
A Performance Evaluation of RSerPool Server Selection Policies
in Varying Heterogeneous Capacity Scenarios∗

Thomas Dreibholz, Xing Zhou†, Erwin P. Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstrasse 29
45326 Essen, Germany

{thomas.dreibholz,xing.zhou,erwin.rathgeb}@uni-due.de

Abstract

Reliable Server Pooling (RSerPool) is a protocol frame-
work for server redundancy and session failover, currently
still under standardization by the IETF RSerPool WG.
Server redundancy influences load distribution and load
balancing, which both are important for the performance of
RSerPool systems. Especially, a good load balancing strat-
egy is crucial if the servers of a pool are heterogeneous.
Some research on this subject has already been performed,
but a detailed analysis on the question of how to make best
use of additional capacity in dynamic pools is still open.

Therefore, the aim of this paper is, after an outline of
the RSerPool framework, to simulatively examine the per-
formance of RSerPool server selection strategies in scenar-
ios of pools with varying server heterogeneity. In particu-
lar, this paper examines and evaluates a simple but very ef-
fective new policy, achieving a significant performance im-
provement in such situations.

Keywords: RSerPool, Redundancy, Server Selection,
Heterogeneous Pools, Performance Analysis

1 Introduction

A RSerPool system provides various mechanisms to de-
tect and handle component failures, so that it supports appli-
cations in providing a reliable service. RSerPool provides a
complete Session Layer which maintains a logical session
of a client with a pool and also supports the failover between
servers. More details on this subject – which is out of this
paper’s scope – can be found in [4, 7, 12, 13]. Server redun-
dancy directly influences load distribution and load balanc-
ing. While load distribution according to [1] only refers to
the assignment of work to a processing element, load bal-
ancing refines this definition by requiring the assignment

∗Parts of this work have been funded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft).

†Hainan University, College of Information Science and Technology,
Renmin Road 58, 570228 Haikou, Hainan, China

to maintain a certain application-specific balance across the
processing elements (e.g. CPU load or memory usage). A
classification of load distribution algorithms can be found
in [19]; the two most important classes – also supported
by RSerPool – are non-adaptive and adaptive algorithms.
Adaptive strategies base their assignment decisions on the
current status of the processing elements and therefore re-
quire up-to-date information. Non-adaptive algorithms – on
the other hand – do not require such status data. More de-
tails on such algorithms can be found in [2, 18, 23].

There has already been some research on the perfor-
mance of RSerPool for applications like SCTP-based mo-
bility [9,10], VoIP with SIP [3], IP Flow Information Export
(IPFIX) [8], real-time distributed computing [6,7,12,13,16]
and battlefield networks [28]; [14] has already analysed the
provider-side performance (utilization) of heterogeneous
pools for normalized capacity distributions. But, a generic
application-independent performance analysis and evalua-
tion of how to take advantage of an increased pool capacity
in heterogeneous pools – in particular also for the user side
– is still missing.

Our goal is therefore to further set up an application-
independent quantitative characterization for RSerPool sys-
tems, providing more insights into the implications of dif-
ferent heterogeneous pool capacity scenarios under varying
server selection policies – from the perspective of both, the
service provider and the users. We also identify critical con-
figuration parameter ranges to provide a guideline for de-
signing and configuring efficient RSerPool systems.

2 The RSerPool Architecture

Figure 1 provides an illustration of the RSerPool archi-
tecture as defined by the Internet Draft [27]. It consists of
three component classes: servers of a pool are called pool
elements (PE). Each pool is identified by a unique pool han-
dle (PH) in the handlespace, which is the set of all pools.
The handlespace is managed by pool registrars (PR). PRs
of an operation scope synchronize their view of the han-

Figure 1. The RSerPool Architecture

dlespace using the Endpoint haNdlespace Redundancy Pro-
tocol (ENRP [30]), transported via SCTP [20–22, 24]. An
operation scope has a limited range, e.g. a company or or-
ganization; RSerPool does not intend to scale to the whole
Internet. Nevertheless, it is assumed that PEs can be dis-
tributed globally, for their service to survive localized dis-
asters [15].

