
A PLANETLAB-Based Performance Analysis
of RSerPool Security Mechanisms

Thomas Dreibholz∗, Xing Zhou†, Erwin P. Rathgeb∗, Wencai Du†
∗University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstrasse 29, 45326 Essen, Germany
†Hainan University, College of Information Science and Technology

Renmin Avenue 58, 570228 Haikou, Hainan, China

dreibh@iem.uni-due.de, zhouxing@hainu.edu.cn, rathgeb@iem.uni-due.de, wencai@hainu.edu.cn

Abstract— Reliable Server Pooling (RSerPool) denotes the
new IETF standard for a lightweight server redundancy and
session failover framework for availability-critical applica-
tions. A number of research papers have already addressed
the service and pool management performance of RSerPool
in general. However, the important topic of security, includ-
ing the system robustness against intentional attacks, has
not yet been intensively addressed. In particular, none of
the proposed Denial of Service (DoS) attack countermeasure
mechanisms has been evaluated in a real-world Internet
setup.

For that reason, this paper provides an analysis of the
robustness of RSerPool systems against DoS attacks. We will
outline the DoS attack bandwidth which is necessary for a
significant service degradation. Furthermore, we will present
simple but effective DoS attack countermeasure mechanisms
to significantly reduce the impact of attacks. Our analysis is
based on a real-world Internet setup using the PLANETLAB.
We will furthermore compare the performance measure-
ments against simulation results.1

Keywords: Reliable Server Pooling, Security, Attacks,
Denial of Service, Robustness, Performance Analysis

I. INTRODUCTION AND SCOPE

In the Internet of today, there is a growing demand for
highly available services. To cope with the requirements
of availability-critical services, the IETF has just pub-
lished a generic, application-independent server pool [1]
and session management [2] framework as RFCs: Reliable
Server Pooling (RSerPool, see [3]). It is responsible for
the required server redundancy and session management.
While there have already been a number of publications
on the performance of RSerPool for load balancing [2],
[4] and server failure handling [5], there has been very
little research on its security and Denial of Service (DoS)
attack robustness. Until now, only basic concepts to avoid
flooding attacks on the pool management have been
analysed by simulations in [6], [7] and a lab setup in [8].
However, the mechanisms have not been tested in a real-
world distributed Internet setup – which is quite realistic
for availability-critical RSerPool-based services [9].

The underlying transport protocol SCTP2 already con-
tains countermeasures against blind flooding attacks [11]
and the RFC [12] of RSerPool mandatorily requires

1Funded by the German Research Foundation (Deutsche Forschungs-
gemeinschaft) and the State Administration of Foreign Experts Affairs,
P. R. China (funding number 20084600036).

2Stream Control Transmission Protocol, see [10].

Figure 1. The RSerPool Architecture

applying mechanisms like TLS [13] or IPsec [14] in
order to ensure authenticity, integrity and confidentiality.
Nevertheless, relying on these techniques alone is not
sufficient: there is still a chance that an attacker may
compromise a legitimate component, e.g. by exploiting
software bugs to steal its private key. Therefore, it is
important to analyse the implications to the service under
DoS attack situations, in order to apply effective attack
countermeasures.

The goal of this paper is the DoS attack robustness
analysis of the RSerPool architecture by simulations as
well as their experimental validation in real-life by using
the PLANETLAB [15]. First, we will observe the impact of
different attack scenarios on the application performance.
Using these analyses as the baseline performance level,
we will present effective techniques to reduce the impact
of such attacks.

II. THE RSERPOOL ARCHITECTURE

An overview of the RSerPool architecture [2], [3] with
its three types of components is depicted in figure 1: a
server in a pool is called pool element (PE), a client is
denoted as a pool user (PU). The handlespace – which
is the set of all pools – is managed by redundant pool
registrars (PR). Within the handlespace, each pool is
identified by a unique pool handle (PH).

A. Registrar Operations
PRs of an operation scope synchronize their view of the

handlespace by using the Endpoint haNdlespace Redun-



dancy Protocol (ENRP) [16], transported via SCTP [10]
and secured e.g. by TLS [13] or IPsec [14]. In con-
trast to Grid Computing [17], an operation scope is
restricted to a single administrative domain. That is, all
of its components are under the control of the same
authority (e.g. a company). This property leads to small
management overhead [1], [18], which also allows for
RSerPool usage on devices which have limited memory
and CPU resources (e.g. telecommunications equipment).
Nevertheless, PEs may be distributed globally to continue
their service even in case of localized disasters [9] (e.g.
an earthquake).

