
An Evalulation of the Pool Maintenance Overhead
in Reliable Server Pooling Systems∗

Thomas Dreibholz, Erwin P. Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstrasse 29, 45326 Essen, Germany
{thomas.dreibholz,erwin.rathgeb}@uni-due.de

Abstract

Reliable Server Pooling (RSerPool) is a protocol frame-
work for server redundancy and session failover, currently
still under standardization by the IETF RSerPool WG. An
important property of RSerPool is its lightweight architec-
ture: server pool and session management can be realized
with small CPU power and memory requirements. That
is, RSerPool-based services can also be managed and pro-
vided by embedded systems. Currently, there has already
been some research on the performance of the data struc-
tures managing server pools. But a generic, application-
independent performance analysis – in particular also in-
cluding measurements in real system setups – is still miss-
ing.

Therefore, the aim of this paper is – after an outline of
the RSerPool framework, an introduction to the pool man-
agement procedures and a description of our pool manage-
ment approach – to first provide a detailed performance
evaluation of the pool management structures themselves.
Afterwards, the performance of a prototype implementation
is analysed in order to evaluate its applicability under real
network conditions.

Keywords: RSerPool, Server Pools, Handlespace Man-
agement, SCTP, Performance

1 Introduction and Scope

Service availability is getting increasingly important in
today’s Internet. But – in contrast to the telecommunica-
tions world, where availability is ensured by redundant links
and devices [27] – there had not been any generic, stan-
dardized approaches for the availability of Internet-based
services. Each application had to realize its own solution
and therefore to re-invent the wheel. This deficiency – once
more arisen for the availability of SS7 (Signalling System
No. 7 [23]) services over IP networks – had been the initial
motivation for the IETF RSerPool WG to define the Reli-
able Server Pooling (RSerPool) framework. The basic ideas
of RSerPool are not entirely new (see [1,32]), but their com-
bination into one application-independent framework is.

∗Parts of this work have been funded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft).

The Reliable Server Pooling (RSerPool) architecture
currently under standardization by the IETF RSerPool WG
is an overlay network framework to provide server replica-
tion and session failover capabilities to its applications [9].
In particular, server redundancy leads to the issues of load
distribution and load balancing [22], which are also cov-
ered by RSerPool [13, 15, 19]. But in full contrast to al-
ready available solutions in the area of GRID and high-
performance computing [20], the RSerPool architecture is
intended to be lightweight. That is, RSerPool may only in-
troduce a small computation and memory overhead for the
management of pools and sessions [6, 12]. Especially, this
means the limitation to a single administrative domain and
only taking care of pool and session management – but not
for tasks like data synchronization, locking and user man-
agement (which are considered to be application-specific).
On the other hand, these restrictions allow for RSerPool
components to be situated on embedded devices like routers
or telecommunications equipment.

There has already been some research on the perfor-
mance of RSerPool for applications like SCTP-based mo-
bility [11], VoIP with SIP [4], web server pools [28], IP
Flow Information Export (IPFIX) [10], real-time distributed
computing [9,13,19] and battlefield networks [34,35]. Fur-
thermore, some ideas and rough performance estimations
for the pool management have been described in our pa-
per [12]. But up to now, a detailed performance analysis of
these data structures, as well as an evaluation of the pool
management overhead in a real system setup, are still miss-
ing. The goal of our work is therefore to provide these anal-
yses. In particular, we intend to identify critical parameter
spaces to provide guidelines for designing and provisioning
efficient RSerPool systems.

2 The RSerPool Architecture

Figure 1 provides an illustration of the RSerPool archi-
tecture, as defined in [17,26]; the protocol stack is presented
in figure 2. RSerPool consists of three component classes:
servers of a pool are called pool elements (PE). A pool is
identified by a unique pool handle (PH) in the handlespace,
which is the set of all pools. The handlespace is managed by
pool registrars (PR). PRs of an operation scope synchronize
their view of the handlespace using the Endpoint haNdle-

Figure 1. The RSerPool Architecture

Figure 2. The RSerPool Protocol Stack

space Redundancy Protocol (ENRP [36]). In the operation
scope, each PR is identified by a PR ID. An operation scope
has a limited range, e.g. a company or organization; RSer-
Pool does not intend to scale to the whole Internet. Never-
theless, it is assumed that PEs can be distributed globally,
for their service to survive localized disasters [16].

A PE can register into a pool at an arbitrary PR of the
operation scope, using the Aggregate Server Access Proto-
col (ASAP [30]). In its pool, the PE will be identified by
a random 32-bit identifier which is denoted as PE ID. The
PR chosen for registration becomes the Home-PR (PR-H)
of the PE and is in particular also responsible for moni-
toring the PE’s health by endpoint keep-alive messages. If
not acknowledged, the PE is assumed to be dead and re-
moved from the handlespace. Furthermore, PUs may re-
port unreachable PEs; if a certain threshold of such reports
is reached, a PR may also remove the corresponding PE.
The PE failure detection mechanism of a PU is application-
specific. A non-PR-H only sets a lifetime expiration timer
for each PE (owned and monitored by another PR). If not
updated by its PR-H in time, a PE is simply removed from
the local handlespace.