PEs choose an arbitrary PR to register into a pool by
using the Aggregate Server Access Protocol (ASAP [25]),
again transported via SCTP. Upon registration at a PR, the
chosen PR becomes the Home-PR (PR-H) of the newly reg-
istered PE. A PR-H is responsible for monitoring its PEs’
availability by using ASAP Endpoint Keep-Alive messages
(to be acknowledged by the PE within a given timeout) and
propagates the information about its PEs to the other PRs of
the operation scope via ENRP Update messages.

A client is called pool user (PU) in RSerPool terminol-
ogy. To access the service of a pool given by its PH, a PE
has to be selected. This selection procedure – called handle
resolution – is performed by an arbitrary PR of the opera-
tion scope. A PU can request a handle resolution from a PR
using the ASAP protocol. The PR selects PE identities by
using a pool-specific server selection rule, denoted as pool
policy. A set of adaptive and non-adaptive pool policies is
defined in [26]; for a detailed discussion of these policies,
see [7,11,12,14]. For this paper, the following pool policies
are relevant:

• The adaptive Least Used (LU) policy selects the least-
used PE, according to up-to-date load information.
The definition of load is application-specific and could
e.g. be the current number of users, bandwidth or CPU
load.

• The Priority Least Used (PLU) policy also takes the
load increment into account, besides up-to-date load
information.

• The non-adaptive Round Robin (RR) policy realizes a
selection in turn.

Figure 2. Request Handling by the Pool User

• The non-adaptive Weighted Random (WRAND) pol-
icy provides random selection, with a probability be-
ing proportional to a PE’s weight constant. The Ran-
dom (RAND) policy is a specialization of WRAND,
having set all weights to 1.

For further information on RSerPool, see also [5, 7, 11–17].

3 Quantifying a RSerPool System

In order to evaluate the behaviour of an RSerPool sys-
tem, it is necessary to quantify RSerPool systems first. The
system parameters relevant to this paper can be divided into
two groups: RSerPool system parameters and server capac-
ity distributions. These two groups will be introduced in the
following subsections.

3.1 System Parameters

The service provider side of a RSerPool system consists
of a pool of PEs. Each PE has a request handling capac-
ity, which we define in the abstract unit of calculations per
second. Depending on the application, an arbitrary view
of capacity can be mapped to this definition, e.g. CPU cy-
cles, bandwidth or memory usage. Each request consumes a
certain number of calculations, we call this number request
size. A PE can handle multiple requests simultaneously, in a
processor sharing mode as commonly used in multitasking
operating systems.

On the service user side, there is a set of PUs. The num-
ber of PUs can be given by the ratio between PUs and PEs
(PU:PE ratio), which defines the parallelism of the request
handling. Each PU generates a new request in an interval
denoted as request interval. The requests are queued and
sequentially assigned to PEs, as illustrated in figure 2.

The total delay for handling a request dHandling is de-
fined as the sum of queuing delay dQueuing, startup delay
dStartup (dequeuing until reception of acceptance acknowl-
edgement) and processing time dProcessing (acceptance until
finish) as illustrated in figure 3:

dHandling = dQueuing + dStartup + dProcessing.

That is, dHandling not only incorporates the time required
for processing the request, but also the latencies of queuing,
server selection and protocol message transport.

Figure 3. Request Handling Delays

The handling speed (in calculations/s) is defined as:

handlingSpeed =
requestSize
dhandling

. (1)

For convenience reasons, the handling speed can also be
represented in % of the average PE capacity. Clearly, the
user-side performance metric is the handling speed – which
should be as high as possible.

Using the definitions above, it is now possible to delin-
eate the system utilization in a formula:

systemUtilization = puToPERatio ∗
requestSize

requestInterval

peCapacity
(2)

Obviously, the provider-side performance metric is the
system utilization, since only utilized servers gain revenue.
In practise, a well-designed client/server system is dimen-
sioned for a certain target system utilization, e.g. 80%. That
is, by setting any two of the parameters (PU:PE ratio, re-
quest interval and request size), the value of the third one
can be calculated using equation 2. See also [7,12] for more
details on this subject.

3.2 Server Capacity Distribution

In order to present the effects introduced by heteroge-
neous servers, we have considered three different and realis-
tic capacity distributions: a single powerful server, multiple
powerful servers and a linear capacity distribution.

