
Implementing the Reliable Server Pooling
Framework

Thomas Dreibholz
University of Duisburg-Essen

Ellernstrasse 29
45326 Essen, Germany

Email: dreibh@exp-math.uni-essen.de
Telephone: +49 201 183-7637

Fax: +49 201 183-7373

Erwin P. Rathgeb
University of Duisburg-Essen

Ellernstrasse 29
45326 Essen, Germany

Email: rathgeb@exp-math.uni-essen.de
Telephone: +49 201 183-7670

Fax: +49 201 183-7373

Abstract— The Reliable Server Pooling (RSerPool) pro-
tocol suite currently under standardization by the IETF is
designed to build systems providing highly available services
by mechanisms and protocols for establishing, configuring,
accessing and monitoring pools of server resources. But
RSerPool is not only able to manage pools of redundant
servers and facilitate service failover between servers: it
also includes sophisticated mechanisms for server selections
within the pools. These mechanisms make RSerPool useful
for applications in load balancing and distributed computing
scenarios.

As part of our RSerPool research and to verify results
of our simulation model in real-life scenarios, we have
created a complete implementation prototype of the RSer-
Pool framework. In this paper, we will give a detailed
description of the concepts, ideas and realizations of our
prototype. Furthermore, we will show performance issues
raised by the management of large servers pools, as it
is necessary for load balancing or distributed computing
scenarios. We will explain the algorithms and data structures
we designed to solve these challenges and finally present a
rough performance evaluation that verifies our concept.

Keywords: Internet applications, IPv6 deployment and
applications, SS7, server pools

I. RELIABLE SERVER POOLING

A. Motivation

The convergence of classical circuit-switched networks
(i.e. PSTN/ISDN) and data networks (i.e. IP-based) is
rapidly progressing. This implies that PSTN signalling
via the SS7 protocol is transported over IP networks.
Since SS7 signalling networks offer a very high degree of
availability (e.g. at most 10 minutes downtime per year
for any signalling relationship between two signalling
endpoints; for more information see [1]), all links and
components of the network devices must be redundant.
When transporting signalling over IP networks, such
redundancy concepts also have to be applied to achieve
the required availability. Link redundancy in IP net-
works is supported using the Stream Control Transmission
Protocol (SCTP [2], [3], details follow in section II);
redundancy of network device components is supported
by the SGP/ASP (signalling gateway process/application
server process) concept [1]. However, this concept has
some limitations: no support of dynamic addition and re-
moval of components, limited ways of server selection, no

Fig. 1. The RSerPool Architecture

specific failover procedures and inconsistent application
to different SS7 adaptation layers.

B. Introduction

To cope with the challenge of creating a unified,
lightweight, real-time, scalable and extendable redun-
dancy solution (see [4] for details), the IETF Reliable
Server Pooling Working Group was founded to spec-
ify and define the Reliable Server Pooling concept. An
overview of the architecture currently under standardiza-
tion and described by several Internet Drafts is shown in
figure 1.

Multiple server elements providing the same service
belong to a server pool to provide both redundancy and
scalability. Server pools are identified by a unique ID
called pool handle (PH) within the set of all server pools,
the handlespace. A server in a pool is called a pool
element (PE) of the respective pool. The handlespace
is managed by redundant registrars (PR). The registrars
synchronize their view of the handlespace using the End-
point haNdlespace Redundancy Protocol (ENRP [5]). PRs



Fig. 2. Registration and Monitoring

announce themselves using multicast mechanisms, i.e. it
is not necessary (although possible) to pre-configure PR
addresses into the components described in the following.

