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Abstract. The IETF is currently standardizing a light-weight protocol frame-
work for server redundancy and session failover: Reliable Server Pooling (RSer-
Pool). It is the novel combination of ideas from different research areas into a sin-
gle, resource-efficient and unified architecture. Server redundancy directly leads
to the issues of load distribution and load balancing. Both are important and have
to be considered for the performance of RSerPool systems. While there has al-
ready been some research on the server selection policies of RSerPool, an inter-
esting question is still open: Is it possible to further improve the load balancing
performance of the standard policies without modifying the policies – which are
well-known and widely supported – themselves? Our approach places its focus
on the session layer rather than the policies and simply lets servers reject inap-
propriately scheduled requests. But is this approach useful – in particular if the
server capacities increase in terms of a heterogeneous capacity distribution? Ap-
plying failover handling mechanisms of RSerPool, in this case, could choose a
more appropriate server instead.
In this paper, we first present a short outline of the RSerPool framework. After-
wards, we analyse and evaluate the performance of our new approach for different
server capacity distributions. Especially, we are also going to analyse the impact
of RSerPool protocol and system parameters on the performance of the server
selection functionalities as well as on the overhead.
Key words: Reliable Server Pooling, Redundancy, Load Balancing, Heteroge-
neous Pools, Performance Evaluation

1 Introduction and Scope

Service availability is getting increasingly important in today’s Internet. But – in con-
trast to the telecommunications world, where availability is ensured by redundant links
and devices [1] – there had not been any generic, standardized approaches for the avail-
ability of Internet-based services. Each application had to realize its own solution and
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therefore to re-invent the wheel. This deficiency – once more arisen for the availability
of SS7 (Signalling System No. 7 [2]) services over IP networks – had been the initial
motivation for the IETF RSerPool WG to define the Reliable Server Pooling (RSer-
Pool) framework. The basic ideas of RSerPool are not entirely new (see [3,4]), but their
combination into one application-independent framework is.

The Reliable Server Pooling (RSerPool) architecture [5] currently under standard-
ization by the IETF RSerPool WG is an overlay network framework to provide server
replication [6] and session failover capabilities [7, 8] to its applications. Server redun-
dancy leads to load distribution and load balancing [9], which are also covered by
RSerPool [10, 11]. But in strong contrast to already available solutions in the area of
GRID and high-performance computing [12], the fundamental property of RSerPool
is to be “light-weight”, i.e. it must be usable on devices providing only meagre mem-
ory and CPU resources (e.g. embedded systems like telecommunications equipment or
routers). This property restricts the RSerPool architecture to the management of pools
and sessions only, but on the other hand makes a very efficient realization possible [13].
A generic classification of load distribution algorithms can be found in [9]; the two
most important classes – also supported by RSerPool – are non-adaptive and adaptive
algorithms. Adaptive strategies base their assignment decisions on the current status
of the processing elements and therefore require up-to-date information. On the other
hand, non-adaptive algorithms do not require such status data. More details on such
algorithms can be found in [14, 15].

There has already been some research on the performance of RSerPool usage for
applications like SCTP-based endpoint mobility [16], VoIP with SIP [17], web server
pools [18], IP Flow Information Export (IPFIX) [19], real-time distributed comput-
ing [6, 7] and battlefield networks [20]. A generic application model for RSerPool
systems has been introduced by [6, 10], which includes performance metrics for the
provider side (pool utilization) and user side (request handling speed). Based on this
model, the load balancing quality of different pool policies has been evaluated [6, 10,
11].

2 “Reject and Retry” – Our Performance Improvement Approach

The question arisen from these results is whether it is possible to improve the load
balancing performance of the standard policies by allowing servers to reject requests,
especially in case of pool capacity changes. The merit of our approach is that the poli-
cies themselves are not modified: they are widely supported and their performance is
well-known [10]. Furthermore, implementing only a very limited number of policies
is quite easy [13, 21] (which is clearly beneficial for a “light-weight” system). That is,
applying a specialised new policy to only improve a temporary capacity extension may
be unsuitable (“Never change a running system!”). Therefore, we focus on the session
layer instead: if a request gets rejected, the failover mechanisms provided by RSerPool
could choose a possibly better server instead. For a pool of homogeneous servers, we
have already shown in [22] that our approach works quite well. Even when the capacity
distribution within the pool changes – while the overall pool capacity remains constant
– it is useful to apply “reject and retry” (see our paper [23]). But what happens when
the pool capacity temporarily increases, e.g. due to spare capacity on some servers?
The goal of this paper is to evaluate the performance of our strategy in such situations,
with respect to the resulting protocol overhead. We also identify critical configuration
parameter ranges in order to provide a guideline for designing and configuring efficient
RSerPool systems.