3.2.1 A Single Powerful Server

A dedicated powerful server is realistic if there is only one
powerful server to perform the main work and some other
older (and slower) ones to provide redundancy. To quan-
tify such a scenario, the variable ϕ (denoted as capacity
scale factor) is defined as the capacity ratio between the
new capacity (PoolCapacityNew) and the original capacity
(PoolCapacityOriginal) of the pool:

ϕ =
PoolCapacityNew

PoolCapacityOriginal

. (3)

A value of ϕ=1 denotes no capacity change, while ϕ=3
stands for a tripled capacity. In case of a single powerful
server, the variation of ϕ results in changing the capacity
of the designated PE only. That is, the capacity increment
∆Pool(ϕ) of the whole pool can be calculated as follows:

∆Pool(ϕ) = (ϕ ∗ PoolCapacityOriginal)| {z }
PoolCapacityNew

−PoolCapacityOriginal.

(4)

Then, the capacity of the i-th PE can be deduced using
equation 4 by the following formula (where NumPEs de-
notes the number of PEs):

Capacityi(ϕ) =

8><>:
PoolCapacityOriginal

NumPEs + ∆Pool(ϕ) (i = 1)
PoolCapacityOriginal

NumPEs (i > 1)
.

That is, Capacity1(ϕ) stands for the capacity of the
powerful server.

3.2.2 Multiple Powerful Servers

If using NumPEsFast more than one powerful servers in-
stead of only one at one time, the capacity of the i-th PE
can be calculated as follows (according to equation 4):

∆FastPE(ϕ) =
∆Pool(ϕ)

NumPEsFast
,

Capacityi(ϕ) =

8><>:
PoolCapacityOrig

NumPEs + ∆FastPE(ϕ) (i ≤ NumPEsFast)
PoolCapacityOrig

NumPEs (i > NumPEsFast)

3.2.3 A Linear Capacity Distribution

In real life, a linear capacity distribution is likely if there
are different generations of servers. For example, a com-
pany could buy a state-of-the-art server every half year and
add it to the existing pool. In this case, the PE capacities
are distributed linearly. That is, the capacity of the first PE
remains constant, the capacities of the following PEs are
increased with a linear gradient, so that the pool reaches
its desired capacity PoolCapacityNew. Therefore, the ca-
pacity of the i-th PE can be obtained using the following
equations (again, using ∆Pool(ϕ) as defined in equation 4):

∆FastestPE(ϕ) =
2 ∗∆Pool(ϕ)

NumPEs
,

Capacityi(ϕ) =
∆FastestPE(ϕ)

NumPEs − 1| {z }
Capacity Gradient

∗(i − 1)

| {z }
Additional Capacity for PE i

+
PoolCapacityOriginal

NumPEs
.

4 Setup Simulation Model

For the performance analysis, our RSerPool simulation
model RSPSIM [7, 12] has been used. It is based on the

Figure 4. The Simulation Setup

OMNET++ [29] simulation environment and contains the
protocols ASAP [25] and ENRP [30], a PR module and PE
and PU modules modelling the request handling scenario
defined in subsection 3.1. Unless otherwise specified, the
basic simulation setup, as illustrated in figure 4, uses the
following configuration parameters:

• The target system utilization is 90%.

• Request size and request interval are randomized using
a negative exponential distribution (in order to provide
a generic, application-independent analysis).

• There are 10 PEs; the capacity of a PE for ϕ=1 is set
to 106 calculations/s.

• The average request size:PE capacity ratio is 10, i.e.
processing an average-sized request exclusively on an
average PE takes 10s.

• We use a single PR only, since we do not examine fail-
ure scenarios here (see [12] for the impact of multiple
PRs).

• The simulated real-time is 120m; each simulation run
is repeated 24 times with a different seed in order to
achieve statistical accuracy.

GNU R has been used for the statistical post-processing
of our results – including the computation of 95% confi-
dence intervals – and plotting. All results plots show the
average values and their confidence intervals.