A client is called pool user (PU) in RSerPool terminol-
ogy. To use the service of a pool given by its PH, a PU
requests a PE selection – which is called handle resolution
– from an arbitrary PR of the operation scope, again us-
ing ASAP [30]. The PR selects the requested list of PE
identities using a pool-specific selection rule, called pool
policy. The maximum number of selected entries per re-

quest is defined by the constant MaxHResItems. Adaptive
and non-adaptive pool policies are defined in [33]; for a de-
tailed discussion of these policies, see [13, 15, 19, 37, 38].
Relevant for this paper are the non-adaptive policies Round
Robin (RR) and Random (RAND) and the adaptive policy
Least Used (LU). LU selects the least-used PE, according
to up-to-date load information; the actual definition of load
is application-specific. Round robin selection is applied
among multiple least-loaded PEs [12].

The ASAP protocol also provides an optional Session
Layer between a PU and a PE. That is, a PU establishes a
logical session with a pool; ASAP takes care of the trans-
port connection establishment, for the connection monitor-
ing and for triggering a failover to a new PE in case of a fail-
ure (see [5,14]). All associations among the three RSerPool
component types (see also figure 2) are usually based on the
Stream Control Transmission Protocol (SCTP [29]), which
in particular allows for path multi-homing (see [24, 25] for
details).

3 The Handlespace Management Approach

3.1 Requirements

The challenge of the handlespace management is to ful-
fil two important properties, with particular regard of the
“lightweight” requirement of the RSerPool architecture:
(1) Server pools may get large (up to many thousands of
PEs [8]) and (2) A handlespace may contain various pools,
each one may use a different policy for server selection [15]
(and new applications may even introduce further poli-
cies [16, 19]). Clearly, in order to keep such a handlespace
maintainable, it is necessary to use an unified storage struc-
ture (which is usable for all policies) and realize it in an effi-
cient way. Furthermore, the handlespace data structure has
to support the following six operations: (1) Registration de-
notes the registration of a new PE. (2) Deregistration means
the removal of a PE entry. (3) Re-Registration is an infor-
mation update for an exiting PE entry. In particular, a re-
registration is necessary to update the policy information of
an adaptive policy (e.g. the load state for LU [13]). (4) Han-
dle Resolution denotes a PE selection operation. (5) Timer
denotes scheduling and expiry of a handlespace timer. For
a PR-H, this means scheduling a keep-alive transmission
time, its timeout, scheduling a timeout for the keep-alive
and cancelling it (on acknowledgement reception). For a
non-PR-H, it denotes the scheduling of a registration’s life-
time expiration and its cancellation (for an update). (6) Syn-
chronization is the step-wise traversal of the complete hand-
lespace, in order to obtain a block-wise copy for another PR.

3.2 Policy Realization

On the topic of supporting different policies, we have
already proposed in [12] to realize the handlespace in form
of multiple sets (as illustrated in figure 3): a handlespace is
simply a set of pools (Pools Set); each pool contains a set of
PE references sorted by PE ID (Index Set) and a second set
of these references sorted by a policy-specific sorting order

Figure 3. The Handlespace Structure

(Selection Set). In order to realize different policies, it is
simply necessary to specify a sorting order for the Selection
Set, as well as a selection procedure (which is usually to
take the first PE). Upon selection of a PE entry, its position
in the Selection Set is updated.

In [12], we have already shown the scalability of this
approach for a specific example application scenario. How-
ever, a performance analysis for a broader parameter range
has still been missing. Furthermore, our handlespace man-
agement approach had to be extended by more features,
which are described in the following.

3.3 Timer Schedule

Scheduling and expiration of timers for PE entries is an
additional task of the handlespace management. There are
three types of timers: a keep-alive transmission timer sched-
ules the transmission of an ASAP keep-alive to a PE; the
keep-alive timeout timer schedules the timeout for the PE’s
answer. A lifetime expiry timer schedules the expiration of
a PE entry on a non-PR-H. An important observation for
these three timers is that at any given time exactly one of
them is scheduled for each PE. That is, each PE entry only
has to contain the type of the timer and the expiration time
stamp. Then, the timer schedule is simply another set of
PE entries (sorted by time stamp, of course), as shown in
figure 3.

3.4 Checksum and Ownership Set

The ENRP protocol takes care of the handlespace syn-
chronization. In order to detect discrepancies in the hand-
lespace views of different PRs, each PR calculates a check-
sum of its own PE entries (i.e. the PEs for which it is in
the role of a PR-H). These checksums can be transmitted
to other PRs, which can compare the value expected from
their own handlespace view with the announced value. In
case of a difference, a synchronization is necessary. The
checksum algorithm used by ENRP is the 16-bit Internet
Checksum [3], which allows for incremental updates [9].

