
RSerPool – Providing Highly Available Services using Unreliable Servers

Thomas Dreibholz
University of Duisburg-Essen

Institute for Experimental Mathematics
Ellernstraße 29, D-45326 Essen, Germany

dreibh@exp-math.uni-essen.de
Tel: +49 201 183-7637

Erwin P. Rathgeb
University of Duisburg-Essen

Institute for Experimental Mathematics
Ellernstraße 29, D-45326 Essen, Germany

rathgeb@exp-math.uni-essen.de
Tel: +49 201 183-7670

Abstract

The Reliable Server Pooling (RSerPool) protocol suite
currently under standardization by the IETF is designed to
build systems providing highly available services by mecha-
nisms and protocols for establishing, configuring, accessing
and monitoring pools of server resources. Using RSerPool,
critical infrastructure services like SS7 telecommunication
systems, e-commerce transaction processing or distributed
computing can be provided highly available using pools of
unreliable servers.

In this paper, we first give an overview of the RSerPool
framework. In the following, we quantitatively show perfor-
mance impacts of varying RSerPool parameters to failover
handling, server selection efficiency and overhead traffic
under server failure conditions.

1 Introduction

The Reliable Server Pooling (RSerPool) architec-
ture [20] currently under standardization by the IETF RSer-
Pool WG is an overlay network framework to provide server
replication and session failover capabilities to its applica-
tions. These functionalities themselves are not new, but
their combination into one application-independent frame-
work is.

While there has already been some research on the appli-
cability of RSerPool for applications like SCTP-based mo-
bility [5], reliable SIP-based telephony [1], battlefield net-
works [22] and distributed computing [7, 8, 6, 3, 9, 24],
an analysis of its session failover capabilities is still miss-
ing. Therefore, the goal of this paper is to quantitatively
examine RSerPool’s session failover performance in case
of unreliable servers. That is, how should the parameters of
RSerPool be tuned to provide a reliable service to its users
despite of error-prone servers?

This paper is structured as follows: in section 2, we give

an overview of the RSerPool architecture. Our OMNeT++-
based simulation model is presented in section 3; the results
of our performance analysis are shown in section 4.

2 The Reliable Server Pooling Architecture

2.1 Motivation

The convergence of classical circuit-switched networks
(i.e. PSTN/ISDN) and data networks (i.e. IP-based) is
rapidly progressing. This implies that SS7 PSTN sig-
nalling [11] has to be transported over IP networks. Since
SS7 signalling networks offer a very high degree of avail-
ability (e.g. at most 10 minutes downtime per year for any
signalling relation between two signalling endpoints; for
more information see [10]), all links and components of the
network devices must be fault-tolerant, and this is achieved
through having multiple links, and using the link redun-
dancy concept of the Stream Control Transmission Proto-
col (SCTP [17]).

When transporting signalling over IP networks, such
concepts also have to be applied to achieve the required
availability. Link redundancy in IP networks is supported
using SCTP providing multiple network paths and fast
failover [12, 13]; redundancy of network device compo-
nents is supported by the SGP/ASP (signalling gateway
process/application server process) concept. However, this
concept has some limitations:

• no support of dynamic addition and removal of com-
ponents;

• limited ways of server selection;

• no specific failover procedures and inconsistent appli-
cation to different SS7 adaptation layers.

To cope with the challenge of creating a unified,
lightweight, real-time, scalable and extendable redundancy



Figure 2. PE Registration and Monitoring

solution (see [21] for details), the IETF Reliable Server
Pooling Working Group was founded to specify and define
the Reliable Server Pooling concept.

2.2 Architecture

An overview of the RSerPool architecture currently un-
der standardization and described by several Internet Drafts
is shown in figure 1.

Multiple server elements providing the same service be-
long to a server pool to provide redundancy on one hand
and scalability on the other. Server pools are identified
by a unique ID called pool handle (PH) within the set of
all server pools, the handlespace. A server in a pool is
called a pool element (PE) of the respective pool. The han-
dlespace is managed by redundant registrars (PR). The reg-
istrars synchronize their view of the handlespace using the
Endpoint haNdlespace Redundancy Protocol (ENRP [23]).
PRs announce themselves using multicast mechanisms, i.e.
it is not necessary (but still possible) to pre-configure any
PR address into the other components described in the fol-
lowing.