PEs providing a specific service can register for a
corresponding pool at an arbitrary PR using the Aggregate
Server Access Protocol (ASAP [6]) as shown in figure 2.
The home PR (PR-H) is the PR which was chosen
by the PE for initial registration. It monitors the PE
using SCTP heartbeats (layer 4, not shown in figure; see
section II) and ASAP Endpoint Keep Alives. RSerPool
does not rely on the layer 4 heartbeat mechanism of
SCTP here: the application itself could e.g. hang in an
infinite loop while the system’s kernel is still responding
to the SCTP heartbeats. Using additional keep alives
above SCTP therefore improves the monitoring reliability.
The frequency of monitoring messages depends on the
availability requirements of the provided service. When a
PE becomes unavailable, it is immediately removed from
the handlespace by its home PR. A PE can also inten-
tionally de-register from the handlespace by an ASAP de-
registration allowing for dynamic reconfiguration of the
server pools. PR failures are handled by requiring PEs
to re-register regularly (and therefore choosing a new PR
when necessary). Re-registration also makes it possible
for the PEs to update their registration information (e.g.
transport addresses or policy states).

The home PR, which registers, re-registers or de-
registers a PE, propagates this information to all other
PRs via ENRP. Therefore, it is not necessary for the PE
to use any specific PR. In case of a failure of its home
PR, a PE can simply use another arbitrarily chosen one.

C. Server Selection

When a client requests a service from a pool, it first
asks an arbitrary PR to translate the pool handle to
a list of PE identities selected by the pool’s selection
policy (pool policy), e.g round robin or least used (we
show examples in section V-B; the standards policies
are defined in [7], a quantitative policy performance

comparison can be found in [8]). The PU adds this list of
PE identities to its local cache (denoted as PU-side cache)
and again selects one entry from its cache by policy. To
this selected PE, a connection is established, using the
application’s protocol, to actually use the service. The
client then becomes a pool user (PU) of the PE’s pool.

It has to be emphasized, that there are two locations
where a selection by pool policy is applied during this
process:

1) at the PR when compiling the list of PEs and
2) in the local PU-side cache where the target PE is

selected from the list.
If the connection to the selected PE fails, e.g. due to

overload or failure of the PE, the PU selects another PE
(i.e. directly from cache or by asking a PR first) and tries
again. The PU may report a PE failure to a PR, which
may decide to remove this PE from the handlespace.

D. Failover Procedure

RSerPool supports optional client-based state synchro-
nization [9] for failover: a PE can store its current state
with respect to a specific connection in a state cookie
which is sent to the corresponding PU. When a failover
to a new PE is necessary, the PU can send this state
cookie to the new PE, which can then restore the state
and resume service at this point. However, RSerPool is
not restricted to client-based state synchronization; any
other application-specific failover procedure can be used
as well.

E. The Protocol Stack

Figure 3 illustrates the RSerPool protocol stack. All
components are based on SCTP over IPv4 and/or IPv6.
For the PR, the application layer consists of ENRP and
ASAP. While ENRP provides handlespace redundancy
between multiple PRs, ASAP is used for registration, re-
registration, de-registration and monitoring of PEs as well
as for handle resolutions and failure reports by PUs.

Between a PU and PE, ASAP becomes a session
layer protocol that provides the client-based state synchro-
nization as described in section I-D. This session layer
communication, called control channel, is multiplexed
with the application’s protocol, called data channel, over
the same SCTP association.

Optionally, PRs can announce themselves via ASAP
and ENRP via multicast so that other PRs, PEs and PUs
may be fully auto-configuring. This functionality has been
omitted in the figure to enhance its readability.

F. Applications

The lightweight, real-time, scalable and extendable ar-
chitecture of RSerPool is not only applicable to the trans-
port of SS7-based telephony signalling; other applica-
tion scenarios include reliable SIP-based telephony [10],
mobility management [11] and the management of dis-
tributed computing pools [12], [13].

Finally, load balancing using RSerPool is currently
under discussion by the IETF RSerPool Working Group:
due to its flexible server selection policies and pool man-
agement functionalities, it has many similarities to load



Fig. 3. The RSerPool Protocol Stack

balancer protocols. A very common application for such
load balancing systems is to distribute HTTP requests in
web server farms. There is an ongoing effort to merge
both the RSerPool framework and the Server/Application
State Protocol (SASP [14], a contribution of IBM) for
load balancers into one common architecture for highly-
available server pool management and load distribution.