The synchronization procedure requires to traverse all
PE entries belonging to a certain PR. This functionality can
be realized by introducing the so called Ownership Set –
containing the PE references sorted by PR-H (see figure 3).

Figure 4. The Measurement Setup

4 The Measurement Setup

In [12], the pool management workload of a PR has al-
ready been examined for different implementation strate-
gies of the Set datatype – but only for a very specific setup.

4.1 Data Structure Performance

However, a detailed analysis of the handlespace opera-
tions throughput is still missing. Therefore, this will be
the first part of this paper. Our program for the corre-
sponding measurements simply performs as much opera-
tions of the requested type as possible, in the pool built
up in advance. Since registrations and deregistrations can-
not be examined separately (the pool would either grow
or shrink), these operations are examined combinedly: a
Registration/Deregistration operation simply performs the
deregistration of a randomly selected element if the pool
has the configured size; otherwise, a new PE is registered.
The system used for the performance measurements uses a
1.3 GHz AMD Athlon CPU – which has been state of the
art in early 2001 (i.e. almost seven years ago) and whose
performance seems to be realistic for upcoming router or
embedded device generations (which could host a PR ser-
vice). All measurements are repeated 18 times in order to
provide statistical accuracy.

4.2 Real System Performance

While the operations throughput is useful to estimate the
scalability of the handlespace management, the resulting
question is clearly how a real system performs. In order
to evaluate such a system, i.e. including real components,
protocol stacks and network overhead, we have set up a lab
scenario as shown in figure 4: it consists of a set of 10 PCs
(each having a 2.4 GHz Pentium IV CPU and 1 GB of mem-
ory) connected by a gigabit switch to a Linux-based router.
Two PRs (using the same CPU as for the data structure per-
formance evaluation, see subsection 4.1) are connected to
the router by Gigabit Ethernet. On each of the hosts, a con-
figurable number of test PEs, PUs and PRs can be started.

All systems run Kubuntu Linux 6.10 “Edgy Eft”, us-
ing kernel 2.6.17-11 and the kernel SCTP module provided

by the distribution. Our RSerPool implementation RSP-
LIB [7, 9, 18], version 2.2.0 has been installed on all ma-
chines. Each measurement run is repeated 12 times to
achieve statistical accuracy.

GNU R has been used for the statistical post-processing
of our results – including the computation of 95% confi-
dence intervals – and plotting. All results plots show the
average values and their confidence intervals.

5 Performance Analysis

Our performance evaluation is subdivided into two parts.
The first part in subsection 5.1 provides a performance anal-
ysis of the handlespace management structure itself and
constitutes the foundation of the real system evaluation in
subsection 5.2.

5.1 Data Structure Performance

The most important operation for the PE side is the regis-
tration/deregistration (see subsection 3.1) at the PR. In [12],
it has already been shown that deterministic policies can
lead to systematic insertion and removal operations in the
Selection Set (see subsection 3.2). On the other hand, ran-
domized policies are not affected. Therefore, only a bal-
anced tree structure is appropriate to base the Set datatype
on. We have examined the scalability on the number of PEs
for the two state-of-the-art representations of this datatype:
the red-black tree [21] (a deterministic approach) and the
treap [2] (a randomized approach).

The left-hand side of figure 5 shows the throughput of
registration/deregistration operations per PE and second for
both tree structures and classes of policies. While the per-
formance difference between the two policy types is small,
the treap has a slightly lower performance: using a deter-
ministically balanced tree is – despite the greater complex-
ity of the insertion and removal algorithms [21] – the faster
solution. For a pool of 20,000 PEs, it would be possible
to register or deregister each PE about 2 times per second
(red-black tree).

Clearly, this is more than sufficient in realistic scenar-
ios. But while the frequency of registration/deregistration
operations (i.e. actual insertions of new or removals of ex-
isting PEs) is assumed to be rare, a re-registration (i.e. a
registration update) of a PE occurs frequently, in particu-
lar if the policy is dynamic. For a dynamic policy (e.g.
LU), the position of the PE entry within the Selection Set
changes (see also subsection 3.2). In order to show the im-
pact on the reregistration operations performance, the right-
hand side of figure 5 presents the reregistrations throughput
per PE and second. For the adaptive policy (here: LU), each
reregistration updates the load value with a random value.
As expected, a significant difference between adaptive and
non-adaptive policies is shown: for 20,000 PEs, the non-
adaptive policy still achieves a throughput of about 5 op-
erations per PE and second (red-black tree), while it sinks
to only about 3 in the adaptive case. That is, care has to
be taken of the application behaviour – which actually has
to decide when the policy information needs to be updated!

Again, the performance for using a red-black tree is slightly
better than using a treap.

The throughput of timer operations is depicted on the
left-hand side of figure 6. Clearly, the two extreme cases for
this operation are 0% and 100% of owned PEs. Therefore,
the results of these two settings for both tree implementa-
tions are shown. However, the difference keeps very small:
re-scheduling a timer is quite inexpensive – the CPU’s cache
helps to quickly re-insert the updated structure as described
in subsection 3.3. As already expected, the performance for
a red-black tree is slightly better than for a treap.