PEs providing a specific service can register for a corre-
sponding pool at an arbitrary PR using the Aggregate Server
Access Protocol (ASAP [18]) as shown in figure 2. The
home PR (PR-H) is the PR which was chosen by the PE for
initial registration. It monitors the PE using ASAP Endpoint
Keep Alives. The frequency of monitoring messages de-
pends on the availability requirements of the provided ser-
vice. When a PE becomes unavailable, it is immediately
removed from the handlespace by its home PR. A PE can
also intentionally de-register from the handlespace by an
ASAP de-registration allowing for dynamic reconfiguration
of the server pools. PR failures are handled by requiring
PEs to re-register regularly (and therefore choosing a new

PR when necessary). Re-registration also makes it possi-
ble for the PEs to update their registration information (e.g.
transport addresses or selection policy states).

The home PR, which registers, re-registers or de-
registers a PE, propagates this information to all other PR
via ENRP. Therefore, it is not necessary for the PE to use
any specific PR. In case of a failure of its home PR, a PE
can simply use an arbitrarily chosen other one.

When a client, called pool user (PU) in RSerPool termi-
nology, requests a service from a pool, it:

1. Asks an arbitrary PR to translate the pool handle to
a list of PE identities selected by the pool’s selection
policy (pool policy), e.g round robin or least used (to
be explained in detail in section 2.4). The PR does not
return the total number of identities in the pool, instead
it has a constant value, MaxHResItems, which dictates
how many PE identities should be returned. For ex-
ample, if there were 5 PEs and MaxHResItems was set
to 3, then the PR would select 3 of the 5; conversely,
if MaxHResItems were set to 5, and there were only 3
PEs, then all 3 PE identities would be returned.

2. The PU adds this list of PE identities to its local cache
(denoted as PU-side cache) and again selects one entry
by policy from its cache.

3. To this selected PE, a connection is established, using
the application’s protocol, to actually use the service.
The client then becomes a PU of the PE’s pool.

It has to be emphasized, that there are two locations
where a selection by pool policy is applied during this pro-
cess:

• at the PR when compiling the list of PEs and

• in the local PU-side cache where the target PE is se-
lected from the list.

The timeout of the PU-side cache is called stale cache
value. Within this time period, subsequent handle resolu-
tions of the PU may be satisfied directly from the PU-side
cache, saving the effort and bandwidth of asking the PR.

If the connection to the selected PE fails, e.g. due to
overload or failure of the PE, the PU selects another PE
from its list and tries again. The PU may report a PE failure
to its PR; the PR can increment a counter of the given PE’s
unreachability reports and remove it from the handlespace if
it has reached the limit MaxBadPEReports (its default value
is 3 [23]). If the PE failure occurs during an active session,
a new connection to another available PE is established and
an application-specific failover procedure is invoked.

2.3 Session Failover

RSerPool supports optional client-based state synchro-
nization [2] for session failover. An example is shown in



Figure 1. The RSerPool Architecture

Figure 3. Failover with Client-Based State
Synchronization

figure 3: A PE can store its current state with respect to a
specific session in a state cookie which is sent to the cor-
responding PU. The PU only has to store the latest state
cookie, i.e. the server’s latest state information for the ses-
sion. When a failover to a new PE is necessary, the PU can
send the state cookie to the new PE, which can then restore
the saved state and resume service at this point. However,
RSerPool is not restricted to client-based state synchroniza-
tion; any other application-specific failover procedure can
be used as well.

2.4 Pool Policies

Whilst reliability is one of the obvious aspects of RSer-
Pool, load distribution is another important one: the choice
of the pool element selection policy (pool policy) controls
the way in which PUs are mapped to PEs when they request
a service. An appropriate strategy here is to balance the
load among the PEs to avoid excessive response times due
to overload in some servers, while others run idle.