B. Pool Element Operations
PEs choose an arbitrary PR of the operation scope to

register into a pool by using the Aggregate Server Access
Protocol (ASAP) [19], again transported via SCTP and
using TLS or IPsec. Within its pool, a PE is characterized
by its PE ID, which is a randomly chosen 32-bit number.
Upon registration at a PR, the chosen PR becomes the
Home-PR (PR-H) of the newly registered PE. A PR-H is
responsible for monitoring its PEs’ availability by keep-
alive messages (to be acknowledged by the PE within a
given timeout) and propagates the information about its
PEs to the other PRs of the operation scope via ENRP
updates. PEs re-register regularly (in an interval denoted
as registration lifetime) and for information updates.

C. Pool User Operations
In order to access the service of a pool given by

its PH, a PU requests a PE selection from an arbitrary
PR of the operation scope, again using ASAP. The PR
selects the requested list of PE identities by applying
a pool-specific selection rule, called pool policy. Two
classes of load distribution policies are supported: non-
adaptive and adaptive strategies [1], [4]. While adaptive
strategies base their selections on the current PE state
(which requires up-to-date information), non-adaptive al-
gorithms do not need such data. A basic set of adaptive
and non-adaptive pool policies is defined in [20]. Rele-
vant for this paper are the non-adaptive policies Round
Robin (RR) and Random (RAND) as well as the adaptive
policies Least Used (LU) and Least Used with Degrada-
tion (LUD). LU selects the least-used PE, according to
up-to-date application-specific load information. Round
robin selection is applied among multiple least-loaded
PEs. LUD [21] furthermore introduces a load decrement
constant which is added to the actual load each time a PE
is selected. This mechanism compensates inaccurate load
states due to delayed updates. An update resets the load
to the actual load value.

PUs may report unreachable PEs to a PR by using
an ASAP Endpoint Unreachable message. A PR locally
counts these reports for each PE and when reaching the
threshold MaxBadPEReports [5] (default is 3 [19]), the
PR may decide to remove the PE from the handlespace.
The counter of a PE is reset upon its re-registration.

D. A Handlespace Example
An example handlespace containing four pools is illus-

trated in figure 2. The pool using the PH “Compute Pool”

consists of 3 dual-homed PEs (IPv4 and IPv6). Since its
pool policy is LU, the handlespace also stores the latest
known load state of each PE.

E. Application Scenarios
While the initial motivation of RSerPool has been

the availability of SS7 (Signalling System No. 7 [22])
services over IP networks, it has been designed for
application independence. Current research on applica-
bility and performance of RSerPool includes application
scenarios (described in detail by [2, section 3.6]) like
VoIP with SIP, SCTP-based mobility, web server pools, e-
commerce systems [23], video on demand [24], battlefield
networks [25], IP Flow Information Export (IPFIX) and
workload distribution [2], [4], [26], [27].

III. QUANTIFYING AN RSERPOOL SYSTEM

As application model for our quantitative performance
analysis, we use the model from [2]: the service provider
side of an RSerPool system consists of a pool of PEs.
Each PE has a request handling capacity, which we define
in the abstract unit of calculations per second3. Each
request consumes a certain number of calculations; we
call this number request size. A PE can handle multiple
requests simultaneously – in a processor sharing mode as
provided by multitasking operating systems.

On the service user side, there is a set of PUs. The
number of PUs can be given by the ratio between PUs
and PEs (PU:PE ratio), which defines the parallelism of
the request handling. Each PU generates a new request
in an interval denoted as request interval. Requests are
queued and sequentially assigned.

The total delay for handling a request dHandling is
defined as the sum of queuing delay dQueuing, startup
delay dStartup (dequeuing until reception of acceptance
acknowledgement) and processing time dProcessing (ac-
ceptance until finish):

dHandling = dQueuing + dStartup + dProcessing. (1)

That is, dHandling not only incorporates the time required
for processing the request, but also the latencies of
queuing, server selection and message transport. The user-
side performance metric is the handling speed, which is
defined as:

HandlingSpeed =
RequestSize
dHandling

.

For convenience, the handling speed (in calculations/s) is
represented in % of the average PE capacity.

