Evaluation of a Simple Load Balancing Improvement
for Reliable Server Pooling with Heterogeneous Server Pools*

Xing Zhou
Hainan University, College of Information Science and Technology
Renmin Road 58, 570228 Haikou, Hainan, China
University of Duisburg-Essen, Institute for Experimental Mathematics
Ellernstrasse 29, 45326 Essen, Germany
xing.zhou@uni-due.de

Thomas Dreibholz, Erwin P. Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics
Ellernstrasse 29, 45326 Essen, Germany
{thomas.dreibholz,erwin.rathgeb} @uni-due.de

Abstract

The IETF is currently standardizing a light-weight proto-
col framework for server redundancy and session failover:
Reliable Server Pooling (RSerPool). It is the novel combi-
nation of ideas from different research areas into a single,
resource-efficient and unified architecture. Server redun-
dancy directly leads to the issues of load distribution and
load balancing. Both are important and have to be consid-
ered for the performance of RSerPool systems. While there
has already been some research on the server selection poli-
cies of RSerPool, an interesting question is still open: Is it
possible to further improve the load balancing performance
of the standard policies without modifying the policies —
which are well-known and widely supported — themselves?
Our approach places its focus on the session layer rather
than the policies and simply lets servers reject inappropri-
ately scheduled requests. Applying failover handling mech-
anisms of RSerPool, in this case, could choose a more ap-
propriate server instead. In [26], we have already shown
that our approach is useful for homogeneous server pools.
But is it also useful for heterogeneous pools?

In this paper, we first present a short outline of the RSer-
Pool framework. Afterwards, we analyse and evaluate the
performance of our new approach for different server ca-
pacity distributions. Especially, we are also going to anal-
yse the impact of RSerPool protocol and system parameters
on the performance of the server selection functionalities as
well as on the overhead.
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Balancing, Heterogeneous Pools, Performance Evaluation
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1 Introduction and Scope

Service availability is getting increasingly important in
today’s Internet. But — in contrast to the telecommunica-
tions world, where availability is ensured by redundant links
and devices [19] — there had not been any generic, stan-
dardized approaches for the availability of Internet-based
services. Each application had to realize its own solution
and therefore to re-invent the wheel. This deficiency — once
more arisen for the availability of SS7 (Signalling System
No. 7 [16]) services over IP networks — had been the initial
motivation for the IETF RSerPool WG to define the Reli-
able Server Pooling (RSerPool) framework. The basic ideas
of RSerPool are not entirely new (see [1,21]), but their com-
bination into one application-independent framework is.

The Reliable Server Pooling (RSerPool) architecture [5,
11,18] which is currently under standardization by the IETF
RSerPool WG is an overlay network framework to provide
server replication [3] and session failover capabilities [2]
to its applications. Server redundancy leads to load distri-
bution and load balancing [15], which are also covered by
RSerPool [7, 13]. But in strong contrast to already avail-
able solutions in the area of GRID and high-performance
computing [14], the fundamental property of RSerPool is to
be “lightweight”, i.e. it must be usable on devices provid-
ing only meagre memory and CPU resources (e.g. embed-
ded systems like telecommunications equipment or routers).
This property restricts the RSerPool architecture to the man-
agement of pools and sessions only, but on the other hand
makes a very efficient realization possible [6, 9]. Two
classes of load distribution algorithms [15] are supported
by RSerPool: non-adaptive and adaptive algorithms. Adap-
tive strategies base their assignment decisions on the cur-
rent status of the processing elements (which requires up-
to-date information); non-adaptive algorithms do not need
such data.