Handle resolution is the operation relevant for the PUs.
Its performance is influenced by two factors: MaxHRe-
sItems and the type of policy – randomized or determin-
istic. For a randomized policy, it is necessary to move down
the Selection Set tree (whose depth is O(log n) – n number
of PEs – for red-black tree and treap) in order to obtain a
random PE [12] – for each of the MaxHResItems entries.
Deterministic policies, on the other hand, simply allow for
taking a complete chain of PE entries from the list (since
their order is deterministic and therefore already defined by
the sorting order, see subsection 3.2), i.e. the overall run-
time is O(1) instead.

The throughput of handle resolution operations per PE
and second is depicted on the right-hand side of figure 6.
Clearly, it can be observed that the higher MaxHResItems,
the lower the throughput: it sinks from 13 at MaxHRe-
sItems h=1 to about 7.5 at h=3 for 10,000 PEs (determinis-
tic policy, red-black tree). Furthermore, the performance for
a randomized policy is clearly lower: 7 at h=1 vs. about 4
at h=3 for 10,000 PEs (red-black tree). Again, the perfor-
mance for the treap is somewhat lower than for the red-
black tree. In a real system, the frequency of handle reso-
lutions strongly depends on the application’s PU workload.
Having a PU with a high handle resolution frequency (e.g. a
web proxy like [28]), it is possible to apply a handle resolu-
tion cache at the PU [13]. Furthermore, the handle resolu-
tion operation has an advantage over the previously exam-
ined operations: it can be performed independently of other
PRs. That is, in case of a high handle resolution workload,
the PUs could be distributed among multiple PRs.

The last operation is the synchronization, which only oc-
curs when PRs detect an inconsistency or on PR startup.
That is, the operation is quite rare (e.g. up to a few times
per day only). However, the actual performance for a pool
of 30,000 PEs allows for more than 100 operations per sec-
ond, which is by orders of magnitude more than sufficient.
Therefore, a plot has been omitted.

5.2 Real System Performance

While our RSerPool handlespace management approach
– based on red-black trees – handles pools of 10,000 and
more PEs, pools of up to a few hundreds of PEs seem to be
most realistic for the application cases of RSerPool. There-
fore, the following measurements focus on smaller pools,
but with a high PR request frequency in order to fathom the
limits.

0 5000 10000 15000 20000 25000

0
5

1
0

1
5

2
0

2
5

3
0

Number of Pool Elements [1]

R
e
g

is
tr

a
ti

o
n

 O
p

e
ra

ti
o

n
s
 p

e
r

P
E

 a
n

d
 S

e
c
o

n
d

[1

/P
E

*s
]

Registrations

Storage Algorithm a / Pool Policy Class c

a=Treap, c=Deterministic
a=Treap, c=Randomized
a=RB Tree, c=Deterministic
a=RB Tree, c=Randomized

0 5000 10000 15000 20000 25000

0
5

1
0

1
5

2
0

2
5

3
0

Number of Pool Elements [1]

R
e
−

R
e
g

is
tr

a
ti

o
n

 O
p

e
ra

ti
o

n
s
 p

e
r

P
E

 a
n

d
 S

e
c
o

n
d

[1

/P
E

*s
]

Re−Registrations

Storage Algorithm a / Pool Policy Class c

a=Treap, c=Adaptive
a=Treap, c=Non−Adaptive
a=RB Tree, c=Adaptive
a=RB Tree, c=Non−Adaptive

Figure 5. The Scalability of the Registration/Deregistration and Re-Registration Operations

0 5000 10000 15000 20000 25000

0
5

1
0

1
5

2
0

2
5

3
0

Number of Pool Elements [1]

T
im

e
r

O
p

e
ra

ti
o

n
s
 p

e
r

P
E

 a
n

d
 S

e
c
o

n
d

[1

/P
E

*s
]

Timers

Storage Algorithm a / Fraction of Owned PEs o [%]

a=Treap, o=0
a=Treap, o=100
a=RB Tree, o=0
a=RB Tree, o=100

0 5000 10000 15000 20000 25000

0
5

1
0

1
5

2
0

2
5

3
0

Number of Pool Elements [1]

H
a
n

d
le

 R
e
s
o

lu
ti

o
n

 O
p

e
ra

ti
o

n
s
 p

e
r

P
E

 a
n

d
 S

e
c
o

n
d

[1

/P
E

*s
] Handle Resolutions

Storage Algorithm a / MaxHResItems h / Pool Policy p

a=Treap, h=1, p=Deterministic
a=Treap, h=3, p=Deterministic
a=Treap, h=1, p=Randomized
a=Treap, h=3, p=Randomized
a=RB Tree, h=1, p=Deterministic
a=RB Tree, h=3, p=Deterministic
a=RB Tree, h=1, p=Randomized
a=RB Tree, h=3, p=Randomized

Figure 6. The Scalability of the Timer Handling and Handle Resolution Operations

5.3 Pool Elements Scalability

In order to show the scalability on PEs, the number
of PEs has been varied. The pool is using the RR pol-
icy (i.e. deterministic) and an inter-reregistration time be-
tween 250ms and 1000ms (such high rates may occur for
dynamic policies). All ASAP (re-)registrations are per-
formed on PR #1 (see figure 4), PR #2 is synchronized by
ENRP only. That is, we have used the worst case here. The
CPU utilization of PR #1 and PR #2 are shown on the left-
hand side of figure 7. Randomized policy results have been
omitted, since the results do not differ significantly (see also
subsection 5.1).