Using the definitions above, it is possible to delineate
the average system utilization (for NumPEs servers and
total pool capacity PoolCapacity) as:

SysUtil = NumPEs ∗ puToPERatio ∗
RequestSize

RequestInterval

PoolCapacity
.

(2)
Obviously, the provider-side performance metric is the
system utilization, since only utilized servers gain rev-
enue. In practise, a well-designed client/server system is

3An application-specific view of capacity may be mapped to this
definition, e.g. CPU cycles.



Figure 2. A Handlespace Example

dimensioned for a certain target system utilization of e.g.
50%. By setting any two of the parameters (PU:PE ratio,
request interval and request size), the value of the third
one can be calculated using equation 2 (see also [2]).

IV. SYSTEM SETUP

For our performance analysis, we have used our OM-
NET++-based RSerPool simulation model RSPSIM [4],
[27] as well as our implementation RSPLIB [2], [9],
[28] (which is also the IETF’s reference implementation,
see [3, chapter 5]) for measurements in a PLANETLAB
setup. Both – simulation model and implementation –
contain the protocols ASAP [19] and ENRP [16], a PR
module, an attacker module and PE as well as PU modules
for the request handling scenario defined in section III.

The PLANETLAB [15] setup distributes the components
to different machines in the U.S.A.. This country provides
a sufficient number of PLANETLAB nodes and a country-
wide setup is also realistic for an RSerPool setup in a large
company, in order to protect a critical service against e.g.
earthquakes, power failures or terrorist attacks. By ping-
based tests, we have observed inter-node network delays
of about 20ms to 30ms.

The Linux-based PLANETLAB nodes only support the
protocols TCP and UDP, i.e. in particular the Linux Ker-
nel SCTP module (LK-SCTP, see [29]) is not provided.
Unlike for our lab measurements in [8], we therefore had
to use our own userland SCTP implementation SCTP-
LIB [30], [31]. The restriction of PLANETLAB to TCP
and UDP furthermore made it necessary to tunnel our
SCTP traffic over UDP using the “SCTP over UDP”
encapsulation defined in [32]. Since our ASAP and ENRP
messages are small compared to the usual MTU (i.e.
1500 bytes) and bandwidth is not the limiting factor, the
additional per-packet overhead of 8 bytes is negligible.

For our simulation and measurement setup, which is
depicted in figure 3, we use the following parameter
settings unless otherwise specified:

• The target system utilization is 50%. Request size
and request interval are randomized using a negative
exponential distribution (in order to provide a generic
and application-independent analysis [2], [4]). There
are 10 PEs; each one provides a capacity of 106 cal-
culations/s.

• A PU:PE ratio of 3 is used (i.e. a non-critical setting
as explained in [4]).

• We use a request size:PE capacity setting of 10; i.e.
being processed exclusively, the average processing
takes 10s – see also [4].

• There is a single PR only, since we do not examine
PR failure scenarios here (see [4] for such scenarios).
PEs re-register every 30s (registration lifetime) and
on every load change of the adaptive LU and LUD
policies.

• MaxBadPEReports is set to 3 (default in
RFC [19]). A PU sends an Endpoint Unreachable
if a contacted PE fails to respond within 10s (see
also [5]).

• The system is attacked by a single attacker node.
• For the simulation, the simulated real-time

is 120min; each simulation run is repeated at
least 24 times with a different seed in order to
achieve statistical accuracy. The inter-component
network delay is 25ms, which corresponds to the
PLANETLAB observations above.

• Each measurement run takes 15min; each run is
repeated at least 12 times.

For statistical post-processing of the results, GNU R [27],
[33] is used. Each resulting plot shows the average values
and their 95% confidence intervals.

V. THE PERFORMANCE IMPACT OF ATTACKS

Targets of attacks on an RSerPool system are the PRs,
PEs and PUs. Since the scope of RSerPool is restricted
to a single administrative domain, sufficient protection
of the small number of PRs is assumed to be feasible
with a reasonable effort (see also [6], [7]). The PEs
and PUs are obviously more likely attack targets: their
number may become large (e.g. for real-time distributed
computing, see [2], [26]) and they may be distributed over
a wide geographical and less controllable area (e.g. to
survive localized disasters, see [9]). Therefore, ASAP-
based attacks are the focus of our study in this paper.
As we will show, even a single compromised PE or PU
can achieve a DoS of the whole system if no protection
mechanisms are applied.