There has already been some research on the perfor-
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Figure 1. The RSerPool Architecture

mance of RSerPool usage for applications like SCTP-based
endpoint mobility [4], VoIP with SIP, web server pools,
IP Flow Information Export (IPFIX), real-time distributed
computing and battlefield networks (see [3] for detailed
application scenario descriptions). A generic application
model for RSerPool systems has been introduced by [7],
which includes performance metrics for the provider side
(pool utilization) and user side (request handling speed).
Based on this model, the load balancing quality of differ-
ent pool policies has been evaluated [3,7,13]. The question
arisen from these results is whether it is possible to improve
the load balancing performance of the standard policies by
allowing servers to reject requests, especially for scenarios
with heterogeneous server capacities. In particular, it is in-
tended to leave the policies themselves unchanged: they are
widely supported and their performance is well-known [7],
so that applying a specialised non-standard policy to only
improve the performance during a temporary capacity dis-
tribution change may be unsuitable. Therefore, we focus
on the session layer: if a request gets rejected, the failover
mechanisms provided by RSerPool could choose a possi-
bly better server instead. For this reason, the goal of this
paper is to evaluate the performance of this strategy, with
respect to the resulting protocol overhead. We also identify
critical configuration parameter ranges in order to provide a
guideline for design and configuration of efficient RSerPool
systems.

2 The RSerPool Protocol Framework

Figure 1 illustrates the RSerPool architecture [3, 11].
It contains three types of components: servers of a pool
are called pool elements (PE), a client is denoted as pool
user (PU). The handlespace — which is the set of all pools
—is managed by redundant pool registrars (PR). Within the
handlespace, each pool is identified by a unique pool han-
dle (PH). PRs of an operation scope synchronize their view
of the handlespace using the Endpoint haNdlespace Redun-

dancy Protocol (ENRP [24]), transported via SCTP [17].
An operation scope has a limited range, e.g. an organiza-
tion or only a building. In particular, it is restricted to a
single administrative domain — in contrast to GRID comput-
ing [14] —in order to keep the management complexity [6,9]
at a minimum. Nevertheless, PEs may be distributed glob-
ally for their service to survive localized disasters [10].

PEs choose an arbitrary PR of the operation scope to reg-
ister into a pool by using the Aggregate Server Access Pro-
tocol (ASAP [20]), again transported via SCTP. Upon regis-
tration at a PR, the chosen PR becomes the Home-PR (PR-
H) of the newly registered PE. A PR-H is responsible for
monitoring its PEs’ availability by keep-alive messages (to
be acknowledged by the PE within a given timeout) and
propagates the information about its PEs to the other PRs
of the operation scope via ENRP updates.

In order to access the service of a pool given by its
PH, a PU requests a PE selection from an arbitrary PR
of the operation scope, using the Aggregate Server Ac-
cess Protocol (ASAP [20]), transported via SCTP. The PR
selects the requested list of PE identities by applying a
pool-specific selection rule, called pool policy. Adaptive
and non-adaptive pool policies are defined in [22]; rele-
vant for this paper are the non-adaptive policies Round
Robin (RR) and Random (RAND) as well as the adap-
tive policy Least Used (LU). LU selects the least-used PE,
according to up-to-date application-specific load informa-
tion. Round robin selection is applied among multiple least-
loaded PEs [6]. Detailed discussions of pool policies can be
found in [3,7,8,12].

The PU writes the list of PE identities selected by the
PR into its local cache (denoted as PU-side cache). From
this cache, the PU selects — again using the pool’s policy
— one element to contact for the desired service. The PU-
side cache constitutes a local, temporary and partial copy of
the handlespace. Its contents expire after a certain timeout,
denoted as stale cache value. In many cases, the stale cache
value is simply Os, i.e. the cache is used for a single handle
resolution only [7].

3 Quantifying a RSerPool System

The system parameters relevant for this paper can be di-
vided into two groups: RSerPool system parameters and
server capacity distributions.

3.1 System Parameters

The service provider side of a RSerPool system con-
sists of a pool of PEs. Each PE has a request handling
capacity, which we define in the abstract unit of calcula-
tions per second!. Each request consumes a certain num-
ber of calculations; we call this number request size. A
PE can handle multiple requests simultaneously, in a pro-
cessor sharing mode as provided by multitasking operating
systems. The maximum number of simultaneously han-
dled requests (MaxRequests) is limited by the parameter

! An application-specific view of capacity may be mapped to this defi-
nition, e.g. CPU cycles or memory usage.