Clearly, the workload on PR #1 is highest: it not only
has to handle up to 3,000 simultaneous SCTP associations
to PEs (for ASAP), but also has to send out an ENRP update
to the other PR on every update of a PE entry. This leads to
a load of about 90% for 2,000 PEs at an inter-reregistration
time of a=250ms. Extending this time to a=1000ms, it is

already possible to manage 3,000 PEs at a load of only
about 25%.

Obviously, the workload of PR #2 is significantly lower:
it only has to maintain a single SCTP association to PR #1
to obtain the handlespace data. This results in a load of
only about 15% for 2,000 PEs at a=250ms, and about 25%
for 3,000 PEs at a=1000ms. It is therefore a clear recom-
mendation to try to distribute the load among the PRs of the
operation scope. In reality, this can be achieved using the
automatic configuration feature of RSerPool [34]. However,
care has to be taken of redundancy: in case of PR failure(s),
there must be a sufficient number of other PRs! But what
about the costs of the ENRP synchronization among PRs?

5.4 Registrars Scalability

In order to show the scalability on the number of PRs, we
have again used PR #1 for the ASAP associations and PR #2
for ENRP synchronization only (as shown in figure 4). Fur-

0 500 1000 1500 2000 2500 3000

0
2
0

4
0

6
0

8
0

1
0
0

Pool Elements e [1]

C
P

U
 U

ti
liz

a
ti
o
n

[%

]

Registrar's Perspective

Registrar R / Inter Reregistration Time g [s]

R=2, g=250
R=2, g=500
R=2, g=1000
R=1, g=250
R=1, g=500
R=1, g=1000

1 2 3 4 5 6 7 8 9 10

0
2
0

4
0

6
0

8
0

1
0
0

Registrars G [1]

C
P

U
 U

ti
liz

a
ti
o
n

[%

]

Provider's Perspective

Registrar R / Inter Reregistration Time g [s]

R=2, g=250
R=2, g=500
R=2, g=1000
R=1, g=250
R=1, g=500
R=1, g=1000

Figure 7. Registrar CPU Utilization for Pool Maintenance

ther PRs have been started on the other PCs (since only
the utilizations of PR #1 and PR #2 are relevant). For our
measurement, we have used a pool of 1,000 PEs and inter-
reregistration times of a=250ms to a=1000ms. The CPU
utilization results for PR #1 and PR #2 are presented on the
right-hand side of figure 7.

Clearly, the number of PRs does not significantly af-
fect PR #2. While it has to maintain an association with
each other PR of the operation scope, the actual workload
– which remains constant – is only transported via the as-
sociation with PR #1. On the other hand, the utilization for
PR #1 is significantly increased with the number of PRs, in
particular if the inter-reregistration time is small: e.g. from
about 20% for a single PR to slightly more than 60% for
6 PRs (at a=250ms). The bottleneck in this case is the in-
terface between userland application (i.e. the PR) and the
kernel’s SCTP API. For each PR, a separate ENRP mes-
sage has to be passed to the kernel’s SCTP API. Clearly,
the context switching and memory copying for this opera-
tion is time-consuming, while the actual message transport
(IP packets via Ethernet interface) is quite efficient (a recent
system can transport hundreds of thousands of packets per
second).

The analysis of the described userland/kernel bottleneck
has led to the suggestion of a SCTP API extension: the
SCTP SENDALL option (see subsection 5.2.2 of [31]). Us-
ing this option, a message to all PRs is passed to the kernel
only once – and sent via all PR associations. But although
the new option is already a part of the SCTP API standards
document [31], it is not implemented for the current Linux
kernel (version 2.6.20) yet. Therefore, a performance eval-
uation using this option has to be part of future work.

In summary, using a reasonably small number of PRs
(e.g. two or three are usually sufficient to achieve redun-
dancy), the ENRP overhead remains in an acceptable range
– with room for future improvement on the SCTP layer.

5.5 Pool Users Scalability

Finally, we have evaluated the scalability on the num-
ber of PUs for handle resolution operations using two PRs.
Again, we have observed the CPU utilization of PR #1 and
PR #2 (see figure 4) for a pool of 1,000 PEs using deter-
ministic (solid lines) and randomized policies (dotted lines),
an inter-reregistration time of 1000ms and inter-handle-
resolution times between 100ms and 500ms. For the first
measurement, we have used PR #1 for both, registrations
and handle resolutions (left-hand side), while we have put
the burden of handle resolutions on PR #2 for the second
measurement (right-hand side).