Figure 3. The RSerPool System Setup used for the Analyses

Figure 4. The Impact of a PE/PU-Based Attacks without Countermeasures

A. An Attack by a Compromised Pool Element

Clearly, an attacker masquerading as a PE will try
to perform as many fake registrations as possible: each
registration request only has to contain another (e.g.
randomly chosen) PE ID. The policy parameters can be
set appropriately, i.e. a load of 0% (LU, LUD) and a
load increment of 0% (LUD), in order to ensure that the
fake PE entry is chosen (upon a handle resolution) as
frequently as possible. SCTP [10], [11] as the underlying
protocol already prevents simple address spoofing attacks:
each network-layer address under which a PE is registered
must be part of the SCTP association between PE and
PR. The ASAP protocol [19] requires the addresses to

be validated by SCTP. However, holding a registration
association to the PR and silently dropping all incoming
PU requests is sufficient for an attacker.

The impact of varying the attack frequency F (i.e.
the number of fake registrations per second) on the
handling speed in the simulation scenario is shown on
the left-hand side of figure 4. Obviously, a frequency of
F=0.1 (i.e. one registration every 10s) is already sufficient
to significantly decrease the service performance of the
setup. Using the LUD policy [21], this already leads to a
complete DoS: an unloaded PE (load is 0%) whose load
does not increase when accepting a new request (load
increment is 0%) appears to the PU as a really good



choice. As result, the PUs will exclusively select the fake
PE entries. Using a higher setting of F (e.g. here: 0.8),
a DoS is also reached for the other policies, too. The
corresponding PLANETLAB measurement results show a
similar behaviour. A plot has therefore been omitted.

B. An Attack by a Compromised Pool User

Obviously, the attack threat by a compromised PU
would be to flood the PR with handle resolution requests.
But the server selection functionality as part of the hand-
lespace management can be realized very efficiently [1],
[18]; an attacker would therefore require a high attack
bandwidth to effectively degrade the service performance.
However, even by just requesting a few handle resolutions
– without actually using any selected PE’s service – the
performance of the service may be affected: as example,
the impact of a handle resolution attack on the perfor-
mance for varying the attack frequency F (i.e. the delay
between two handle resolution requests) is shown on the
right-hand side of figure 4. For the PE entries chosen by a
handle resolution, an unreachability report (see section II)
is sent with probability u. The two extreme cases are most
interesting: u=0% (no unreachability reports – represented
by solid lines) and u=100% (worst case – represented by
dotted lines).

The performance of RR is already affected by a setting
of u=0%, due to the “stateful” [4] operation of RR: some
PEs of the “in turn” selection are skipped (since they are
not actually used for providing their service), leading to
the usage of less appropriate PEs for real requests. LUD is
affected in a similar way by increased load values. Since
LU and RAND are “stateless”, they are not affected by
this kind of attack. But the service performance impact of
also reporting all PEs as being unreachable – i.e. u=100%
– is dramatic: PEs are kicked out of the handlespace,
and the handling speed quickly sinks and leads – here
at about F=10, i.e. only 10 reports/s – to a complete
DoS. A similar behaviour can also be observed for the
corresponding PLANETLAB measurements; their results
plots have been omitted therefore.

VI. OUR ATTACK COUNTERMEASURE MECHANISMS

As shown above, even only a single attacker with a
small attack bandwidth (i.e. a few messages/s, which is
easily feasible over a low-bandwidth modem connection)
can lead to a complete DoS. That is, effective counter-
measures are necessary to avoid such situations.

A. Pool Element Attack Countermeasures

The threat of a PE-based attack – as explained in
subsection V-A – is that the attacker can easily flood the
handlespace with fake PE entries. The small bandwidth
of a modem connection is already sufficient to cause at
least a significant service degradation. Starting point for a
countermeasure to this attack type is therefore a restriction
of the number of PE registrations a single PE identity is
allowed to create. In order to retain the “lightweight” [1],
[18] property of RSerPool and to avoid synchronizing
such numbers among PRs, our countermeasure approach

first introduces a so-called registration authorization ticket
(suggested by us in [6]), which consists of:

1) the pool’s PH and a fixed PE ID,
2) minimum/maximum policy information settings

(e.g. lower bound on LUD load decrement) and
3) a signature of the ticket by a trustworthy authority

(explained below).