MinCapPerReq. This parameter defines the minimum ca-
pacity share which should be available to handle a new re-
quest. That is, a PE providing the capacity (peCapacity)
only allows at most

C it
MaxRequests = round(%) 1)
inCapPerReq

simultaneously handled requests. Note, that the limit is
rounded to the nearest integer, in order to support arbitrary
capacities. If a PE’s limit is reached, a new request gets re-
jected. For example, the PE capacity is 10° calculations/s

and MinCapPerReq=2.5 * 10°. Then, there is only room
for MaxRequests = round(%) = 4 simultaneously
processed requests. After the time ReqRetryDelay, it is
tried to find another PE for a rejected request. Such a delay
is necessary to avoid request-rejection floods [25].

On the service user side, there is a set of PUs. The num-
ber of PUs can be given by the ratio between PUs and PEs
(PU:PE ratio), which defines the parallelism of the request
handling. Each PU generates a new request in an interval
denoted as request interval. The requests are queued and
sequentially assigned to PEs.

The total delay for handling a request diandiing is de-
fined as the sum of queuing delay dqueuing, Startup delay
dstartup (dequeuing until reception of acceptance acknowl-
edgement) and processing time dprocessing (acceptance until
finish):

dHandling = dQucuing + dStartup + dProccssing' (2)

That is, dpandiing NOt only incorporates the time required
for processing the request, but also the latencies of queuing,
server selection and protocol message transport. The han-

dling speed is defined as: handlingSpeed = eduestSize

dhandling
For convenience reasons, the handling speed (in calcula-
tions/s) is represented in % of the average PE capacity.
Clearly, the user-side performance metric is the handling
speed — which should be as fast as possible.

Using the definitions above, it is possible to delineate the
average system utilization (for a pool of NumPZEs servers
and a total pool capacity of PoolCapacity) as:

requestSize
requestInterval
PoolCapacity -
3
Obviously, the provider-side performance metric is the sys-
tem utilization, since only utilized servers gain revenue.
In practise, a well-designed client/server system is dimen-
sioned for a certain target system utilization, e.g. 80%. That
is, by setting any two of the parameters (PU:PE ratio, re-
quest interval and request size), the value of the third one
can be calculated using equation 3 (see [3,7] for details).

systemUtilization = NumPEs * puToPERatio %

3.2 Server Capacity Distributions

In order to present the effects introduced by heteroge-
neous servers, we keep the total capacity of the pool con-
stant and only vary the heterogeneity within the pool. Based
on [3], we have defined three different normalized capacity
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Figure 2. The Simulation Setup

distributions: a single powerful server, multiple powerful
servers and a linear capacity distribution.

In the case of one or more dedicated powerful servers,
the parameter « defines the capacity ratio between a fast
PE (Capacityp,g) and a slow PE (Capacityg,,,)- That is,
for k=3, a fast PE has three times the capacity of a slow
one. Using a fixed setting of PoolCapacity for the total
capacity of a pool containing NumPEs servers, of which
NumPEsp, are fast ones, the PE capacities can be calcu-
lated as follows:

PoolCapacity
Capacit; K) = , (4
Pacitysiowpr () NumPEsp,gt * (k — 1) + NumPEs @
Capacitypasipr (k) = # * Capacityg),wpe- (6))

For the linear distribution, the parameter -y specifies the ca-

pacity ratio between the fastest PE (Capacitypygtost) and
the slowest PE (Capacitygj,west)- That is, for =4 the
fast PE has four times more capacity than the slowest one;
the other PEs’ capacities are linearly distributed between
the limits Capacitygowest and Capacitypasiest- Therefore,
given a fixed value of PoolCapacity, CapacitygiowestPE
can be calculated as follows:

_ PoolCapacity
"~ NumPEs * (77_1 +1)

Finally, the capacity of the i-th PE is:

Capacitygowestpr(7)

(v — 1) x CapacityglowestPE

Capacity; (v) = *(i — 1) + CapacitygiowestPE -
- o

NumPEs — 1

. . Base Capacity
Capacity Gradient

4 Setup Simulation Model

For our performance analysis, the RSerPool simulation
model RSPSIM [3, 7] has been used. This model is based on
the OMNET++ [23] simulation environment and contains
the protocols ASAP [20] and ENRP [24], a PR module and
PE as well as PU modules for the request handling scenario
defined in section 3. Network latency is introduced by link
delays only. Therefore, only the network delay is signifi-
cant. The latency of the pool management by PRs is negli-
gible [6,9].