For RSerPool, load only denotes a constant in the range
from 0% (not loaded) to 100% (fully loaded) which de-
scribes a PE’s actual normalized resource utilization. The
definition of a mapping from resource utilization to a load
value is application-dependent. Formally, such a mapping
function is defined as

m(u) :=
u

Umax − Umin
, u ∈ {Umin, ..., Umax}⊂ R,

where Umin denotes the application’s minimum and Umax

the maximum possible resource utilization.
A file transfer application could define the resource uti-

lization as the number of users currently handled by a
server. Under the assumption of a maximum amount of 20
simultaneous users: Umin = 0 and Umax = 20. Therefore,
m(u) := u

20 .
For an e-commerce transaction processing system, re-

sponse times are crucial; e.g. a customer should get a
response in less than 5 seconds. In this case, utilization
can be defined as a server’s average response time. Then,
Umin = 0s and Umax = 5s and m(u) := u

5s . Other
schemes can be defined as well, based e.g. on CPU usage,
memory utilization etc.

Depending on the used pool element selection policy,
RSerPool can try to achieve a balanced load of the PEs
within a pool. That is, if the application defines its load as a
function of the amount of users, RSerPool will balance the
amount of users. And if load is defined as average response
time, RSerPool will balance response times.

Currently, the standards document [19] defines the fol-
lowing policies: Round Robin (RR), Random (RAND) and
Least Used (LU). The first two policies, RR and RAND, are
called non-adaptive, because they do not require and incor-
porate any information on the actual load state of the active
PEs when making the selection. However, policies may be
"stateful" in a sense that the current selection depends on the
selection made in the previous request. This can – if care-
lessly implemented - lead to a severe performance degrada-
tion in some situations we show in our paper [8].



Figure 4. RSerPool Simulation Scenario

Unlike the non-adaptive policies, the LU policy tries to
select the PEs which currently carry the least load. There-
fore, the PEs are required to propagate their load informa-
tion into the handlespace (by doing a re-registration) regu-
larly or upon changes. These required dynamic policy in-
formation changes lead to the term adaptive policy. It is
obvious that the adaptive policies have the potential to pro-
vide a better load sharing resulting in a better overall perfor-
mance. However, the trade-off is that these policies require
additional signalling overhead in order to keep the load in-
formation sufficiently current.

3 Our Simulation Model

To quantitatively evaluate the RSerPool concept, we
have developed a simulation model which is based on the
discrete event simulation system OMNeT++ [14]. Cur-
rently, it includes implementations of the two RSerPool
protocols – ASAP [18] and ENRP [23] – and a PR mod-
ule. Furthermore, it also includes models for PE and PU
components of the distributed fractal graphics computation
application described in [24]. This application was origi-
nally created using our RSerPool prototype rsplib [4, 9] and
tested in a lab testbed emulating a LAN scenario. Basic per-
formance simulations of homogeneous and heterogeneous
server scenarios using our simulation model can be found
in our paper [8].

Figure 4 shows the simulation scenario. The modelled
RSerPool network consists of a LAN; the links within this
LAN introduce an average delay of 10ms (both settings are
based on the testbed LAN scenario). We have chosen a
LAN scenario instead of a more complicated WAN scenario
since network delay becomes only significant when the du-
ration of requests has the network delay’s order of magni-
tude. In this case, the client-based state synchronization to
be examined in this paper is useless – it would be much
easier to simply restart an interrupted session. Each LAN

contains of 1 PR, 9 PEs (the local PR is their home PR) and
18 PUs. Since we do not examine PR failures in this paper,
PR redundancy (i.e. ENRP) is unnecessary here.

Each PE has an average computation capacity of Cavg =
106 calculations per second (negative exponentially dis-
tributed). A PE can process several computation requests
simultaneously in a processor sharing mode as commonly
used in multitasking operating systems. At most, 4 simulta-
neous requests are allowed on a server to avoid overloading
and excessive response times. The load of a server in our
scenario has been defined as the number of currently run-
ning requests, divided by its request limit of 4. A PE rejects
an additional request if it is fully loaded. In this case, the
PU will try another PE (selected by pool policy, of course)
after an average timeout of 1s to avoid overloading the PR
and network with unsuccessful ASAP Handle Resolution
requests (recommendation based on the results from [24]).