The registration authorization ticket is provided by a PE
to its PR-H as part of the ASAP registration request.
Since ASAP messages use a TLV structure (see [2,
section 3.8] for a detailed description), the effort of adding
an additional field for the ticket is minimal. The validity of
the ticket can be verified easily by checking its signature.
If it is valid, it is only necessary to ensure that the PE’s
policy settings are within the valid range specified in the
ticket. An attacker stealing the identity of a real PE would
only be able to masquerade as this specific PE. A PR
has to verify the authorization ticket (with additional time
complexity in O(1)). In particular, it is neither necessary
to change the protocols (except for adding the ticket field
described above) nor to perform additional ENRP-based
synchronization of authorization information among the
PRs of the operation scope.

The only infrastructure requirement which is added by
our approach is the need for a trusted authority, which
can e.g. be realized by a Kerberos [34] service. This is
feasible at reasonable effort, since an operation scope is
restricted to a single administrative domain (as explained
in section II).

In order to show that our approach is effective, figure 5
presents the handling speed results of a PLANETLAB
measurement for an attack frequency of F=10 per attacker
for varying the number of attackers α from 0 to 10. Note
that α=10 attacker PEs means to have as many attackers
as there are legitimate PEs in the pool. In particular, the
attacker would have to compromise 10 real PEs to steal
their registration authorization tickets in order to perform
such an attack. That is, a significant effort by the attacker
is necessary. As shown in subsection V-A, F=10 has
already lead to a full DoS with only a single attacker.

As it is clearly observable, our countermeasure ap-
proach is quite effective: even for α = 10, the handling
speed only halves at most – but the service which is
provided by the 10 real PEs in the pool still remains oper-
ational and the attack impact is not even close to a DoS.
The results obtained from the PLANETLAB measurements
correspond to the simulation results, i.e. the mechanism
also works effectively in a real-world Internet setup.

Note, that the slightly different handling speed levels of
the RSPLIB-based PLANETLAB measurements in compar-
ison to the RSPSIM simulation results are caused by node
(e.g. background PLANETLAB slices, kernel, operating
system, applications) and SCTP association (e.g. packet
scheduling, network delay and jitter, retransmissions)
latencies. These are – due to their complexity – not
fully incorporated into the RSPSIM simulation model.
Nevertheless, the tendency of the results is observable
reasonably well.



Figure 5. Applying Countermeasures Against Pool-Element-Based Attacks

B. Pool User Attack Countermeasures

By using failure reports, malicious PUs have the ability
to impeach PEs (as shown in subsection V-B). Our
strategy for a countermeasure is therefore to first intro-
duce a PU identification which is certified by a trusted
authority and can be verified by the PR (analogously
to the PE’s registration authorization ticket explained in
subsection VI-A). Then, the number of failure reports sent
by a PU can be tracked in order to avoid counting multiple
reports from the same PU. To realize this tracking func-
tionality, a PR simply has to memorize (explained later)
the PH for which a certain PU has reported unreachable
PEs. After that, multiple reports coming for the same pool
can simply be ignored. Since the unreachability count for
each PE is a PR-local variable, no synchronization among
PRs is necessary. That is, an attacker is unable to cause
harm to the service by simply sending its unreachability
reports for the same PE to different PRs.

To avoid the necessity to store each reported PE identity
– which would be exploitable in form of a so-called
computational complexity attack [35] by sending a large
number of random PE IDs – we use a hash-based per-
PU message blackboard (as suggested by us in [8]): the
function Ψ maps a PE’s PH into a bucket:

Ψ(PH) = h(PH) MOD NumberOfBuckets.

h denotes a hash function that is not easily guessable
by the attacker. This property is provided by so-called
universal hash functions [35], which are – unlike crypto-
graphic hash functions (e.g. SHA-1 [36]) also efficiently
computable.

Each bucket contains the time stamps of the latest up to
MaxEntries Endpoint Unreachables for the correspond-
ing bucket. Then, the report rate can be calculated as:

Rate =
NumberOfTimeStamps

TimeStampLast − TimeStampFirst

. (3)

When a PR receives an Endpoint Unreachable from a PU,
it simply updates the reported PE’s corresponding bucket
entry. If the rate in equation 3 exceeds the configured
threshold MaxEURate, the report is silently ignored. The
time complexity for this operation is in O(1), as well as
the required per-PU storage space. Analogously, the same
hash-based approach can be applied for handle resolutions
with the corresponding threshold MaxHRRate. But in-
stead of simply ignoring the request, the PR here replies
with an empty list. This indicates a currently empty pool.