Unless otherwise specified, the basic simulation setup —
which is also presented in figure 2 — uses the following pa-
rameter settings:



e The target system utilization is 80%. Request size and
request interval are randomized using a negative expo-
nential distribution (in order to provide a generic and
application-independent analysis [7]).

e There are 10 PEs; in the basic setup, each one provides
a capacity of 10° calculations/s. The heterogeneity pa-
rameters ~ (fast servers) and ~ (linear) are set to 3 (we
analyse variations in subsection 5.2).

e A PU:PE ratio of 3 is used (this parameter is analysed
in subsection 5.1). The default request size:PE capac-
ity is 5 (i.e. a size of 5% 106 calculations; subsection 5.1
contains an analysis of this parameter).

e ReqRetryDelay is uniformly randomized between
Oms and 200ms. That is, a rejected request is dis-
tributed again after an average time of 100ms. This
timeout is recommended by [25] in order to avoid over-
loading the network with unsuccessful trials.

e We use a single PR only, since we do not examine fail-
ure scenarios here (see [7] for the impact of multiple
PRs). No network latency is used (we will examine
the impact of delay in subsection 5.4).

e The simulated real-time is 60 minutes; each simulation
run is repeated at least 25 times with a different seed
in order to achieve statistical accuracy.

GNU R has been used for the statistical post-processing of
the results. Each resulting plot shows the average values
and their 95% confidence intervals.

5 Performance Analysis

[7] shows that an inappropriate load distribution of the
RR and RAND policies leads to low performance in homo-
geneous capacity scenarios. Therefore, the first step is to ex-
amine the behaviour in the heterogeneous cases (as defined
in subsection 3.2) under different workload parameters.

5.1 Workload Changes

The PU:PE ratio r has been found the most critical work-
load parameter [7]: e.g. at r=1 and a target utilization
of 80%, each PU expects an exclusive PE during 80% of
its runtime. That is, the lower r, the more critical the load
distribution. In order to demonstrate the policy behaviour
in a heterogeneous capacity scenario, a simulation has been
performed varying r from 1 to 10 for k=3 and a single fast
server (we will examine distributions and settings of  in de-
tail in subsection 5.2). The handling speed result is shown
on the left-hand side of figure 3 and clearly reflects the ex-
pectation from [7]: the lower r, the slower the request han-
dling.

Applying our idea of ensuring a minimum capacity
MinCapPerReq ¢ for each request in process by a PE, it
is clearly shown that the performance of RR and RAND
is significantly improved: from less than 10% at ¢ = 10*
to about 32% at ¢=333,333 and even about 47% for q =

5% 10°. LU remains almost unaffected — due to state knowl-
edge, “bad” selections (and therefore rejections) are very
rare.

Varying the request size:PE capacity ratio s for a fixed
setting of r=3 (the handling speed results are presented on
the right-hand side of figure 3), the handling speed slightly
sinks with a decreasing s: the smaller s, the higher the fre-
quency of requests. For example, when decreasing the re-
quest size from s=10 to s=0.1 and keeping the number of
PEs and other workload parameters constant, there will be
100 times more requests in the system (according to equa-
tion 3 and equation 1). The resulting speed reduction is
strongest for RR and RAND, due to the lower load bal-
ancing qualities of these policies in comparison to LU (see
also [7]). However, comparing the results for different set-
tings of MinCapPerReq ¢, a significant increase of the han-
dling speed can be observed when s gets larger at a higher
setting of ¢. That is, small request sizes s are the most crit-
ical. The reason is that each rejection leads to an average
penalty of 100ms (in order to avoid overloading the net-
work with unsuccessful requests [25]). But for smaller s,
the proportion of the startup delay gains an increasing im-
portance in the overall request handling time of equation 2.
For larger requests, the delay penalty fraction of the request
handling time becomes negligible.

The results for varying the request interval can be de-
rived from the previous results (see also equation 3) and
have therefore been omitted. Note that the utilization plots
have also been omitted, since there is no significant differ-
ence unless the setting of  leads to a large number of ex-
tremely slow PEs.