5 Performance Analysis

An important feature of RSerPool is its support for dy-
namic pools: it is possible to adapt a pool’s capacity to a
changing demand by adding or removing PEs. An impor-
tant question here is what happens with additional capacity
if the pool is (temporarily) slightly loaded and removing
some servers is not useful? Clearly, it is usually desirable

1 2 3 4 5 6 7 8 9 10

0
5
0
0

1
5
0
0

2
5
0
0

3
5
0
0

4
5
0
0

PE Number

C
a
p
a
c
it
y

[%

 o
f
O

ri
g
in

a
l
C

a
p
a
c
it
y
]

Provider's Perspective

phi

5
4
3
2
1

Figure 5. Server Capacities of the Single Pow-
erful Server Scenario

that the additional capacity would result in an improvement
of the request handling speed! But are the predefined poli-
cies capable to handle such a scenario? Some basic ideas
have already been proposed by us in [16], but a more gen-
eral evaluation has still been missing. Therefore, the goal
of this paper is to provide an appropriate analysis.

In order to conveniently evaluate the performance in sce-
narios of varying heterogeneity, we have taken the three
capacity distribution scenarios described in subsection 3.2
into account: a single powerful server, multiple powerful
servers and a linear capacity distribution.

5.1 Results for a Single Powerful Server

In case of a single powerful server, changing ϕ results
in varying the capacity of the designated PE only. Figure 5
illustrates the resulting PE capacities of each PE for varying
ϕ, according to the equations of subsubsection 3.2.1.

Figure 6 presents the performance results (system uti-
lization on the left-hand side, handling speed on the right-
hand one) for varying ϕ and PU:PE ratios r=3 and r=10.
Form the provider’s performance perspective, the system
utilization results are not surprising: the higher the capac-
ity of the pool, the lower the utilization. Since the request
workload remains constant and the policies are not used in
critical parameter ranges (i.e. in particular, the PU:PE ra-
tio r for the non-adaptive policies is sufficiently high, see
also [12, 14]), no significant utilization differences among
the used policies can be observed.

However, the user’s performance perspective becomes
interesting: as shown in figure 6, the policies RR and

1 2 3 4 5

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

phi [1]

S
y
s
te

m
 U

ti
liz

a
ti
o
n

[%

]

Provider's Perspective

Pool Policy p / PU:PE Ratio r [1]

p=WeightedRandom, r=3
p=WeightedRandom, r=10
p=RoundRobin, r=10
p=Random, r=10
p=PriorityLeastUsed, r=3
p=PriorityLeastUsed, r=10
p=LeastUsed, r=3
p=LeastUsed, r=10

1 2 3 4 5

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

phi [1]

A
v
e
ra

g
e
 R

e
q
u
e
s
t
H

a
n
d
lin

g
 S

p
e
e
d

[%

 o
f
P

E
 C

a
p
a
c
it
y
]

User's Perspective

Pool Policy p / PU:PE Ratio r [1]

p=WeightedRandom, r=3
p=WeightedRandom, r=10
p=RoundRobin, r=10
p=Random, r=10
p=PriorityLeastUsed, r=3
p=PriorityLeastUsed, r=10
p=LeastUsed, r=3
p=LeastUsed, r=10

Figure 6. Increasing the Capacity of a Single Server

RAND only provide a minimal handling speed gain if the
capacity of the designated server is increased. This is a
result of these policies’ lack of PE capacity knowledge.
Therefore, these policies are only useful in homogeneous
scenarios. The surprising result of this simulation is LU’s
bad performance: at ϕ=5 and for r=3 nad r=10, the han-
dling speed is only 90% for LU, while it is already about
500% for WRAND policy. So, what is the problem of the
LU policy in this scenario?

The reason for the bad performance of LU is the fact
that the selection decision is based on the current PE load
state only. Consider a powerful PE #1 loaded by 11% and
a slow PE #2 loaded by 10%. Clearly, the LU policy would
select PE #2, because it has the lowest load. But the new
request may increase the slow PE #2’s load by another 10%,
while using PE #1 may only have increased its load by 2%.
That is, PE #1 would have been able to handle the request
more quickly. The lack of LU to incorporate the aspect of
different load increments for different servers has led to the
definition of the PLU policy: in [16], we propose that each
PE can specify its load increment l̂, i.e. the number of load
units the server’s load is increased by an additional request.
Upon selection, the PE having the lowest sum of load and
load increment is chosen1. In particular, while LU takes the
PE currently having the lowest load, our PLU policy selects
the PE having the lowest load after accepting a new request.