The keep-alive and re-registration configuration is based
on the testbed scenario [24]: PEs re-register at the PR in
intervals of 5s; for the LU policy, load information changes
result in immediate re-registration. As home PR, the PR
monitors the PEs by endpoint keep-alives in intervals of
5 seconds. The PE is considered dead if no answer is re-
ceived within 5 seconds. For request associations between
PEs and PUs, keep-alive intervals of 5 seconds with a time-
out of 5 seconds are used. MaxHResItems has been set to 4,
MaxBadPEReports has been set to the standard document’s
default 3 [23].

For state synchronization, client-based state sharing [2]
using state cookies with state approximation is used: After
a given amount of completed calculations, a state cookie is
sent to the PU. This state cookie simply contains the number
of calculations already processed. This allows the PE to
resume the session at the recorded point in the last state
cookie. Computations made after the last cookie before a
failure are lost, the new PE has to process them again.

For each PE, an availability α = total uptime
total runtime can be

specified. In case of a failure, the PE becomes unreach-
able for an average duration of 60s, negative exponentially
distributed. We explicitly do not examine the case of a
clean shutdown here (PE explicitly deregisters from pool
and sends cookies to all its PUs; therefore failover is quick
and cheap). While a clean shutdown is likely for server
pools in a computing centre, this is not the case for highly
dynamic distributed computing scenarios (see [24]) where
e.g. home users provide computation power. Such PEs
may provide its service only for very short durations, im-
mediately stop service when their computation power is re-
quested by their owner, simply disappear because they are
turned off, modem connections break, etc. Therefore, we
will examine a broad range of server availabilities from 10%
to 100%.

Unless otherwise specified, PUs sequentially request the
processing of requests by the pool, having an average re-



quest size of 107 calculations and a negative exponential
distribution (approximation of the real system behaviour,
see [24]). After receiving the result of a request, a PU waits
for an average of 10 seconds (again, negative exponentially
distributed) to model the reaction time of a user. The stale
cache value for the PU-side cache is set to 0s (i.e. the cache
is turned off) for the first two simulations. Impacts of the
cache are examined in section 4.3.

The length of the simulation runs has been set to 20 min-
utes simulated real-time. All simulation runs have been re-
peated 50 times using different seeds to be able to compute
confidence intervals. For the statistical post-processing and
plotting, R Project [16] has been used. The plots show mean
values and their 95% confidence intervals.

4 Simulation Results

4.1 Performance of Client-Based State Synchro-
nization

In our first simulation, we show the effect of client-based
state synchronization using cookies on both system perfor-
mance and required overhead traffic. Figure 5 shows the to-
tal amount of completed requests (upper part), the amount
of ASAP packets (middle part, only results for lowest and
highest parameter setting) and the total amount of cookies
sent (lower part) during the 20 minutes of system runtime.
As policy, LU has been used. Since client-based state syn-
chronization is most useful when request runtimes are suf-
ficiently long1 the average request size for this simulation
has been set to 108 calculations, negative exponentially dis-
tributed. That is, processed as the only request on a PE, it
takes an average period of 100s to complete it.

Obviously, cookies provide no benefit when there are no
failures, but still substantially cause overhead traffic. Espe-
cially for the setting of a cookie after every 106 calculations,
cookie packets exceed the ASAP traffic by more than two
times. On the other hand, while high cookie rates create an
excessive amount of cookie traffic, there is only a small ben-
efit of this additional traffic: comparing the transmission of
a cookie after 106 and 108 calculations, the overhead traffic
is reduced by a factor of 100 while the amount of completed
requests is decreased by only 8% at 90% availability.

For lower availabilities however, more frequent cookies
become beneficial. At 50% availability, sending a cookie af-
ter 107, 108 or 109 calculations already reduces the amount
of completed requests by 14%, 53% and 57%. For 10%
availability, the reduction increases to 46%, 63% and 63%.
The reason for higher cookie settings having (almost) equal
reductions is, that at such low availabilities, the PE mostly
does not even reach the first cookie transmission. There-
fore, the request has to be started from the beginning. The

1For small request sizes, it is most efficient to simply start the request
again instead of adding effort to enable session resumptions.

Figure 5. Client-Based State Synchronization
Performance Results



results for the cookie amount curve make this effect clear:
at low availabilities, there are almost no cookies sent.