Clearly, if using PR #1 for all operations, PR #2 only
has to synchronize and therefore its load keeps constant.
But nevertheless, the CPU load of PR #1 only slightly ex-
ceeds 25% for 2,000 PUs and a inter-handle-resolution time
of 500ms. For a higher handle resolution rate, however, the
CPU utilization quickly grows: at 100ms, there is already
a load of more than 80% for 1,000 PUs. The performance
difference between the two types of policies is small – even
at 2,000 PEs, the CPU utilization of a randomized policy is
only by less than 5% higher (see subsection 5.1). That is,
compared to the protocol overhead, the pool maintenance
effort is small for this number of PEs.

So, with regard to these results, it is obviously a good
idea to split up the workload of registration management
and handle resolutions among the PRs. Therefore, PR #2 in
the second measurement (right-hand side of figure 4) is re-
sponsible for all handle resolutions. Clearly, the system per-
formance gets better now: at a CPU utilization below 80%
(PR #2), it is now possible to serve 1,500 PUs with a handle-
resolution rate of only 100ms – at a workload of about 10%
for PR #1. Splitting up the workload of both operations be-
tween the two PRs would clearly result in an even better
performance. However, a redundant system should always
be provisioned for the worst case – which is a failure of n−1
of the n PRs. That is, the sum of the workloads of both PRs
must remain significantly lower than 100%!

0 500 1000 1500 2000

0
2
0

4
0

6
0

8
0

1
0
0

Pool Users u [1]

C
P

U
 U

ti
liz

a
ti
o
n

[%

]

Registrar's Perspective using PR #1

Registrar R / Pool Policy p / Inter Handle Resolution Time a [s]

R=2, p=deterministic, a=100
R=1, p=deterministic, a=100
R=1, p=randomized, a=100
R=1, p=deterministic, a=250
R=1, p=randomized, a=250
R=1, p=deterministic, a=500
R=1, p=randomized, a=500

0 500 1000 1500 2000

0
2
0

4
0

6
0

8
0

1
0
0

Pool Users u [1]

C
P

U
 U

ti
liz

a
ti
o
n

[%

]

Registrar's Perspective using PR #2

Registrar R / Pool Policy p / Inter Handle Resolution Time a [s]

R=2, p=deterministic, a=100
R=2, p=randomized, a=100
R=2, p=deterministic, a=250
R=2, p=randomized, a=250
R=2, p=deterministic, a=500
R=2, p=randomized, a=500
R=1, p=deterministic, a=100

Figure 8. Registrar CPU Utilization for Handle Resolution

5.6 Results Summary

In summary, our handlespace performance analysis has
shown that our approach of reducing the handlespace man-
agement to the storage of sets and operations on these sets
is efficient if using a red-black tree to actually realize the
sets. Critical operations are the re-registration (which may
occur very frequently for adaptive policies) and the handle
resolution. But in our real system performance analysis,
we have shown that even a low-performance CPU is able
to handle scenarios of significantly more than 1,000 PEs
and PUs. As general recommendation, it is useful to dis-
tribute the PEs und PUs to different PRs of the operation
scope to achieve the highest performance. However, care
has to be taken of sufficient PR redundancy to cope with PR
failures. Depending on the inter-reregistration and handle
resolution frequency, also much larger scenarios are possi-
ble. A room for further performance improvement will be
the SCTP SENDALL option of the SCTP stack, which will
be realized in future SCTP implementations.

6 Conclusions

The analyses of this paper have shown that our hand-
lespace realization is efficient: using a red-black tree as
base structure to store the handlespace content, all hand-
lespace operations can be reduced to the management of
balanced trees. The performance of this approach is suffi-
cient to maintain handlespaces of many thousands of PEs –
even on a low-performance CPU being realistic for upcom-
ing routers and embedded systems.

In the second part of this paper, we have also proven
that our approach is applicable and efficient in reality: a
system based on the same CPU is also capable of handling
the ASAP/ENRP protocol overhead and the maintenance of
SCTP associations.

As part of our future research, we are going to further
evaluate our approach for certain RSerPool-based applica-
tion scenarios. Such real-world scenarios set requirements

on pool size and policy type as well as on re-registration and
handle resolution frequency. In particular, we intend to es-
timate a lower threshold for the CPU performance needed
to handle these application scenarios. This also includes
tests with our implementation on Linux-based embedded
systems.

References

[1] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and
D. Zagorodnov. Wrapping Server-Side TCP to Mask Con-
nection Failures. In Proceedings of the IEEE Infocom 2001,
volume 1, pages 329–337, Anchorage, Alaska/U.S.A., Apr.
2001. ISBN 0-7803-7016-3.

[2] C. Aragon and R. Seidel. Randomized search trees. In Pro-
ceedings of the 30th IEEE Symposium on Foundations of
Computer Science, pages 540–545, Oct. 1989.