An alternative approach is presented in [7]: instead of
specifying a fixed threshold, statistical anomaly detection
is applied: the behaviour of the majority of nodes is
assumed to be “normal”. Differing behaviour – which
is necessary for an effective attack – is denoted as an
anomaly. However, this approach can – by definition –
only detect attackers if their number is less than the
number of legitimate components. Furthermore, obtaining
the “normal” behaviour is more resource-intensive than
simple thresholds. But the advantage of this approach is
that the system can automatically adapt to a changing
environment, e.g. when new applications are deployed.

Figure 6 presents the performance for MaxHRRate=1
(which is 60 times more than the application’s actual
handle resolution rate) and MaxEURate=1 (which is
by orders of magnitude higher than a real pool’s PE
failure rate) for varying the attack frequency of one
attacker in a simulation (left-hand plot) and a PLANET-
LAB measurement (right-hand plot). The probabilities for
sending Endpoint Unreachables are u=100% (worst case)
and u=0% (for comparison).

Since the policies RR and LUD are “stateful”, the at-
tacker is able to reduce the handling speed until triggering
the countermeasure mechanism. After that, the attacker is
ignored and the performance remains as for attacker-free
scenarios. For the “stateless” RAND policy, the attack has
no impact; for the LU policy, the attacker only has an
impact when using unreachability reports. Interestingly,



Figure 6. Applying Countermeasures Against a Pool-User-Based Attack

this effect is stronger for the PLANETLAB measurements
than for the simulation: this effect is caused by the latency
of the PE load state updates in the Internet (which may
vary due to node latencies and congestion): since the
load value of a PE only changes on reregistration, a
least-loaded PE entry may be selected multiple times
in sequence. That is, the attacker will send multiple
unreachability reports for the same PE. As long as the
rate threshold is not yet reached, the PE entry may be
impeached. However, when the countermeasure threshold
is reached, the attacker is ignored and the performance
returns to the level of an attacker-free system setup.

The results for varying the number of attackers α
with an attack frequency of F=10 (for which even only
one attacker has been able to cause a complete DoS
without countermeasures, as shown in subsection V-B)
are depicted in figure 7. The attacker sends Endpoint
Unreachables at a probability of u=100% for the selected
PE entries (i.e. the worst case). Clearly, the presented
results show that even α=10 attackers have no significant
impact on the performance – neither in simulation nor
in the real-world Internet setup – any more, due to the
countermeasures. Again, 10 attackers would mean that
10 legitimate components had been compromised and
their authorization tickets had been stolen – which is a
high and non-trivial effort for an attacker in the restricted
operation scope of an RSerPool setup (see section II).

VII. CONCLUSIONS

The two most important DoS attack threats for RSer-
Pool systems are PE-based attacks (registration) and PU-
based attacks (handle resolution/failure report). We have
examined these threats using simulations as well as in
real-life by PLANETLAB measurements. Without further
protection mechanisms, even only a single attacker with
a small attack bandwidth can easily cause a DoS. For
both types of attacks, we have introduced countermea-
sure approaches which have shown to be effective – in

simulations as well as in reality. Furthermore, they are
efficiently realizable – which is necessary to achieve the
“lightweight” property of the RSerPool architecture.

The IETF’s standardization process for RSerPool has
just reached a major milestone by publication of its basic
protocol documents as RFCs. Since the early beginnings
of this process we have contributed our ideas, evaluations
and improvements for the RSerPool framework. In the
future RSerPool research, it is also necessary to further
analyse the robustness of the ENRP protocol. Although
the threat on the small number of PRs of an operation
scope is significantly smaller, it is useful to obtain a
broad knowledge of possible DoS attack vectors to deploy
reasonable and effective countermeasures. The goal of our
ongoing work is to provide comprehensive security and
configuration guidelines for application developers and
users of the IETF’s new RSerPool standard.

REFERENCES

[1] T. Dreibholz and E. P. Rathgeb, “An Evaluation of the Pool Main-
tenance Overhead in Reliable Server Pooling Systems,” SERSC
International Journal on Hybrid Information Technology (IJHIT),
vol. 1, no. 2, pp. 17–32, Apr. 2008.

[2] T. Dreibholz, “Reliable Server Pooling – Evaluation, Optimization
and Extension of a Novel IETF Architecture,” Ph.D. dissertation,
University of Duisburg-Essen, Faculty of Economics, Institute for
Computer Science and Business Information Systems, Mar. 2007.