For the parametrization of PLU, it is only important that
the settings of l̂ reflect the relative PE capabilities. For this

1It is important to note that the PLU policy, similar to plain LU, is also
very efficiently implementable using the approach presented in [11].

simulation, the load increment l̂i for each PE i has been
defined as:

l̂i =
2.5 ∗ 105

Capacityi(ϕ)
. (5)

That is, we have defined that the load of a PE j of the aver-
age capacity (i.e. 106 calculations/s, see section 4) is rised
by l̂j=25%. On the other hand, using a PE k with a capacity
of 41*106 calculations/s (i.e. the powerful PE’s capacity for
ϕ=5), the load increment would only be l̂k=0.61%.

Using the PLU policy with the described setting of the
load increment, a significant handling speed gain can be
observed (see figure 6): about 3,250% for ϕ=5 (r=3 and
r=10) vs. 600% for WRAND (r=10) and about 160% for
LU (r=10). That is, the PLU policy provides the desired
functionality of increasing the request handling speed in the
scenario of a single designated server. But what about the
other scenarios of increased PE capacity?

5.2 Results for Multiple Powerful Servers

Another realistic capacity distribution scenario is to have
multiple powerful servers instead of a single one. In or-
der to provide a simulation for this kind of distribution, we
have chosen a scenario of using 3 fast servers out of 9. All
other configuration parameters have remained the same as
described in section 4.

Figure 7 shows the simulation results for the scenario
having used 9 PEs, where 3 PEs are fast servers. The capac-
ity Capacityi(ϕ) of PE i is calculated according to subsub-
section 3.2.2. Since the utilization results are quite similar

1 2 3 4 5 6 7 8 9

0
2
5
0

5
0
0

7
5
0

1
0
0
0

1
2
5
0

1
5
0
0

PE Number

C
a
p
a
c
it
y

[%

 o
f
O

ri
g
in

a
l
C

a
p
a
c
it
y
]

Provider's Perspective

phi

5
4
3
2
1

1 2 3 4 5

0
2
5
0

5
0
0

7
5
0

1
0
0
0

1
2
5
0

1
5
0
0

phi [1]

A
v
e
ra

g
e
 R

e
q
u
e
s
t
H

a
n
d
lin

g
 S

p
e
e
d

[%

 o
f
P

E
 C

a
p
a
c
it
y
]

User's Perspective

Pool Policy p / PU:PE Ratio r [1]

p=WeightedRandom, r=3
p=WeightedRandom, r=10
p=RoundRobin, r=10
p=Random, r=10
p=PriorityLeastUsed, r=3
p=PriorityLeastUsed, r=10
p=LeastUsed, r=3
p=LeastUsed, r=10

Figure 7. Increasing the Capacity of One Third of the Servers

to the results of subsection 5.1, we have omitted the corre-
sponding plot here. Instead, the left-hand side of figure 7
presents the capacity of each server for varying settings of
ϕ; the right-hand side shows the request handling speed.

As a general result of the curves, it can be observed that
the behaviour of the policies is quite similar to the previ-
ous scenario presented in figure 6. That is, while RR and
RAND are in fact useless, the performance of LU is signif-
icantly outperformed by WRAND (e.g. a handling speed of
more than 700% vs. about 125% for LU for r=10). Again,
a significant performance improvement is achievable by us-
ing PLU with the load increment l̂i setting defined by equa-
tion 5.

Comparing the results with the observations for the “sin-
gle powerful server” scenario of section 5.1, the effects of
the changed capacity distribution can be observed: while
the designated powerful PE incorporates almost the pool’s
complete capacity (e.g. 4,100% of a slow server’s capacity
for ϕ=5, see figure 5), the additional capacity is now di-
vided up among three servers (i.e. 3 servers having 1,300%
of a slow server’s capacity for ϕ=5, see the left-hand side of
figure 7). In this case, the top handling speed is lower (e.g.
1,250% vs. 3,250% for PLU at ϕ=5), since the maximum
possible request handling speed is limited by the process-
ing speed of a fast PE. For LU and also for RR and RAND,
the fact that now one third of the servers are powerful ones
becomes beneficial: their handling speed is increased, since
the probability of mapping a request to a powerful PE is in-
creased significantly (e.g. 160% vs. 125% for LU at ϕ=5
and r=10).

After it has been shown that an appropriate policy can
make use of additional capacity to improve the handling

speed in scenarios containing a set of powerful PEs, it is
furthermore necessary to have a look at a scenario contain-
ing a less extreme capacity distribution.