The middle part of figure 5 shows the amount of ASAP
packets during the simulation scenario. Since the differ-
ences between the curves for the four used cookie intervals
are small, we only provide the plots for sending a cookie
after 106 and 109 calculations, i.e. a change of three orders
of magnitude. The difference between the two curves is a
result of the amount of requests processed: since more re-
quests are handled when the cookie interval is smaller, more
handle resolutions are necessary.

Obviously, the amount of ASAP packets at first de-
creases when the availability goes down from 100% to
about 50%. Here, the amount of PE re-registrations and
keep-alives decreases since the PEs are unavailable. How-
ever, for availabilities below 50%, the amount of ASAP
packets starts increasing. The reason is, that now failures
are more likely, causing PUs to send more failure reports to
the PR (1 message) and requesting additional handle reso-
lutions (1 request and 1 response). For an availability be-
low 20% however, the reduction of PE traffic dominates the
result again (PUs are pausing for about 1s after each unsuc-
cessful connection establishment, to avoid overloading the
network and PR), implying a decrease in ASAP traffic.

Summary As a result of this simulation, it is obviously
useful to send cookies that enable a better performance in
failure situations. However, when failures are not extremely
likely, the amount of cookies should be kept sufficiently
small. In this scenario, sending a cookie after 107 calcu-
lations causes low overhead traffic (about up to 2500 cook-
ies in 20 minutes at 100% availability) but still reduces the
request amount at 50% availability by only 14%.

4.2 Performance of Pool Policies

In this simulation, we examine the impact of different
pool policies on the system’s failover performance. The left
side of figure 6 shows the total amount of completed re-
quests for LU, RR and RAND polices under varying server
availabilities. The cookie interval for this simulation has
been set to 5 ∗ 106 calculations.

As shown in our paper [8], the adaptive LU policy al-
ways outperforms the non-adaptive RR and RAND poli-
cies for failure-less scenarios. This can also be verified for
failover scenarios: The performance gap of about 43% at
100% PE availability (1260 requests for LU vs. 715/714 for
RR/RAND) slightly shrinks to about 37% at 50% availabil-
ity (903 requests for LU vs. 556/571 for RR/RAND) and
then quickly reduces to only about 10% at 10% availability
(91 requests for LU vs. 75/77 for RR/RAND).

At the cost side, i.e. the overhead amount of ASAP pack-
ets in the 20 minutes of runtime as shown on the right side
of figure 6, the non-adaptive policies significantly reduce

the amount of ASAP packets since there is no need to up-
date policy information (i.e. server load). But while the
reduction is almost constantly 25% for availabilities from
100% to 66%, the amount of ASAP packets for RR and
RAND almost keeps constant for availabilities from 66%
to 33%. The reason is, that the descent of the amount of
completed requests in this area for LU is much higher than
for the non-adaptive policies: 48% for LU (1104 requests
to 573 requests) vs. 36% for RR (660 requests to 420 re-
quests) and 34% for RAND (651 requests to 429 requests).
When a currently low-loaded PE under the LU policy fails,
this one will be selected by PUs until its failure is detected;
this causes additional delays resulting in a reduced amount
of completed requests. For availabilities below 33%, the
overhead packets curve again becomes almost parallel.

Summary Like in failure-less scenarios, the adaptive LU
policy also outperforms the non-adaptive RR and RAND
policies in failure scenarios. However, the performance gain
of LU compared to RR and RAND shrinks with decreasing
server availability.

4.3 Performance of the PU-Side Cache

Finally, we examine the system’s behaviour when we ac-
tivate the PU-side cache. If it is used (stale cache value
greater than 0s), handle resolutions may be satisfied from
cache instead of querying the PR. This saves some amount
of ASAP traffic but the inaccurate cache content2 may re-
duce the system’s performance. For this simulation, the LU
policy is used. The non-adaptive policies are not signifi-
cantly affected by the cache, therefore we do not show the
results here.

The left side of figure 7 shows the amount of requests
completed within 20 minutes of system runtime. The per-
formance penalty of using the cache remains quite con-
stant for availabilities from 100% to 87% – the amounts of
completed requests are reduced by 3%, 8% and 13% (stale
cache values of 7.5s, 15s, 30s) compared to the case with-
out cache. But reducing the availability further, the perfor-
mance penalty of the cache becomes smaller: 3%, 4% and
8% for 50% availability. For availabilities below 33%, even
no significant performance loss due to the cache can be ob-
served.