3 The RSerPool Protocol Framework

Fig. 1. The RSerPool Architecture

Figure 1 illustrates the RSerPool architecture [6]. It contains three classes of com-
ponents: in RSerPool terminology, servers of a pool are called pool elements (PE), a
client is denoted as pool user (PU). The handlespace – which is the set of all pools – is
managed by redundant pool registrars (PR). Within the handlespace, each pool is iden-
tified by a unique pool handle (PH). PRs of an operation scope synchronize their view
of the handlespace using the Endpoint haNdlespace Redundancy Protocol (ENRP [24]),
transported via SCTP [25,26]. An operation scope has a limited range, e.g. an organiza-
tion or only a building. In particular, it is restricted to a single administrative domain –
in contrast to GRID computing [12] – in order to keep the management complexity [13]
reasonably low. Nevertheless, it is assumed that PEs can be distributed globally for their
service to survive localized disasters [27].

PEs choose an arbitrary PR of the operation scope to register into a pool by us-
ing the Aggregate Server Access Protocol (ASAP [28]), again transported via SCTP.
Upon registration at a PR, the chosen PR becomes the Home-PR (PR-H) of the newly
registered PE. A PR-H is responsible for monitoring its PEs’ availability by keep-alive
messages (to be acknowledged by the PE within a given timeout) and propagates the
information about its PEs to the other PRs of the operation scope via ENRP updates.

In order to access the service of a pool given by its PH, a PU requests a PE se-
lection from an arbitrary PR of the operation scope, again using ASAP [28] trans-
ported via SCTP. The PR selects the requested list of PE identities by applying a pool-
specific selection rule, called pool policy. Adaptive and non-adaptive pool policies are
defined in [29], relevant to this paper are the non-adaptive policies Round Robin (RR)
and Random (RAND) as well as the adaptive policy Least Used (LU). LU selects the
least-used PE, according to up-to-date load information; the actual definition of load
is application-specific. Round robin selection is applied among multiple least-loaded
PEs [13]. Detailed discussions of pool policies can be found in [6, 10].

The PU writes the list of PE identities selected by the PR into its local cache (de-
noted as PU-side cache). From the cache, the PU selects – again using the pool’s policy
– one element to contact for the desired service. The PU-side cache constitutes a local,
temporary and partial copy of the handlespace. Its contents expire after a certain time-



out, denoted as stale cache value. In many cases, the stale cache value is simply 0s, i.e.
the cache is used for a single handle resolution only [10].

4 Quantifying a RSerPool System

In order to evaluate the behaviour of a RSerPool system, it is necessary to quantify
RSerPool systems. The system parameters relevant to this paper can be divided into
two groups: RSerPool system parameters and server capacity distributions.

4.1 System Parameters

The service provider side of a RSerPool system consists of a pool of PEs. Each PE has
a request handling capacity, which we define in the abstract unit of calculations per
second3. Each request consumes a certain number of calculations; we call this number
request size. A PE can handle multiple requests simultaneously, in a processor sharing
mode as provided by multitasking operating systems. The maximum number of simul-
taneously handled requests is limited by the parameter MinCapPerReq. This parameter
defines the minimum capacity share which should be available to handle a new request.
That is, a PE providing the capacity (peCapacity) only allows at most

MaxRequests = round(
peCapacity

MinCapPerReq
) (1)

simultaneously handled requests. Note, that the limit is rounded to the nearest in-
teger, in order to support arbitrary capacities. If a PE’s requests limit is reached, a
new request gets rejected. For example, if the PE capacity is 106 calculations/s and
MinCapPerReq=2.5∗105, there is only room for MaxRequests = round( 106

2.5∗105 ) = 4
simultaneously processed requests. After the time ReqRetryDelay, it is tried to find
another PE for a rejected request (such a delay is necessary to avoid request-rejection
floods [30]).