II. THE SCTP PROTOCOL

While the duty of RSerPool is to provide fault-tolerance
against component failures, it relies on the SCTP transport
protocol [2] to provide fault-tolerance against network
failures. As explained in the introduction, SCTP allows
multi-homing to fulfil the fault tolerance requirements of
SS7. That is, two SCTP endpoints can be connected via
two or more networks. When there are multiple disjoint
paths between the two endpoints, SCTP can use another
one when its primary path becomes unavailable. Such
unavailability can occur by network component and link
failures or simply due to long convergence times of inter-
domain routing protocols (e.g. in the range of several
minutes for BGP).

SS7 requires a failover time of at most 800ms and
SCTP is able to satisfy this requirement [15]; from an
endpoint’s view, each destination address is considered
as a possible path – denoted as SCTP path [2] – to
transmit data over. SCTP uses path monitoring to check
these paths for availability: in configurable intervals,
SCTP sends control messages, called heartbeats, over
each possible path. The peer endpoint, when receiving
such a heartbeat, acknowledges it by sending a heartbeat
acknowledgement. Paths on which acknowledgements are
received, are considered to be usable paths for data
transport. When the actual data transport path (called
primary path) becomes unavailable, a working one is
selected and the data transmission is continued. The whole
process of path monitoring and selection of a new primary
path is transparent to the application layer. For details on
the configuration of suitable heartbeat intervals and path
selection parameters, see [15].

SCTP has been designed to be independent of the
underlying network layer protocol, i.e. it is not only
possible to use IPv4 and IPv6 but also adapt it to other
or future protocols. In the view of SCTP, network layer

protocols appear as SCTP paths to the multi-homing
functionality. For example, an endpoint supports IPv4
and IPv6 and the peer endpoint is reachable via IPv4
and IPv6. Then, an association between these endpoints
has two SCTP paths: one via IPv4 and one via IPv6. If
there is a failure e.g. on the IPv4 path, it is therefore still
possible to use the IPv6 path. Such multi-protocol setups
are very likely in today’s networks, due to the growing
IPv6 deployment in formerly IPv4-only networks.

In the area of telecommunications, associations are
established for durations in the range of months or
even years. Therefore, it has been necessary to define
a dynamic address reconfiguration extension (abbreviated
Add-IP, see [16]) allowing for the dynamic addition to and
removal of transport addresses from an SCTP association
without connection interruption. This especially allows
interruption-free IPv6 site renumbering, i.e. changing
the address prefix on a provider change to keep BGP
routing tables small or even add an additional provider
for redundancy reasons. Furthermore, it even allows an
association to be established in an IPv4-only network,
being upgraded to IPv4+IPv6 and finally turned into
IPv6 only – interruption-free and transparent to the upper
layers.

III. THE RSERPOOL API

The programming API for RSerPool is currently ac-
tively being discussed by the IETF RSerPool WG. It will
consist of two styles: the basic mode and the enhanced
mode.

A. Basic Mode API

The basic mode provides only the fundamental RSer-
Pool function calls for PEs to register, re-register or de-
register and for PUs to resolve a pool handle and select a
PE by policy. All session layer functionalities between PE
and PU – especially failure detection and failover – have
to be provided by the application programs themselves.
That is, a control channel is not supported here.

The reason for having the basic mode API is to provide
easy deployment of RSerPool functionality to existing
applications, e.g. a FTP service application that supports
download continuation using FTP’s reget functionality.



An example for using the basic mode API can be found
in [12].

B. Enhanced Mode API

Unlike the basic mode API, the enhanced mode API
offers a complete session layer between PE and PU,
including optional failover handling using client-based
state synchronization.

That is, a PU establishes a session to a pool provid-
ing its desired service. The session layer provided by
the enhanced mode API transparently handles pool han-
dle resolutions, PE selections, association establishments,
failure detection on the association using SCTP heart-
beats, selecting a new PE when the former one becomes
unreachable and optionally failover handling using state
cookies via the control channel. For the application itself,
this session layer can be completely transparent1. In fact,
the pool appears to the user as one highly available server.