On the overhead side – the right side of figure 7 shows
the amount of ASAP packets – the traffic reduction remains
quite constant for availabilities above 50%: the amount of
overhead packets reduces by about 5%, 9% and 13% for
stale cache values of 7.5s, 15s and 30s compared to the sce-
nario without cache. But in the availability range from 20%
to 50%, a significantly increased cost reduction by the cache
can be observed: about 9%, 13% and 18%. Here, the chance

2The policy information (load) may have changed or PEs may be al-
ready dead.



Figure 6. Pool Policy Performance Results

Figure 7. PU-Side Cache Performance Results

that a just selected PE is already dead when the PU sends
a request becomes significant. In such a case, an additional
handle resolution plus an unreachability report to the NS are
necessary (3 messages). When there is a cache, the PU can
skip the handle resolution at the PR and directly choose a
new PE from its cache.

Summary While the PU-side cache reduces the amount
of requests completed by the system due to inaccurate con-
tent (PE availability and policy information), it also reduces
the amount of overhead traffic (handle resolutions at the
PR). At low server availabilities, this traffic reduction sig-
nificantly increases and furthermore the performance loss
decreases. That is, when servers are likely to fail, a cache
becomes beneficial.

5 Conclusion and Outlook

In this paper, we first presented the Reliable Server Pool-
ing (RSerPool) architecture, the new server pool and session
management framework currently under standardization by
the IETF. While some research has already been made on
RSerPool’s applicability for certain applications, an analy-
sis of its failover capabilities was still missing. Therefore,
the analysis of these functionalities has been the subject of
our paper.

We have shown that the client-based state synchroniza-
tion mechanism of RSerPool can achieve efficient failover
performance at the cost of small overhead when choosing
the cookie interval appropriately. As for a failure-less sce-
nario, adaptive server selection policies lead to improved
performance compared to non-adaptive policies, but this
performance gain is reduced when server failures become



more likely.
Finally, we have shown the impact of the PU-side server

selection cache under failure conditions: while the cache
reduces overhead traffic at the cost of some performance
reduction in scenarios of low failure probability, it achieves
overhead reduction without significant performance loss in
failure-likely scenarios.

After these first promising results, we are currently con-
tinuing the evaluation of reliability aspects by examining
the parameter sensitivity with respect to a broad range of
system parameters including, e.g., request sizes and inter-
vals, keep-alive timer settings, stale cache values, cookie
intervals, settings of MaxBadPEReports and policies in ho-
mogeneous and heterogeneous server capacity scenarios.
Furthermore, we are going to to verify our simulation re-
sults in real-life network scenarios. Based on our prototype
implementation [4, 6, 3, 9] of RSerPool we are going to
build a lab test scenario and finally also want to analyse
large-scale scenarios using the PLANETLAB [15]. Our goal
is to transfer the theoretical insights of our simulations to
reality, providing guidelines for designing and tuning RSer-
Pool systems and promoting standardization and deploy-
ment of RSerPool.

References

[1] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen.
Reliable IP Telephony Applications with SIP using RSer-
Pool. In Proceedings of the SCI 2002, Mobile/Wireless
Computing and Communication Systems II, volume X, Or-
lando/U.S.A., Jul 2002.

[2] T. Dreibholz. An efficient approach for state sharing in
server pools. In Proceedings of the 27th IEEE Local Com-
puter Networks Conference, Tampa, Florida/U.S.A., Oct
2002.

[3] T. Dreibholz. An Overview of the Reliable Server Pooling
Architecture. In Proceedings of the 12th IEEE International
Conference on Network Protocols 2004, Berlin/Germany,
Oct 2004.

[4] T. Dreibholz. Das rsplib–Projekt – Hochverfügbarkeit mit
Reliable Server Pooling. In Proceedings of the LinuxTag
2005, Karlsruhe/Germany, Jun 2005.

[5] T. Dreibholz, A. Jungmaier, and M. Tüxen. A new Scheme
for IP-based Internet Mobility. In Proceedings of the 28th
IEEE Local Computer Networks Conference, Königswin-
ter/Germany, Nov 2003.