[3] P. Lei, L. Ong, M. Tüxen, and T. Dreibholz, “An Overview
of Reliable Server Pooling Protocols,” IETF, Informational RFC
5351, Sept. 2008.

[4] T. Dreibholz and E. P. Rathgeb, “On the Performance of Reliable
Server Pooling Systems,” in Proceedings of the IEEE Conference
on Local Computer Networks (LCN) 30th Anniversary, Syd-
ney/Australia, Nov. 2005, pp. 200–208, ISBN 0-7695-2421-4.

[5] ——, “Reliable Server Pooling – A Novel IETF Architecture
for Availability-Sensitive Services,” in Proceedings of the 2nd
IEEE International Conference on Digital Society (ICDS), Sainte
Luce/Martinique, Feb. 2008, pp. 150–156, ISBN 978-0-7695-
3087-1.

[6] T. Dreibholz, E. P. Rathgeb, and X. Zhou, “On Robustness
and Countermeasures of Reliable Server Pooling Systems against
Denial of Service Attacks,” in Proceedings of the IFIP Networking,
Singapore, May 2008, pp. 586–598, ISBN 978-3-540-79548-3.



Figure 7. Varying the Number of Pool-User-Based Attackers

[7] P. Schöttle, T. Dreibholz, and E. P. Rathgeb, “On the Applica-
tion of Anomaly Detection in Reliable Server Pooling Systems
for Improved Robustness against Denial of Service Attacks,” in
Proceedings of the 33rd IEEE Conference on Local Computer
Networks (LCN), Montreal/Canada, Oct. 2008, pp. 207–214, ISBN
978-1-4244-2413-9.

[8] X. Zhou, T. Dreibholz, W. Du, and E. P. Rathgeb, “Evaluation
of Attack Countermeasures to Improve the DoS Robustness of
RSerPool Systems by Simulations and Measurements,” in Proceed-
ings of the 16. ITG/GI Fachtagung Kommunikation in Verteilten
Systemen (KiVS), Kassel/Germany, Mar. 2009, pp. 217–228, ISBN
978-3-540-92665-8.

[9] T. Dreibholz and E. P. Rathgeb, “On Improving the Performance of
Reliable Server Pooling Systems for Distance-Sensitive Distributed
Applications,” in Proceedings of the 15. ITG/GI Fachtagung
Kommunikation in Verteilten Systemen (KiVS), Bern/Switzerland,
Feb. 2007, pp. 39–50, ISBN 978-3-540-69962-0.

[10] R. Stewart, “Stream Control Transmission Protocol,” IETF, Stan-
dards Track RFC 4960, Sept. 2007.

[11] E. Unurkhaan, “Secure End-to-End Transport - A new security
extension for SCTP,” Ph.D. dissertation, University of Duisburg-
Essen, Institute for Experimental Mathematics, July 2005.

[12] M. Stillman, R. Gopal, E. Guttman, M. Holdrege, and S. Sengodan,
“Threats Introduced by RSerPool and Requirements for Security,”
IETF, RFC 5355, Sept. 2008.

[13] A. Jungmaier, E. Rescorla, and M. Tüxen, “Transport Layer Secu-
rity over Stream Control Transmission Protocol,” IETF, Standards
Track RFC 3436, Dec. 2002.

[14] S. Bellovin, J. Ioannidi, A. Keromytis, and R. Stewart, “On the
Use of Stream Control Transmission Protocol (SCTP) with IPsec,”
IETF, Standards Track RFC 3554, July 2003.

[15] L. Peterson and T. Roscoe, “The Design Principles of PlanetLab,”
Operating Systems Review, vol. 40, no. 1, pp. 11–16, Jan. 2006.

[16] Q. Xie, R. Stewart, M. Stillman, M. Tüxen, and A. Silverton,
“Endpoint Handlespace Redundancy Protocol (ENRP),” IETF,
RFC 5353, Sept. 2008.

[17] I. Foster, “What is the Grid? A Three Point Checklist,” GRID
Today, July 2002.

[18] T. Dreibholz and E. P. Rathgeb, “Implementing the Reliable
Server Pooling Framework,” in Proceedings of the 8th IEEE In-
ternational Conference on Telecommunications (ConTEL), vol. 1,
Zagreb/Croatia, June 2005, pp. 21–28, ISBN 953-184-081-4.