To provide easy adaptation of existing and new ap-
plications to RSerPool’s session layer functionality, the
API mimics the Unix socket API to provide session layer
functionality. A pseudo-code example is shown in algo-
rithm 1: similarly to creating a TCP socket, connecting
it to a remote server and finally using the application’s
protocol to do something, a RSerPool session is created,
connected to a pool and the application’s protocol is used
over the session. But unlike a simple TCP connection,
RSerPool provides seamless service continuation in case
of server failure – transparent to the application.

The PE side of the enhanced mode API also looks
similar to TCP-based servers, but instead of binding a
socket to a port number, it is registered as PE under the
service’s pool handle.

Note, that applications do not have to care about any
transport address when using the enhanced mode API.
A PE is by default registered under all of its transport
addresses – regardless of whether they are IPv4 or IPv6.
Furthermore, using the Add-IP [16] extension of SCTP as
described in section II, transport addresses may change at
runtime, e.g. due to IPv6 prefix change. At the PU side,
transport association management and therefore handling
of addresses is completely transparent to the application
layer.

Currently, there are only two existing implementations
of RSerPool: a closed source version by Motorola [17]
and the authors’ own GPL-licensed Open Source proto-
type rsplib. This prototype will be explained in detail in
the following section.

IV. THE rsplib PROTOTYPE

As part of our RSerPool research and to verify the
results of our simulation model [8], [18] in real-life sce-
narios, we have created a complete implementation [12],
[19] prototype of the RSerPool framework. It consists of a
PR and a library – the rsplib – providing the PE and PU
functionalities. Our implementation package, called the

1If the application uses a custom failover procedure, some interaction
may be required.

Fig. 4. The rsplib Registrar

Fig. 5. The rsplib PU/PE Library

rsplib prototype, has been released [19] as Open Source
under the GPL license.

Elementary design criteria of our prototype have been
platform independence and the support of both IPv4
and IPv6. To ensure platform independence, we have
chosen C instead of C++ as implementation language,
because C is more common on exotic devices. Although
currently only Linux, FreeBSD and Darwin (MacOS X)
are supported by our prototype, our long-term goal is to
make it also available on embedded devices like PDAs and
smartphones. A short-term goal is to extend our support
to the Windows and Solaris platforms.

When we started the development of our prototype
in 2002, the only stable SCTP implementation on our
three main platforms (Linux, FreeBSD, Darwin) has been
our own Open Source userland SCTP implementation
sctplib [20]. Meanwhile, the native SCTP support of
these platforms has improved so that we also support the
built-in kernel SCTP of Linux, FreeBSD (KAME stack)
and Darwin. All afore-mentioned SCTP implementations,
including our own sctplib, support the Add-IP extension
for dynamic address reconfiguration.

The rsplib prototype is a complete implementation of
RSerPool, also including the features being optional in the
standards documents. In particular, we support both the
basic and enhanced mode APIs, full auto-configuration by
PR announcements via multicast – both, for ASAP and
ENRP – and all optional policies defined in the draft [7].
This draft is one contribution, based on our RSerPool
research on policy performance [8], and has become a
working group draft of the IETF RSerPool WG.



Algorithm 1 A PU Pseudo-Code Example
sd = rsp_socket(...);
rsp_connect(sd, "MyDownloadServerPool", ...);
rsp_write(sd, "GET MyMovie.mpeg HTTP/1.0\r\n\r\n");
while((length = rsp_read(sd, buffer, ...)) > 0) {

doSomething(buffer, length);
}
rsp_close(sd);

The building blocks of the rsplib prototype are shown
in figure 4 (registrar) and figure 5 (PU/PE library). Both
parts contain the Dispatcher component encapsulating the
platform-dependent timer and file/socket event manage-
ment as well as thread-safety functionality. On top of this
component, the registrar realizes the ASAP and ENRP
protocols. Their functionality is controlled by the Reg-
istrar Management, which consists of the binding layer
between protocols and the registrar’s central component:
the Handlespace Management. This component takes care
of storing the handespace’s content and providing access
functionality for both ASAP (registration, re-registration,
deregistration and monitoring of PEs, handle resolutions
for PUs) and ENRP (handlespace synchronization be-
tween PRs). Authenticating and authorizing requests to
the handlespace management is the duty of the Registrar
Management. It also takes care of the optional transmis-
sion of ASAP and ENRP announcements via multicast.