In summary, it has been shown that our idea of using
MinCapPerReq for rejecting inappropriately distributed
requests can lead to a significant performance improvement.
But what happens when the server capacity distribution and
heterogeneity are changed?

5.2 Varying the Pool Heterogeneity

In order to show the effect of varying the heterogene-
ity of different server capacity distributions (x/y; denoted
as kappa and gamma in the plots), simulations have been
performed for the scenarios defined in subsection 3.2. The
results are presented for a single fast server out of 10 (fig-
ure 4), 3 fast servers out of 10 (figure 5) and a linear ca-
pacity distribution (figure 6). For each figure, the left-hand
side shows the handling speed, while the right-hand side
presents the overhead in form of handle resolutions at the
PR. We have omitted utilization plots, since they would not
provide any new insights.

In general, the LU policy already provides a good load
balancing, leading to no significant room for improvement
by our MinCapPerReq approach unless the heterogeneity
of the pools gets very high. However, a significant per-
formance gain can be achieved for RR and RAND for all
three capacity distributions: the higher MinCapPerReq ¢,
the better the handling speed.

Two interesting observations can be made when com-
paring the results of RR and RAND: (1) For a higher
heterogeneity of the pool, the performance of RR con-
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Figure 3. Varying the Workload Parameters

verges to the results of RAND. Since RR deterministically
selects the PEs in turn, it will try all slow PEs in each
round. If they are highly loaded (which gets more probable
if their capacity is small, i.e. for a high setting of ),
the handling speed suffers. Here, RR’s assumption that
the next PE in its list is probably less utilized is wrong.
In result, the RR performance gets more and more ran-
dom. (2) There are performance jumg)s after k=3 for
q=333,333 and after k=4 for ¢ = 5 % 10°. The reason for
these jumps is the calculation of the maximum number
of simultaneously processed requests MaxRequests in
equation 1. For example, MaxRequests for a slow PE
at ¢=333,333 sinks from 3 at k=3 to 2 at k=3.5. Given
a pool of 10 PEs with one fast PE, and a total pool
capacity of 107 calculations/s, MaxRequests is calculated
as follows: For k=3 and MinCapPerReq ¢=333,333:
according to equation 4, Capacityg,,pr=833,333

= MaxRequests:round(gggggg):& For x=3.5 and

MinCapPerReq ¢=333,333: Capacitygo,pr=5800,000

= MaxRequests=round( ggg’ggg )=2. That is, loaded PEs

accept less additional requests and the usage of better
servers is enforced by rejection. This leads to an improved
handling speed.

Comparing the results of the different capacity distribu-
tions, it is clear that the “single fast server” scenario is the
most critical one: for higher settings of «, most of the pool’s
capacity is concentrated at a single PE. Therefore, this ded-
icated PE has to be selected in order to achieve a better
handling speed. If three of the PEs are fast ones, the sit-
uation changes: a larger share of the total pool capacity is
provided by fast PEs. That is, the “selection in turn” strat-
egy of RR becomes more successful — the “next” PE is not
almost certainly a slow one. Since LU selects by load with-
out incorporating capacity, its handling speed decays with a
higher heterogeneity of the pool: selecting a slow but cur-
rently least-loaded PE results in a decreased handling speed.
In this case, the rejection approach also gets useful for LU:
48% at ¢ = 5« 10° vs. 40% at ¢=333,333 for xk=5.

The linear distribution is the least critical one: even if
randomly selecting one of the slower PEs, the next handle
resolution will probably return one of the faster PEs. For
RR, this behaviour will even be deterministic and LU again

improves it by PE load state knowledge.

In summary, it has been shown that our request rejec-
tion approach is working in all three heterogeneous capac-
ity distribution scenarios. But what about its overhead?
The handle resolutions overhead is significantly increased
for a large setting of MinCapPerReq ¢: the higher the re-
jection probability, the more server selections. Again, as
already explained above, the overhead varies with x (fast
servers) and v (linear) depending on the setting of ¢, due
to the MaxRequests calculation in equation 1. Obviously,
the probability of a rejection is highest for RAND and low-
est for LU (due to the different load balancing qualities of
these policies). Comparing the results of the different ca-
pacity distributions, it can also be observed that the over-
head is highest for the “single fast server” setup and low-
est for the linear distribution. Clearly, the more critical the
distribution, the higher the chance to choose an inappropri-
ate PE. Therefore, the resulting question is: how to reduce
this overhead — without a significant penalty on the handling
speed improvement?

