooling Framework. In Proceedings of the
8th IEEE International Conference on Telecommunications
(ConTEL), volume 1, pages 21–28, Zagreb/Croatia, June
2005. ISBN 953-184-081-4.

[10] T. Dreibholz and E. P. Rathgeb. On the Performance of
Reliable Server Pooling Systems. In Proceedings of the
IEEE Conference on Local Computer Networks (LCN) 30th
Anniversary, pages 200–208, Sydney/Australia, Nov. 2005.
ISBN 0-7695-2421-4.

[11] T. Dreibholz and E. P. Rathgeb. RSerPool – Providing
Highly Available Services using Unreliable Servers. In Pro-
ceedings of the 31st IEEE EuroMirco Conference on Soft-
ware Engineering and Advanced Applications, pages 396–
403, Porto/Portugal, Aug. 2005. ISBN 0-7695-2431-1.

[12] T. Dreibholz and E. P. Rathgeb. The Performance of Re-
liable Server Pooling Systems in Different Server Capacity
Scenarios. In Proceedings of the IEEE TENCON ’05, Mel-
bourne/Australia, Nov. 2005. ISBN 0-7803-9312-0.

[13] T. Dreibholz and E. P. Rathgeb. An Evalulation of the Pool
Maintenance Overhead in Reliable Server Pooling Systems.
In Proceedings of the IEEE International Conference on Fu-
ture Generation Communication and Networking (FGCN),
Jeju Island/South Korea, Dec. 2007.

[14] T. Dreibholz and E. P. Rathgeb. On Improving the Per-
formance of Reliable Server Pooling Systems for Distance-
Sensitive Distributed Applications. In Proceedings of the 15.

ITG/GI Fachtagung Kommunikation in Verteilten Systemen
(KiVS), Bern/Switzerland, Feb. 2007.

[15] T. Dreibholz, X. Zhou, and E. P. Rathgeb. A Perfor-
mance Evaluation of RSerPool Server Selection Policies in
Varying Heterogeneous Capacity Scenarios. In Proceed-
ings of the 33rd IEEE EuroMirco Conference on Software
Engineering and Advanced Applications, pages 157–164,
Lübeck/Germany, Aug. 2007. ISBN 0-7695-2977-1.

[16] I. Foster. What is the Grid? A Three Point Checklist. GRID
Today, July 2002.

[17] D. Gupta and P. Bepari. Load Sharing in Distributed Sys-
tems. In Proceedings of the National Workshop on Dis-
tributed Computing, Jan. 1999.

[18] A. Jungmaier. Das Transportprotokoll SCTP. PhD the-
sis, Universität Duisburg-Essen, Institut für Experimentelle
Mathematik, Aug. 2005.

[19] P. Lei, L. Ong, M. Tüxen, and T. Dreibholz. An Overview
of Reliable Server Pooling Protocols. Internet-Draft Version
02, IETF, RSerPool Working Group, July 2007. draft-ietf-
rserpool-overview-02.txt, work in progress.

[20] R Development Core Team. R: A language and environment
for statistical computing. R Foundation for Statistical Com-
puting, Vienna/Austria, 2005. ISBN 3-900051-07-0.

[21] E. P. Rathgeb. The MainStreetXpress 36190: a scalable
and highly reliable ATM core services switch. International
Journal of Computer and Telecommunications Networking,
31(6):583–601, Mar. 1999.

[22] R. Stewart, Q. Xie, M. Stillman, and M. Tüxen. Aggre-
gate Server Access Protcol (ASAP). Internet-Draft Version
17, IETF, RSerPool Working Group, Sept. 2007. draft-ietf-
rserpool-asap-17.txt, work in progress.

[23] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory
TCP: Highly available Internet services using connection
migration. In Proceedings of the ICDCS 2002, pages 17–
26, Vienna/Austria, July 2002.

[24] M. Tüxen and T. Dreibholz. Reliable Server Pooling Poli-
cies. Internet-Draft Version 06, IETF, RSerPool Working
Group, Sept. 2007. draft-ietf-rserpool-policies-06.txt, work
in progress.

[25] Ü. Uyar, J. Zheng, M. A. Fecko, S. Samtani, and P. Con-
rad. Evaluation of Architectures for Reliable Server Pool-
ing in Wired and Wireless Environments. IEEE JSAC Spe-
cial Issue on Recent Advances in Service Overlay Networks,
22(1):164–175, 2004.

[26] A. Varga. OMNeT++ Discrete Event Simulation System
User Manual - Version 3.2. Technical University of Bu-
dapest/Hungary, Mar. 2005.

[27] Q. Xie, R. Stewart, M. Stillman, M. Tüxen, and A. Silver-
ton. Endpoint Handlespace Redundancy Protocol (ENRP).
Internet-Draft Version 17, IETF, RSerPool Working Group,
Sept. 2007. draft-ietf-rserpool-enrp-17.txt, work in progress.

[28] X. Zhou, T. Dreibholz, and E. P. Rathgeb. A New Ap-
proach of Performance Improvement for Server Selection
in Reliable Server Pooling Systems. In Proceedings of the
15th IEEE International Conference on Advanced Comput-
ing and Communication (ADCOM), Guwahati/India, Dec.
2007.

[29] X. Zhou, T. Dreibholz, and E. P. Rathgeb. Improving the
Load Balancing Performance of Reliable Server Pooling in
Heterogeneous Capacity Environments. In Proceedings of
the 3rd Asian Internet Engineering Conference (AINTEC),
Phuket/Thailand, Nov. 2007.

[30] X. Zhou, T. Dreibholz, and E. P. Rathgeb. A New Server
Selection Strategy for Reliable Server Pooling in Widely
Distributed Environments. In Proceedings of the 2nd IEEE
International Conference on Digital Society (ICDS), Sainte
Luce/Martinique, Feb. 2008.

	Introduction and Scope
	The RSerPool Architecture
	Quantifying a RSerPool System
	The Simulation Scenario Setup
	Results
	Dynamic Pools
	De-Registrations and Failures
	Session Health Monitoring
	Server Health Monitoring
	Failover Handling

	Conclusions