For PUs and PEs, the Dispatcher is the foundation
of the ASAP Instance component. The ASAP Instance
consists of three sub-components: ASAP Protocol is the
implementation of ASAP for communication to PRs and
between PE and PU via the multiplexed control/data chan-
nel. For creating and parsing ASAP messages, it contains
the sub-components ASAP Creator and ASAP Parser. In
the Registrar Table, addresses of usable PRs – either stat-
ically configured or learned by the PRs’ announcements
via multicast – are managed. When communication to
a PR is necessary, this component also takes care of
establishing a connection to a PR. The last sub-component
of the ASAP Instance is the ASAP Cache, i.e. the PU-side
cache for handle resolutions. For the implementation, the
data structures and algorithms necessary to manage the
cache are equal to the PR’s handlespace management.
Therefore, its code can be reused here.

In an early version of our prototype, we realized the
handlespace management using linear lists and provided
only round robin as pool policy. This worked fine for
simple lab scenarios; however, there has been a grow-
ing demand to realize additional policies like random
selection or least used for the research on load distribu-
tion performance. Furthermore, pools of load balancing
scenarios can become very large (hundreds of elements)
and efficiency becomes crucial. Therefore, our simple
approach became unsuitable and a more sophisticated
handlespace management concept was necessary. We will
explain our concept in the following section.

Fig. 6. Handlespace Management

V. HANDLESPACE MANAGEMENT

Before we describe our implementation of the han-
dlespace management, we first define it as abstract
datatype: the handlespace is a set of n pools (n ∈ N),
denoted by PH h1 to hn. Each pool π contains a non-
empty set of PE entries, denoted by their PE ID

iπk ∈ {0, ..., 232 − 1} ⊂ N0.

A PE entry includes the PE’s policy information yπk (e.g.
the PE’s load in case of LU policy) and the PE’s non-
empty set of transport addresses aπk.

The following operations must be possible on the
handlespace datatype:

1) Insertion, lookup and removal of pools by pool
handle;

2) Insertion, lookup and removal of PEs within a pool
by PE ID;

3) Selection of PEs within a pool by policy;
4) Traversal of the handlespace for ENRP synchro-

nization purposes.
Furthermore, it should be easily possible to add new

selection policies for new applications.

A. Implementing the Handlespace

Implementing the abstract handlespace datatype be-
comes straightforward as illustrated in figure 6: there
is a set of pools sorted by pool handle and each pool
contains two sets of PE references – the first set sorted
by PE ID (solid line), the second set sorted by a sorting
order defined by the pool’s policy (dotted line). We will
explain later how to actually implement a set. A policy-
specific selection procedure implements the selection of
a PE. In the default case, this simply means to select



the first element from the set ordered by the sorting
order. Using the structures above, it is only necessary to
define a specific sorting order and selection procedure to
implement a certain policy. Such definitions are the next
step.

B. Implementing Policies

Before we define sorting order and selection procedure
for some important policies defined in [7], we introduce
two helper constructs for simplification:

For simplifying randomized selection, we define the
following: to every PE entry i, a value vi ∈ R may be
mapped. It has to be possible to request the sum (called
value sum)

V =
∑

i

vi

of all PE entries’ values within the set. Then, randomized
selection is possible by choosing a number

r ∈R {0, ..., V } ⊂ R.

Since the set is ordered, r specifies the uniquely identifi-
able PE entry j that satisfies the condition∑

i=1,...,j−1

vi < r ≤ vj +
∑

i=1,...,j−1

.

Furthermore, to guarantee uniqueness of sorting orders,
we add sequence numbers to pools and PE entries: each
pool gets a pool sequence number and each PE a PE
sequence number. Every time a PE entry i is inserted into
the selection set or being selected, its PE sequence number
seqi is set to the pool sequence number of its pool.
Finally, this pool sequence number is then incremented
by 1.