5.3 Reducing the Network Overhead

In order to present the impact of the PU-side cache on
performance and overhead, we have performed simulations
using a setting of k=3 — i.e. a not too critical setting — and
varying the stale cache value c (given as ratio between the
actual stale cache value and the request size:PE capacity ra-
tio) from 0.0 to 1.0. This cache value range has been chosen
to allow for cache utilization in case of retries and to also
support dynamic pools (PEs may register or deregister, i.e.
the entries may not get too old). Figure 7 presents the results
for a single fast server, i.e. for the most critical distribution.

Taking a look at the results, it is clear that even a small
setting of c results in a significantly reduced overhead while
the handling speeds of RR and RAND are not negatively
affected. For LU, however, the load state information be-
comes more out of date the higher c¢. This leads to a
slightly decreasing handling speed if MinCapPerReq q is
low (here: ¢=333,333 calculations/s) — using a larger set-
ting, inappropriate choices are “corrected” by the reject-
and-retry approach. The results for multiple fast servers or
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even a linear capacity distribution (for varying «y) are very
similar, therefore plots have been omitted.

In summary, the PU-side cache can achieve a significant
overhead reduction for the RR and RAND policies, while
the performance does not decrease. However, care has to be
taken of LU: its performance suffers for higher settings of ¢,
at only a small achievable overhead reduction (LU already
has a low rejection rate). In general, the cache should not
be used with LU.

5.4 The Impact of Network Delay

Although the network latency for RSerPool systems is
negligible in many cases (e.g. if all components are situ-
ated in the same building), there are some scenarios where
components are distributed globally [10]. It is therefore
also necessary to consider the impact of network delay on
the system performance. Clearly, network latency only
becomes significant for small request size:PE capacity ra-
tios s. Therefore, figure 8 presents the performance results
of varying the delay in the three capacity distribution sce-
narios at k=3 (fast servers) and =3 (linear) — i.e. in not too
critical setups — for s=1.

As can be expected, the handling speed sinks with ris-
ing network delay: in equation 2, the startup delay gains an
increasing importance in the overall handling time — due to
the latency caused by PR queries and PE contacts.

Comparing the curves for the different settings of
MinCapPerReq, the achieved gain by a higher minimum
capacity shrinks with the delay: while the request rejec-
tion rate of the PE keeps almost constant, the costs for a
rejection increase: now, there is not only the penalty of
ReqRetryDelay but also an additional latency for querying
the PR and contacting another PE. The only exception is the
LU policy: as adaptive policy, it relies on up-to-date load
information. However, due to the latency, this information
becomes more obsolete the higher the delay. That is, the
latency increases the selection probability for inappropriate
PEs. In this case, using a higher setting of MinCapPerReq
(here: 5 * 10° calculations/s) leads to a slightly improved
handling speed.

In result, our approach is also useful for scenarios with
significant network delay — even for the adaptive LU policy.

6 Conclusions

We have indicated by our evaluations that it is possible
to improve the request handling performance of the basic
RSerPool policies under varying workload parameters in
different server capacity scenarios of varying heterogene-
ity — without modifying the policies themselves — by setting
a minimum capacity per request to limit the maximum num-
ber of simultaneously handled requests. This leads to a sig-
nificant performance improvement for the RR and RAND
policies, while — in general — it does not improve the per-
formance of LU. However, in case of a significant network
delay in combination with short requests, our approach also
gets useful for LU. Request rejection leads to an increased
overhead, in particular to additional handle resolutions. Us-
ing the PU-side cache can reduce this overhead while not
significantly affecting the system performance — with care
to be taken of the capacity distribution in case of LU.

We are currently also validating our simulative perfor-
mance results in real-life scenarios by using our RSerPool
prototype implementation RSPLIB in the PLANETLAB; first
results can be found in [3, 10].
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