[19] R. Stewart, Q. Xie, M. Stillman, and M. Tüxen, “Aggregate Server
Access Protcol (ASAP),” IETF, RFC 5352, Sept. 2008.

[20] T. Dreibholz and M. Tüxen, “Reliable Server Pooling Policies,”
IETF, RFC 5356, Sept. 2008.

[21] X. Zhou, T. Dreibholz, and E. P. Rathgeb, “A New Server Selec-
tion Strategy for Reliable Server Pooling in Widely Distributed
Environments,” in Proceedings of the 2nd IEEE International

Conference on Digital Society (ICDS), Sainte Luce/Martinique,
Feb. 2008, pp. 171–177, ISBN 978-0-7695-3087-1.

[22] ITU-T, “Introduction to CCITT Signalling System No. 7,” Inter-
national Telecommunication Union, Tech. Rep. Recommendation
Q.700, Mar. 1993.

[23] T. Dreibholz, “An Efficient Approach for State Sharing in Server
Pools,” in Proceedings of the 27th IEEE Local Computer Networks
Conference (LCN), Tampa, Florida/U.S.A., Oct. 2002, pp. 348–
352, ISBN 0-7695-1591-6.

[24] A. Maharana and G. N. Rathna, “Fault-tolerant Video on Demand
in RSerPool Architecture,” in Proceedings of the International
Conference on Advanced Computing and Communications (AD-
COM), Bangalore/India, Dec. 2006, pp. 534–539, ISBN 1-4244-
0716-8.

[25] Ü. Uyar, J. Zheng, M. A. Fecko, S. Samtani, and P. Conrad,
“Evaluation of Architectures for Reliable Server Pooling in Wired
and Wireless Environments,” IEEE JSAC Special Issue on Recent
Advances in Service Overlay Networks, vol. 22, no. 1, pp. 164–
175, 2004.

[26] T. Dreibholz, “Applicability of Reliable Server Pooling for
Real-Time Distributed Computing,” IETF, Individual Submission,
Internet-Draft Version 06, Jan. 2009, draft-dreibholz-rserpool-
applic-distcomp-06.txt, work in progress.

[27] T. Dreibholz and E. P. Rathgeb, “A Powerful Tool-Chain for Setup,
Distributed Processing, Analysis and Debugging of OMNeT++
Simulations,” in Proceedings of the 1st ACM/ICST OMNeT++
Workshop, Marseille/France, Mar. 2008, ISBN 978-963-9799-20-
2.

[28] T. Dreibholz, “Thomas Dreibholz’s RSerPool Page,” 2009.
[29] LKSCTP, “Linux Kernel SCTP,” 2009.
[30] A. Jungmaier, “Das Transportprotokoll SCTP,” Ph.D. dissertation,

Universität Duisburg-Essen, Institut für Experimentelle Mathe-
matik, Aug. 2005.

[31] M. Tüxen, “The sctplib Prototype,” 2009.
[32] M. Tüxen and R. Stewart, “UDP Encapsulation of SCTP Packets,”

IETF, Individual Submission, Internet-Draft Version 02, Nov.
2007, draft-tuexen-sctp-udp-encaps-02.txt, work in progress.

[33] T. Dreibholz, X. Zhou, and E. P. Rathgeb, “SimProcTC – The
Design and Realization of a Powerful Tool-Chain for OMNeT++
Simulations,” in Proceedings of the 2nd ACM/ICST OMNeT++
Workshop, Rome/Italy, Mar. 2009, ISBN 978-963-9799-45-5.

[34] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos
Network Authentication Service (V5),” IETF, Standards Track
RFC 4120, July 2005.

[35] S. A. Crosby and D. S. Wallach, “Denial of service via Algorithmic
Complexity Attacks,” in Proceedings of the 12th USENIX Security
Symposium, Washington, DC/U.S.A., Aug. 2003, pp. 29–44.

[36] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (SHA1),”
IETF, Informational RFC 3174, Sept. 2001.


	Introduction and Scope
	The RSerPool Architecture
	Registrar Operations
	Pool Element Operations
	Pool User Operations
	A Handlespace Example
	Application Scenarios

	Quantifying an RSerPool System
	System Setup
	The Performance Impact of Attacks
	An Attack by a Compromised Pool Element
	An Attack by a Compromised Pool User

	Our Attack Countermeasure Mechanisms
	Pool Element Attack Countermeasures
	Pool User Attack Countermeasures

	Conclusions
	References