Now, we can define some example policies and show
how the helper constructs are used:

a) Round Robin: The only sorting key is the PE
entries’ sequence number in ascending order and the
selection procedure is the default one, i.e. getting the first
element of the set. An example is given in table I: the
upper block shows the pool “Example” before a selection.
A selection returns PE entry ID-#1 (since it is the first
entry of the set), its sequence number is set to the pool
sequence number (4) and it is reinserted into the pool.
Since it now has the highest sequence number, it is
appended to the end of the set. Finally, the pool sequence
number is incremented by one. A further selection will
fetch PE ID-#2, then PE-ID-#3, again PE ID-#1 and so
on, providing the desired round robin behaviour.

b) Weighted Random: Since random selection can-
not take elements from the top of the selection set but
has to use values vi and their sum V , it is only necessary
to ensure that the sorting keys in the set are unique.
Using the PE sequence number as sorting key ensures
this property. For the weighted random policy, the value
vi of PE entry i is set to the PE’s given weight constant.

Table II shows an example: the pool consists of 3 PEs
where PEs ID-#6 and ID-#7 have weight 1 (therefore v =
1). PE ID-#2 has weight 3 (and therefore v = 3) and PE

ID-#8 has weight 2 (and therefore v = 2). The weight
sum is therefore

V = 1 + 2 + 3 + 1 = 7.

For a selection, a random number

r ∈R {0, ..., 7} ⊂ R

is chosen. Let r = 5.75. In this case, only j = 3 satisfies
the condition∑

i=1,...,j−1

vi < 5.75 ≤ vj +
∑

i=1,...,j−1

,

that is
1 + 3 < 5.75 ≤ 1 + 3 + 2.

Then, the third (j-th) PE of the set is selected: PE ID-#8.
Using an uniform distribution for choosing r, weighted
random results in the desired behaviour of selecting PEs
at a probability proportional to their weight constant.

c) Least Used: Using the least used policy, each
PE’s policy information specifies the current server load
as value from 0% to 100%. Clearly, the first part of the
sorting key is this load value in ascending order. The
second part is the PE sequence number in ascending order.
We use the default selection procedure, i.e. taking the
set’s first element. Obviously, this will select the PE of
the least load. And for the case that there are multiple
PEs having the same least load, the PE sequence number
as second part of the composite sorting key ensures round
robin selection between these elements.

Clearly, arbitrary other policies can be expressed
through definition of a sorting order and a selection
procedure. That is, our policy implementation concept of-
fers a solid foundation for future and application-specific
extensions.

C. Performance

After definition of data structure and policies, the only
remaining question of handlespace management is how to
implement the datatype for the required sets. The naive
solution is to simply use a linear list. A more efficient
solution may be to use a binary tree, a red-black tree [21]
(balanced tree) or a treap [22] (randomized tree). But
does the effort for realistic pool sizes justify a more
complicated structure?

To answer this question, we made a rough performance
evaluation of our handlespace management implementa-
tion on an Athlon 1.3GHz CPU. We have chosen this
CPU since its power seems to be realistic for upcoming
router CPU generations2 – routers are devices on which
a PR process could be started. For our handlespace
performance evaluation, we are not interested in SCTP
or network layer efficiency, therefore we omit it here.

As test scenario, we assume two large pools, using the
least used policy, in which we scale the average amount
of PEs from 1 to 1000. Since pools map to specific
applications, it is realistic to assume a small amount

2The current Juniper ERX 1400, a 300,000 US$ router, only contains
a Pentium-III at 500MHz



TABLE I
ROUND ROBIN POLICY EXAMPLE

Pool “Example”
Policy RR
seq = 4

Pool Element ID-#1 seq = 1
Pool Element ID-#2 seq = 2
Pool Element ID-#3 seq = 3

Pool “Example”
Policy RR
seq = 5

Pool Element ID-#2 seq = 2
Pool Element ID-#3 seq = 3
Pool Element ID-#1 seq = 4

TABLE II
WEIGHTED RANDOM POLICY EXAMPLE

Pool “Example”
Policy WRR

seq = 5
V = 7

Pool Element ID-#7 seq = 1, v = 1
Pool Element ID-#2 seq = 2, v = 3
Pool Element ID-#8 seq = 3, v = 2
Pool Element ID-#6 seq = 4, v = 1

Fig. 7. Performance

(e.g. less than 20). Furthermore, applications requiring
significantly large pools are assumed to be rare (e.g.
a web server farm or a distributed computing service).
Therefore, two large pools seem to be realistic. We omit
adding additional small pools (e.g. 2 to 5 PEs) here, since
this would not significantly affect the results.