5.3 Results for a Linear Capacity Distri-
bution

In the final capacity distribution scenario, we have in-
creased the PE capacities linearly. That is, while the ca-
pacity of the first PE remains constant, the capacities of the
following PEs are increased with a linear gradient. Figure 8
shows the simulation results for the linear capacity distri-
bution. All other configuration parameters have remained
as described in section 4. Again, the left-hand side shows
the capacity for each of the 10 PEs for having varied ϕ; the
right-hand side presents handling speed results. A system
utilization plot has been omitted again, since it would not
provide any new insights.

While the general ranking behaviour of the policies re-
mains as observed for the two scenarios of fast servers (see
section 5.1 and section 5.2), it is clearly visible that a lin-
ear capacity distribution results in smaller performance dif-
ferences among the policies: for ϕ=5, the capacity of the
fastest PE is only 900% of the slowest PE’s one (see the left-
hand side of Figure 8), while it is 1,300% in the three-fast-
servers scenario and even 4,100% for the dedicated power-
ful server (see the left-hand side of figure 7 and figure 5).
That is, while the top request handling speed for requests
is significantly lower (e.g. only about 800% for PLU and
r=10), the chance that a less-performing policy can reach
a high handling speed is significantly improved. At ϕ=5
and r=10, the RAND policy already achieves a handling

1 2 3 4 5 6 7 8 9 10

0
1
0
0

3
0
0

5
0
0

7
0
0

9
0
0

PE Number

C
a
p
a
c
it
y

[%

 o
f
O

ri
g
in

a
l
C

a
p
a
c
it
y
]

Provider's Perspective

phi

5
4
3
2
1

1 2 3 4 5

0
1
0
0

3
0
0

5
0
0

7
0
0

9
0
0

phi [1]

A
v
e
ra

g
e
 R

e
q
u
e
s
t
H

a
n
d
lin

g
 S

p
e
e
d

[%

 o
f
P

E
 C

a
p
a
c
it
y
]

User's Perspective

Pool Policy p / PU:PE Ratio r [1]

p=WeightedRandom, r=3
p=WeightedRandom, r=10
p=RoundRobin, r=10
p=Random, r=10
p=PriorityLeastUsed, r=3
p=PriorityLeastUsed, r=10
p=LeastUsed, r=3
p=LeastUsed, r=10

Figure 8. Increasing the Server Capacities Linearly

speed of about 175%, while RR even exceeds 200%. LU is
able to reach about 330%, but is still being outperformed by
WRAND with about 450%. Note, that the handling speed
of WRAND only outperforms LU for ϕ > 3 – for smaller
values of ϕ, its performance is significantly lower. Com-
pared to one dedicated server (LU is already outperformed
at ϕ=2), the performance of LU for a linear capacity distri-
bution is significantly better.

5.4 Results Summary

As the main result, it has been observed that the linear
scenario is significantly less critical in comparison to the
fast servers scenarios – even inappropriate policies like RR
and RAND are able to make use of the improved capacity.
While it is still possible to map a request to a slower PE,
the probability to map the next request to a faster one is the
same (due to the linear capacity distribution). Nevertheless,
the WRAND policy (in the class of non-adaptive policies)
and in particular the new adaptive PLU policy provide a
superior performance.

6 Conclusions

In summary, we have answered an important question
on the performance of heterogeneous RSerPool systems:
Which selection policy is able to make best use of additional
PE capacity? The answer to this question is crucial for the
cost-benefit ratio of such systems, since additional capacity

should provide a performance improvement. As main re-
sults, we have shown that the non-adaptive WRAND policy
provides good results for sufficiently heterogeneous pools.
However, the results for plain LU in this case are underper-
forming. The reason for this low performance is the lack
of PE capacity knowledge for this policy. This problem has
been overcome by the PLU policy. We have shown that this
new policy – although very simple and efficiently realizable
– provides superior performance results in different capac-
ity distribution scenarios.

As part of our future research, we are going to evaluate
the policies in real-life scenarios, using our RSerPool pro-
totype implementation RSPLIB [5, 7, 15, 17] in the PLAN-
ETLAB. In particular, we will also analyse the effects of
network delay on the handlespace synchronization (which
leads to the deprecation of policy information like the load
states of LU/PLU) and evaluate the resulting system per-
formance impacts, in order to find approaches for further
performance improvement.