[6] T. Dreibholz and E. P. Rathgeb. An Application Demonstra-
tion of the Reliable Server Pooling Framework. In Proceed-
ings of the 24th IEEE Infocom 2005, Miami, Florida/U.S.A.,
Mar 2005.

[7] T. Dreibholz and E. P. Rathgeb. Implementing of the Re-
liable Server Pooling Framework. In Proceedings of the
8th IEEE International Conference on Telecommunications
2005, Zagreb/Croatia, Jun 2005.

[8] T. Dreibholz, E. P. Rathgeb, and M. Tüxen. Load Distri-
bution Performance of the Reliable Server Pooling Frame-
work. In Proceedings of the 4th IEEE International Confer-

ence on Networking 2005, Saint Gilles Les Bains/Reunion
Island, Apr 2005.

[9] T. Dreibolz and M. Tüxen. High availability using reliable
server pooling. In Proceedings of the Linux Conference Aus-
tralia 2003, Perth/Australia, Jan 2003.

[10] K. D. Gradischnig and M. Tüxen. Signaling transport over
IP-based networks using IETF standards. In Proceedings
of the 3rd International Workshop on the design of Reliable
Communication Networks, pages 168–174, Budapest, Hun-
gary, 2001.

[11] ITU-T. Introduction to CCITT Signalling System No.
7. Technical Report Recommendation Q.700, International
Telecommunication Union, March 1993.

[12] A. Jungmaier, E. Rathgeb, and M. Tüxen. On the Use of
SCTP in Failover-Scenarios. In Proceedings of the SCI
2002, Volume X, Mobile/Wireless Computing and Commu-
nication Systems II, volume X, Orlando/U.S.A., Jul 2002.

[13] A. Jungmaier, M. Schopp, and M. Tüxen. Performance
Evaluation of the Stream Control Transmission Protocol. In
Proceedings of the IEEE Conference on High Performance
Switching and Routing, Heidelberg/Germany, June 2000.

[14] OMNeT++ Discrete Event Simulation System.
http://www.omnetpp.org.

[15] PlanetLab: Home. http://www.planet-lab.org.
[16] R Development Core Team. R: A language and environment

for statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria, 2005. ISBN 3-900051-07-0.

[17] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol.
Standards Track RFC 2960, IETF, Oct 2000.

[18] R. Stewart, Q. Xie, M. Stillman, and M. Tüxen. Aggre-
gate Server Access Protcol (ASAP). Internet-Draft Version
11, IETF, RSerPool WG, Feb 2005. draft-ietf-rserpool-asap-
11.txt, work in progress.

[19] M. Tüxen and T. Dreibholz. Reliable Server Pooling Poli-
cies. Internet-Draft Version 00, IETF, RSerPool WG, Oct
2004. draft-ietf-rserpool-policies-00.txt, work in progress.

[20] M. Tüxen, Q. Xie, R. Stewart, M. Shore, J. Loughney,
and A. Silverton. Architecture for Reliable Server Pooling.
Internet-Draft Version 09, IETF, RSerPool WG, Feb 2005.
draft-ietf-rserpool-arch-09.txt, work in progress.

[21] M. Tüxen, Q. Xie, R. Stewart, M. Shore, L. Ong, J. Lough-
ney, and M. Stillman. Requirements for Reliable Server
Pooling. Informational RFC 3227, IETF, Jan 2002.

[22] U. Uyar, J. Zheng, M. A. Fecko, S. Samtani, and P. Con-
rad. Evaluation of Architectures for Reliable Server Pool-
ing in Wired and Wireless Environments. IEEE JSAC Spe-
cial Issue on Recent Advances in Service Overlay Networks,
22(1):164–175, 2004.

[23] Q. Xie, R. Stewart, M. Stillman, M. Tüxen, and A. Silver-
ton. Endpoint Name Resolution Protcol (ENRP). Internet-
Draft Version 11, IETF, RSerPool WG, Feb 2005. draft-ietf-
rserpool-enrp-11.txt, work in progress.

[24] Y. Zhang. Distributed Computing mit Reliable Server Pool-
ing. Masters thesis, Universität Essen, Institut für Experi-
mentelle Mathematik, Apr 2004.