Each PE is assumed to handle 10 PU requests/s (the
more PEs, the more PU requests – adding servers only
makes sense when there is more work to be done). That
is, 10 handle resolutions per second and PE are required
from the handlespace management. A PE stays registered
for an average duration of 30m (uniform distribution) and
then deregisters. During its runtime, a re-registration is
made every 30s (default from [5]). When a PE is removed,
a new PE is added to keep the average amount of PEs

constant. Synchronization (this means traversal of the
handlespace) is made every 5 minutes. The handlespace
is a priori filled with the given amount of PEs; then,
each test runs for 10m. The more components are in
the scenario, the more handlespace operations have to
be executed. For statistical accuracy, each test has been
repeated 5 times; the shown results are the average values
and their 95% confidence intervals, being computed by R
Project.

Figure 7 shows the CPU’s load as a fraction of the run-
time (10m) required for handlespace operations in percent
for the implementation of a set by linear list, binary tree,
red-black tree and treap. On the x-axis, the total amount of
PEs is shown (they divide up to the two pools). Obviously,
balanced trees (red-black) and randomized trees (treap)



achieve the best results: at 2000 PEs (1000 per pool),
they only occupy about 17% (red-black) and 21% (treap)
of the CPU power. That is, assuming an efficient network
stack (SCTP/IP, possibly implemented in hardware), the
handling of large pools is even feasible on router CPUs.

Using binary trees, handlespace management consumes
already about 82% of the CPU power at 1000 PEs and
overload (i.e. denial of service) for more. Interestingly,
a linear list only requires 38% CPU power at the same
amount of PEs. The reason is that the set ordered by
sorting order causes systematic removal from the front
and re-insertion at the end of the set due to the sequence
number. The binary tree becomes in fact a linear list but
causes significantly higher computation effort due to its
increased management effort.

In summary, using balanced or randomized trees is
mandatory for efficient handlespace management.

VI. CONCLUSION AND OUTLOOK

In our paper, we have given a detailed introduction to
the Reliable Server Pooling (RSerPool) framework which
is currently under standardization by the IETF. RSerPool
does not only provide mechanisms for configuring, ac-
cessing and monitoring pools of server resources but also
provides sophisticated methods for server selection (pool
policies). These features make RSerPool also useful for
load balancing and distributed computing applications.

Furthermore, we have presented the rsplib prototype,
our Open Source implementation of the complete RSer-
Pool framework; we have shown its basic ideas, concepts
and its building blocks. Handlespace management is one
of its main parts, and its efficiency becomes crucial when
pool sizes grow. We have presented our concept and
implementation of an efficient and extensible handlespace
management using sorted sets and reducing the effort of
specifying a new policy to the definition of a sorting
order and selection procedure. In a rough performance
evaluation, we have proven the usefulness of our ideas.

After these first promising results, we are currently con-
tinuing the performance evaluation of our implementation
in lab scenarios including network traffic and protocol
overhead. Our goal is to provide recommendations to im-
plementers and users of RSerPool with respect to tuning
of system parameters in various application scenarios.

REFERENCES

[1] K. D. Gradischnig and M. Tüxen, “Signaling transport over IP-
based networks using IETF standards,” in Proceedings of the 3rd
International Workshop on the design of Reliable Communication
Networks, Budapest, Hungary, 2001, pp. 168–174.

[2] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream
Control Transmission Protocol,” IETF, Standards Track RFC 2960,
Oct 2000.

[3] A. Jungmaier, M. Schopp, and M. Tüxen, “Performance Evaluation
of the Stream Control Transmission Protocol,” in Proceedings of
the IEEE Conference on High Performance Switching and Routing,
Heidelberg/Germany, June 2000.