References

[1] E. Berger and J. C. Browne. Scalable Load Distribution and
Load Balancing for Dynamic Parallel Programs. In Proceed-
ings of the International Workshop on Cluster-Based Com-
puting 99, Rhodes/Greece, June 1999.

[2] M. Colajanni and P. S. Yu. A Performance Study of Robust
Load Sharing Strategies for Distributed Heterogeneous Web
Server Systems. IEEE Transactions on Knowledge and Data
Engineering, 14(2):398–414, 2002.

[3] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen.
Reliable IP Telephony Applications with SIP using RSer-
Pool. In Proceedings of the State Coverage Initiatives 2002,
Mobile/Wireless Computing and Communication Systems II,
volume X, Orlando, Florida/U.S.A., July 2002. ISBN 980-
07-8150-1.

[4] T. Dreibholz. An Efficient Approach for State Sharing
in Server Pools. In Proceedings of the 27th IEEE Local
Computer Networks Conference, pages 348–352, Tampa,
Florida/U.S.A., Oct. 2002. ISBN 0-7695-1591-6.

[5] T. Dreibholz. Das rsplib–Projekt – Hochverfügbarkeit mit
Reliable Server Pooling. In Proceedings of the LinuxTag,
Karlsruhe/Germany, June 2005.

[6] T. Dreibholz. Applicability of Reliable Server Pool-
ing for Real-Time Distributed Computing. Internet-Draft
Version 02, IETF, Individual Submission, Aug. 2006.
draft-dreibholz-rserpool-applic-distcomp-02.txt, work in
progress.

[7] T. Dreibholz. Reliable Server Pooling – Evaluation, Opti-
mization and Extension of a Novel IETF Architecture. PhD
thesis, University of Duisburg-Essen, Faculty of Economics,
Institute for Computer Science and Business Information
Systems, Mar. 2007.

[8] T. Dreibholz, L. Coene, and P. Conrad. Reliable Server pool
use in IP flow information exchange. Internet-Draft Version
02, IETF, Individual Submission, Feb. 2006. draft-coene-
rserpool-applic-ipfix-02.txt, work in progress.

[9] T. Dreibholz, A. Jungmaier, and M. Tüxen. A new Scheme
for IP-based Internet Mobility. In Proceedings of the 28th
IEEE Local Computer Networks Conference, pages 99–108,
Königswinter/Germany, Nov. 2003. ISBN 0-7695-2037-5.

[10] T. Dreibholz and J. Pulinthanath. Applicability of Reli-
able Server Pooling for SCTP-Based Endpoint Mobility.
Internet-Draft Version 01, IETF, Individual Submission,
Sept. 2006. draft-dreibholz-rserpool-applic-mobility-01.txt,
work in progress.

[11] T. Dreibholz and E. P. Rathgeb. Implementing the Re-
liable Server Pooling Framework. In Proceedings of the
8th IEEE International Conference on Telecommunications,
volume 1, pages 21–28, Zagreb/Croatia, June 2005. ISBN
953-184-081-4.

[12] T. Dreibholz and E. P. Rathgeb. On the Performance of Re-
liable Server Pooling Systems. In Proceedings of the IEEE
Conference on Local Computer Networks 30th Anniversary,
pages 200–208, Sydney/Australia, Nov. 2005. ISBN 0-
7695-2421-4.

[13] T. Dreibholz and E. P. Rathgeb. RSerPool – Providing
Highly Available Services using Unreliable Servers. In Pro-
ceedings of the 31st IEEE EuroMirco Conference on Soft-
ware Engineering and Advanced Applications, pages 396–
403, Porto/Portugal, Aug. 2005. ISBN 0-7695-2431-1.

[14] T. Dreibholz and E. P. Rathgeb. The Performance of Re-
liable Server Pooling Systems in Different Server Capacity
Scenarios. In Proceedings of the IEEE TENCON ’05, Mel-
bourne/Australia, Nov. 2005. ISBN 0-7803-9312-0.

[15] T. Dreibholz and E. P. Rathgeb. On Improving the Per-
formance of Reliable Server Pooling Systems for Distance-
Sensitive Distributed Applications. In Proceedings of the 15.
ITG/GI Fachtagung Kommunikation in Verteilten Systemen,
Bern/Switzerland, Feb. 2007.