On the service user side, there is a set of PUs. The number of PUs can be given
by the ratio between PUs and PEs (PU:PE ratio), which defines the parallelism of the
request handling. Each PU generates a new request in an interval denoted as request
interval. The requests are queued and sequentially assigned to PEs.

The total delay for handling a request dHandling is defined as the sum of queuing de-
lay dQueuing, startup delay dStartup (dequeuing until reception of acceptance acknowl-
edgement) and processing time dProcessing (acceptance until finish):

dHandling = dQueuing + dStartup + dProcessing. (2)

That is, dHandling not only incorporates the time required for processing the request,
but also the latencies of queuing, server selection and protocol message transport. The
handling speed is defined as: handlingSpeed = requestSize

dhandling
. For convenience reasons,

the handling speed (in calculations/s) can also be represented in % of the average PE
capacity. Clearly, the user-side performance metric is the handling speed – which should
be as fast as possible.

3 An application-specific view of capacity may be mapped to this definition, e.g. CPU cycles or
memory usage.



Using the definitions above, it is possible to delineate the average system utilization
(for a pool of NumPEs servers and a total pool capacity of PoolCapacity) as:

systemUtilization = NumPEs ∗ puToPERatio ∗
requestSize

requestInterval

PoolCapacity
. (3)

Obviously, the provider-side performance metric is the system utilization, since only
utilized servers gain revenue. In practise, a well-designed client/server system is di-
mensioned for a certain target system utilization, e.g. 80%. That is, by setting any two
of the parameters (PU:PE ratio, request interval and request size), the value of the third
one can be calculated using equation 3. See also [6,10] for more details on this subject.

4.2 Heterogeneous Server Capacity Distributions

In order to present the effects introduced by heterogeneous servers, we have considered
three different and realistic capacity distributions (based on [6]) for increasing the pool
capacity: a single powerful server, multiple powerful servers and a linear capacity dis-
tribution. Clearly, the goal of our “reject and retry” approach (see section 2) is to make
best use of the additional capacity for increasing the request handling speed.

A Single Powerful Server A dedicated powerful server is realistic if there is only one
powerful server to perform the main work and some other older (and slower) ones to
provide redundancy. To quantify such a scenario, the variable ϕ (denoted as capacity
scale factor) is defined as the capacity ratio between the new (PoolCapacityNew) and
the original capacity (PoolCapacityOriginal) of the pool:

ϕ =
PoolCapacityNew

PoolCapacityOriginal

. (4)

A value of ϕ=1 denotes no capacity change, while ϕ=3 stands for a tripled capacity.
In case of a single powerful server, the variation of ϕ results in changing the capacity
of the designated PE only. That is, the capacity increment ∆Pool(ϕ) of the whole pool
can be calculated as follows:

∆Pool(ϕ) = (ϕ ∗ PoolCapacityOriginal)︸ ︷︷ ︸
PoolCapacityNew

−PoolCapacityOriginal. (5)

Then, the capacity of the i-th PE can be deduced using equation 5 by the following
formula (where NumPEs denotes the number of PEs):

Capacityi(ϕ) =

{
PoolCapacityOriginal

NumPEs + ∆Pool(ϕ) (i = 1)
PoolCapacityOriginal

NumPEs (i > 1)
.

That is, Capacity1(ϕ) stands for the capacity of the powerful server.