[3] R. Braden, D. Borman, and C. Partridge. Computing the
Internet Checksum. Standards Track RFC 1071, IETF, Sept.
1988.

[4] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen.
Reliable IP Telephony Applications with SIP using RSer-
Pool. In Proceedings of the State Coverage Initiatives,
Mobile/Wireless Computing and Communication Systems II,
volume X, Orlando, Florida/U.S.A., July 2002. ISBN 980-
07-8150-1.

[5] T. Dreibholz. An Efficient Approach for State Sharing in
Server Pools. In Proceedings of the 27th IEEE Local Com-
puter Networks Conference (LCN), pages 348–352, Tampa,
Florida/U.S.A., Oct. 2002. ISBN 0-7695-1591-6.

[6] T. Dreibholz. Policy Management in the Reliable Server
Pooling Architecture. In Proceedings of the Multi-Service
Networks Conference (MSN, Cosener’s), Abingdon, Ox-
fordshire/United Kingdom, July 2004.

[7] T. Dreibholz. Das rsplib–Projekt – Hochverfügbarkeit mit
Reliable Server Pooling. In Proceedings of the LinuxTag,
Karlsruhe/Germany, June 2005.

[8] T. Dreibholz. Applicability of Reliable Server Pool-
ing for Real-Time Distributed Computing. Internet-Draft
Version 03, IETF, Individual Submission, June 2007.
draft-dreibholz-rserpool-applic-distcomp-03.txt, work in
progress.

[9] T. Dreibholz. Reliable Server Pooling – Evaluation, Opti-
mization and Extension of a Novel IETF Architecture. PhD
thesis, University of Duisburg-Essen, Faculty of Economics,
Institute for Computer Science and Business Information
Systems, Mar. 2007.

[10] T. Dreibholz, L. Coene, and P. Conrad. Reliable Server
Pooling Applicability for IP Flow Information Exchange.
Internet-Draft Version 04, IETF, Individual Submission,
June 2007. draft-coene-rserpool-applic-ipfix-04.txt, work in
progress.

[11] T. Dreibholz, A. Jungmaier, and M. Tüxen. A new Scheme
for IP-based Internet Mobility. In Proceedings of the 28th
IEEE Local Computer Networks Conference (LCN), pages
99–108, Königswinter/Germany, Nov. 2003. ISBN 0-7695-
2037-5.

[12] T. Dreibholz and E. P. Rathgeb. Implementing the Re-
liable Server Pooling Framework. In Proceedings of the
8th IEEE International Conference on Telecommunications
(ConTEL), volume 1, pages 21–28, Zagreb/Croatia, June
2005. ISBN 953-184-081-4.

[13] T. Dreibholz and E. P. Rathgeb. On the Performance of
Reliable Server Pooling Systems. In Proceedings of the
IEEE Conference on Local Computer Networks (LCN) 30th
Anniversary, pages 200–208, Sydney/Australia, Nov. 2005.
ISBN 0-7695-2421-4.

[14] T. Dreibholz and E. P. Rathgeb. RSerPool – Providing
Highly Available Services using Unreliable Servers. In Pro-
ceedings of the 31st IEEE EuroMirco Conference on Soft-
ware Engineering and Advanced Applications, pages 396–
403, Porto/Portugal, Aug. 2005. ISBN 0-7695-2431-1.

[15] T. Dreibholz and E. P. Rathgeb. The Performance of Re-
liable Server Pooling Systems in Different Server Capacity
Scenarios. In Proceedings of the IEEE TENCON ’05, Mel-
bourne/Australia, Nov. 2005. ISBN 0-7803-9312-0.

[16] T. Dreibholz and E. P. Rathgeb. On Improving the Per-
formance of Reliable Server Pooling Systems for Distance-
Sensitive Distributed Applications. In Proceedings of the 15.
ITG/GI Fachtagung Kommunikation in Verteilten Systemen
(KiVS), Bern/Switzerland, Feb. 2007.

[17] T. Dreibholz and E. P. Rathgeb. Towards the Future Inter-
net – A Survey of Challenges and Solutions in Research and
Standardization. In Proceedings of the Joint EuroFGI and
ITG Workshop on Visions of Future Network Generations
(EuroView), Würzburg/Germany, July 2007. Poster presen-
tation.

[18] T. Dreibholz and M. Tüxen. High Availability using Reli-
able Server Pooling. In Proceedings of the Linux Conference
Australia (LCA), Perth/Australia, Jan. 2003.

[19] T. Dreibholz, X. Zhou, and E. P. Rathgeb. A Performance
Evaluation of RSerPool Server Selection Policies in Varying
Heterogeneous Capacity Scenarios. In Proceedings of the
33rd IEEE EuroMirco Conference on Software Engineering
and Advanced Applications, Lübeck/Germany, Aug. 2007.

[20] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Phys-
iology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration. Grid Service Infrastructure
WG, Global Grid Forum, June 2002.

[21] L. J. Guibas and R. Sedgewick. A dichromatic framework
for balanced trees. In Proceedings of the 19th IEEE Sym-
posium on Foundations of Computer Science, pages 8–21,
New York/U.S.A., Oct. 1978.