[16] T. Dreibholz, E. P. Rathgeb, and M. Tüxen. Load Distri-
bution Performance of the Reliable Server Pooling Frame-
work. In Proceedings of the 4th IEEE International Confer-
ence on Networking, volume 2, pages 564–574, Saint Gilles
Les Bains/Reunion Island, Apr. 2005. ISBN 3-540-25338-6.

[17] T. Dreibholz and M. Tüxen. High Availability using Reli-
able Server Pooling. In Proceedings of the Linux Conference
Australia, Perth/Australia, Jan. 2003.

[18] S. G. Dykes, K. A. Robbins, and C. L. Jeffery. An Empir-
ical Evaluation of Client-Side Server Selection Algorithms.
In Proceedings of the IEEE Infocom 2000, volume 3, pages
1361–1370, Tel Aviv/Israel, Mar. 2000. ISBN 0-7803-5880-
5.

[19] D. Gupta and P. Bepari. Load Sharing in Distributed Sys-
tems. In Proceedings of the National Workshop on Dis-
tributed Computing, Jan. 1999.

[20] A. Jungmaier. Das Transportprotokoll SCTP. PhD the-
sis, Universität Duisburg-Essen, Institut für Experimentelle
Mathematik, Aug. 2005.

[21] A. Jungmaier, E. P. Rathgeb, and M. Tüxen. On the Use
of SCTP in Failover-Scenarios. In Proceedings of the State
Coverage Initiatives 2002, Volume X, Mobile/Wireless Com-
puting and Communication Systems II, volume X, Orlando,
Florida/U.S.A., July 2002. ISBN 980-07-8150-1.

[22] A. Jungmaier, M. Schopp, and M. Tüxen. Performance
Evaluation of the Stream Control Transmission Protocol.
In Proceedings of the IEEE Conference on High Perfor-
mance Switching and Routing, pages 141–148, Heidel-
berg/Germany, June 2000.

[23] O. Kremien and J. Kramer. Methodical Analysis of Adaptive
Load Sharing Algorithms. IEEE Transactions on Parallel
and Distributed Systems, 3(6), 1992.

[24] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol.
Standards Track RFC 2960, IETF, Oct. 2000.

[25] R. Stewart, Q. Xie, M. Stillman, and M. Tüxen. Aggregate
Server Access Protcol (ASAP). Technical Report Version
15, IETF, RSerPool Working Group, Jan. 2007. draft-ietf-
rserpool-asap-15.txt, work in progress.

[26] M. Tüxen and T. Dreibholz. Reliable Server Pooling Poli-
cies. Internet-Draft Version 04, IETF, RSerPool Working
Group, Mar. 2007. draft-ietf-rserpool-policies-04.txt, work
in progress.

[27] M. Tüxen, Q. Xie, R. Stewart, M. Shore, J. Loughney,
and A. Silverton. Architecture for Reliable Server Pool-
ing. Technical Report Version 12, IETF, RSerPool Working
Group, Nov. 2006. draft-ietf-rserpool-arch-12.txt, work in
progress.

[28] Ü. Uyar, J. Zheng, M. A. Fecko, S. Samtani, and P. Con-
rad. Evaluation of Architectures for Reliable Server Pool-
ing in Wired and Wireless Environments. IEEE JSAC Spe-
cial Issue on Recent Advances in Service Overlay Networks,
22(1):164–175, 2004.

[29] A. Varga. OMNeT++ Discrete Event Simulation System
User Manual - Version 3.2. Technical University of Bu-
dapest/Hungary, Mar. 2005.

[30] Q. Xie, R. Stewart, M. Stillman, M. Tüxen, and A. Silver-
ton. Endpoint Handlespace Redundancy Protocol (ENRP).
Internet-Draft Version 15, IETF, RSerPool Working Group,
Jan. 2007. draft-ietf-rserpool-enrp-15.txt, work in progress.

	Introduction
	The RSerPool Architecture
	Quantifying a RSerPool System
	System Parameters
	Server Capacity Distribution
	A Single Powerful Server
	Multiple Powerful Servers
	A Linear Capacity Distribution

	Setup Simulation Model
	Performance Analysis
	Results for a Single Powerful Server
	Results for Multiple Powerful Servers
	Results for a Linear Capacity Distribution
	Results Summary

	Conclusions