[4] M. Tüxen, Q. Xie, R. Stewart, M. Shore, L. Ong, J. Loughney, and
M. Stillman, “Requirements for Reliable Server Pooling,” IETF,
Informational RFC 3227, Jan 2002.

[5] Q. Xie, R. Stewart, and M. Stillman, “Endpoint Name Resolution
Protcol (ENRP),” IETF, RSerPool WG, Internet-Draft Version 10,
Oct 2004, draft-ietf-rserpool-enrp-10.txt, work in progress.

[6] R. Stewart, Q. Xie, M. Stillman, and M. Tüxen, “Aggregate
Server Access Protcol (ASAP),” IETF, RSerPool WG, Internet-
Draft Version 10, Oct 2004, draft-ietf-rserpool-asap-10.txt, work
in progress.

[7] M. Tüxen and T. Dreibholz, “Reliable Server Pooling Policies,”
IETF, RSerPool WG, Internet-Draft Version 00, Oct 2004, draft-
ietf-rserpool-policies-00.txt, work in progress.

[8] T. Dreibholz, E. P. Rathgeb, and M. Tüxen, “Load Distribution
Performance of the Reliable Server Pooling Framework,” in Pro-
ceedings of the International Conference on Networking 2005,
Saint Gilles Les Bains/Reunion Island, Apr 2005.

[9] T. Dreibholz, “An efficient approach for state sharing in server
pools,” in Proceedings of the 27th Local Computer Networks
Conference, Tampa, Florida/U.S.A., Oct 2002.

[10] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen,
“Reliable IP Telephony Applications with SIP using RSerPool,”
in Proceedings of the SCI 2002, Mobile/Wireless Computing and
Communication Systems II, vol. X, Orlando/U.S.A., Jul 2002.

[11] T. Dreibholz, A. Jungmaier, and M. Tüxen, “A new Scheme for
IP-based Internet Mobility,” in Proceedings of the 28th Local Com-
puter Networks Conference, Königswinter/Germany, Nov 2003.

[12] T. Dreibolz and M. Tüxen, “High availability using reliable server
pooling,” in Proceedings of the Linux Conference Australia 2003,
Perth/Australia, Jan 2003.

[13] Y. Zhang, “Distributed Computing mit Reliable Server Pooling,”
Masters Thesis, Universität Essen, Institut für Experimentelle
Mathematik, Apr 2004.

[14] A. Bivens, “Server/Application State Protocol v1,” IETF, Individ-
ual submission, Internet-Draft Version 01, Oct 2004, draft-bivens-
sasp-01.txt, work in progress.

[15] A. Jungmaier, E. Rathgeb, and M. Tüxen, “On the Use of SCTP
in Failover-Scenarios,” in Proceedings of the SCI 2002, Volume
X, Mobile/Wireless Computing and Communication Systems II,
vol. X, Orlando/U.S.A., Jul 2002.

[16] M. Ramalho, Q. Xie, M. Tüxen, and P. Conrad, “Stream Control
Transmission Protocol (SCTP) Dynamic Address Reconfigura-
tion,” IETF, Transport Area WG, Internet-Draft Version 09, Jun
2004, draft-ietf-tsvwg-addip-sctp-09.txt, work in progress.

[17] Q. Xie, “Private communication at the 60th IETF meeting, San
Diego/California, U.S.A.” August 2004.

[18] T. Dreibholz, “An Overview of the Reliable Server Pooling Ar-
chitecture,” in Proceedings of the International Conference on
Network Protocols 2004, Berlin/Germany, Oct 2004.

[19] “Thomas Dreibholz’s RSerPool Page,” http://tdrwww.exp-
math.uni-essen.de/dreibholz/rserpool.

[20] “The sctplib Prototype,” http://www.sctp.de/sctp.html.
[21] L. J. Guibas and R. Sedgewick, “A dichromatic framework for

balanced trees,” in Proceedings of the 19th IEEE Symposium on
Foundations of Computer Science, 1978, pp. 8–21.

[22] C. Aragon and R. Seidel, “Randomized search trees,” in Proceed-
ings of the 30th IEEE FOCS, 1989.