[22] D. Gupta and P. Bepari. Load Sharing in Distributed Sys-
tems. In Proceedings of the National Workshop on Dis-
tributed Computing, Jan. 1999.

[23] ITU-T. Introduction to CCITT Signalling System No. 7.
Technical Report Recommendation Q.700, International
Telecommunication Union, Mar. 1993.

[24] A. Jungmaier. Das Transportprotokoll SCTP. PhD the-
sis, Universität Duisburg-Essen, Institut für Experimentelle
Mathematik, Aug. 2005.

[25] A. Jungmaier, E. P. Rathgeb, and M. Tüxen. On the Use
of SCTP in Failover-Scenarios. In Proceedings of the State
Coverage Initiatives, Mobile/Wireless Computing and Com-
munication Systems II, volume X, Orlando, Florida/U.S.A.,
July 2002. ISBN 980-07-8150-1.

[26] P. Lei, L. Ong, M. Tüxen, and T. Dreibholz. An Overview
of Reliable Server Pooling Protocols. Internet-Draft Version
02, IETF, RSerPool Working Group, July 2007. draft-ietf-
rserpool-overview-02.txt, work in progress.

[27] E. P. Rathgeb. The MainStreetXpress 36190: a scalable
and highly reliable ATM core services switch. International
Journal of Computer and Telecommunications Networking,
31(6):583–601, Mar. 1999.

[28] S. A. Siddiqui. Development, Implementation and Eval-
uation of Web-Server and Web-Proxy for RSerPool based
Web-Server-Pool. Master’s thesis, University of Duisburg-
Essen, Institute for Experimental Mathematics, Nov. 2006.

[29] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol.
Standards Track RFC 2960, IETF, Oct. 2000.

[30] R. Stewart, Q. Xie, M. Stillman, and M. Tüxen. Aggre-
gate Server Access Protcol (ASAP). Internet-Draft Version
16, IETF, RSerPool Working Group, July 2007. draft-ietf-
rserpool-asap-16.txt, work in progress.

[31] R. Stewart, Q. Xie, Y. Yarroll, J. Wood, K. Poon, and
M. Tüxen. Sockets API Extensions for Stream Control
Transmission Protocol (SCTP). Internet-Draft Version 12,
IETF, Transport Area Working Group, Feb. 2006. draft-ietf-
tsvwg-sctpsocket-12.txt, work in progress.

[32] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory
TCP: Highly available Internet services using connection
migration. In Proceedings of the ICDCS 2002, pages 17–
26, Vienna/Austria, July 2002.

[33] M. Tüxen and T. Dreibholz. Reliable Server Pooling Poli-
cies. Internet-Draft Version 05, IETF, RSerPool Working
Group, July 2007. draft-ietf-rserpool-policies-05.txt, work
in progress.

[34] Ü. Uyar, J. Zheng, M. A. Fecko, and S. Samtani. Perfor-
mance Study of Reliable Server Pooling. In Proceedings of
the IEEE NCA International Symposium on Network Com-
puting and Applications, pages 205–212, Cambridge, Mas-
sachusetts/U.S.A., Apr. 2003. ISBN 0-7695-1938-5.

[35] Ü. Uyar, J. Zheng, M. A. Fecko, S. Samtani, and P. Con-
rad. Evaluation of Architectures for Reliable Server Pool-
ing in Wired and Wireless Environments. IEEE JSAC Spe-
cial Issue on Recent Advances in Service Overlay Networks,
22(1):164–175, 2004.

[36] Q. Xie, R. Stewart, M. Stillman, M. Tüxen, and A. Silver-
ton. Endpoint Handlespace Redundancy Protocol (ENRP).
Internet-Draft Version 16, IETF, RSerPool Working Group,
July 2007. draft-ietf-rserpool-enrp-16.txt, work in progress.

[37] X. Zhou, T. Dreibholz, and E. P. Rathgeb. A New Ap-
proach of Performance Improvement for Server Selection
in Reliable Server Pooling Systems. In Proceedings of the
15th IEEE International Conference on Advanced Comput-
ing and Communication (ADCOM), Guwahati/India, Dec.
2007.

[38] X. Zhou, T. Dreibholz, and E. P. Rathgeb. Evaluation of
a Simple Load Balancing Improvement for Reliable Server
Pooling with Heterogeneous Server Pool. In Proceedings of
the IEEE International Conference on Future Communica-
tion and Networking (FGCN), Jeju Island/South Korea, Dec.
2007.

	Introduction and Scope
	The RSerPool Architecture
	The Handlespace Management Approach
	Requirements
	Policy Realization
	Timer Schedule
	Checksum and Ownership Set

	The Measurement Setup
	Data Structure Performance
	Real System Performance

	Performance Analysis
	Data Structure Performance
	Real System Performance
	Pool Elements Scalability
	Registrars Scalability
	Pool Users Scalability
	Results Summary

	Conclusions