Multiple Powerful Servers If using multiple powerful servers (NumPEsFast) instead
of only one at one time, the capacity of the i-th PE can be calculated as follows (ac-
cording to equation 5):

∆FastPE(ϕ) =
∆Pool(ϕ)

NumPEsFast
,

Capacityi(ϕ) =

{
PoolCapacityOrig

NumPEs + ∆FastPE(ϕ) (i ≤ NumPEsFast)
PoolCapacityOrig

NumPEs (i > NumPEsFast)

A Linear Capacity Distribution In real life, a linear capacity distribution is likely if
there are different generations of servers. For example, a company could buy a state-
of-the-art server every half year and add it to the existing pool. In this case, the PE
capacities are distributed linearly. That is, the capacity of the first PE remains constant,
the capacities of the following PEs are increased with a linear gradient, so that the pool
reaches its desired capacity PoolCapacityNew. Therefore, the capacity of the i-th PE
can be obtained using the following equations (again, using ∆Pool(ϕ) as defined in
equation 5):

∆FastestPE(ϕ) =
2 ∗∆Pool(ϕ)

NumPEs
,

Capacityi(ϕ) =
∆FastestPE(ϕ)
NumPEs− 1︸ ︷︷ ︸

Capacity Gradient

∗(i− 1)

︸ ︷︷ ︸
Additional Capacity for PE i

+
PoolCapacityOriginal

NumPEs
.

5 Setup Simulation Model

Fig. 2. The Simulation Setup

For the performance analysis, the RSerPool simulation model RSPSIM [6, 10] has
been used. This model is based on the OMNET++ [31] simulation environment and



contains the protocols ASAP [28] and ENRP [24], a PR module as well as PE and
PU modules for the request handling scenario defined in section 4. Network latency is
introduced by link delays only. Therefore, only the network delay is significant. The
latency of the pool management by PRs is negligible [13].

Unless otherwise specified, the basic simulation setup – which is also presented in
figure 2 – uses the following parameter settings:

– The target system utilization is 80% for ϕ=1.
– Request size and request interval are randomized using a negative exponential dis-

tribution (in order to provide a generic and application-independent analysis).
– There are 10 PEs; in the basic setup, each one is providing a capacity of 106 calcu-

lations/s.
– The heterogeneity parameter ϕ is 3 (we analyse variations in subsection 6.2).
– A PU:PE ratio of 3 is used (this parameter is analysed in subsection 6.1).
– The default request size:PE capacity ratio is 5 (i.e. a size of 5 ∗ 106 calculations;

subsection 6.1 contains an analysis of this parameter).
– ReqRetryDelay is uniformly randomized between 0ms and 200ms. That is, a re-

jected request is distributed again after an average time of 100ms. This timeout is
recommended by [30] in order to avoid overloading the network with unsuccessful
trials.

– We use a single PR only, since we do not examine failure scenarios here (see [10]
for the impact of multiple PRs).

– No network latency is used (we will examine the impact of delay in subsection 6.4).
– The simulated real-time is 60m; each simulation run is repeated at least 25 times

with a different seed in order to achieve statistical accuracy.

GNU R has been used for the statistical post-processing of the results. Each result-
ing plot shows the average values and their corresponding 95% confidence intervals.

6 Performance Analysis

[10] shows that an inappropriate load distribution of the RR and RAND policies leads
to low performance in homogeneous capacity scenarios. Therefore, the first step is to
examine the behaviour in the heterogeneous case under different workload parameters.

6.1 General Behaviour on Workload Changes

The PU:PE ratio r has been found the most critical workload parameter [10]: e.g. at
r=1 and a target utilization of 80%, each PU expects an exclusive PE during 80% of
its runtime. That is, the lower r, the more critical the load distribution. In order to
demonstrate the policy behaviour in a heterogeneous capacity scenario, a simulation
has been performed varying r from 1 to 10 for ϕ=3 and a single fast server (we will
examine distributions and settings of ϕ in detail in subsection 6.2). The handling speed
result is shown on the left-hand side of figure 3 and clearly reflects the expectation
from [10]: the lower r, the slower the request handling.

Applying our idea of ensuring a minimum capacity MinCapPerReq q for each
request in process by a PE, it is clearly shown that the performance of RR and RAND
is significantly improved: for q = 106, it is even comparable to LU.

Varying the request size:PE capacity ratio s for a fixed setting of r=3 (the han-
dling speed results are presented on the right-hand side of figure 3), the handling speed
slightly sinks with a decreasing s: the smaller s, the higher the frequency of requests.
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Fig. 3. Varying the Workload Parameters

That is, while the workload keeps constant, there are 100 times more requests in the
system for s=105 compared with s=107. However, comparing the results for different
settings of MinCapPerReq q in this critical parameter range, a significant impact can
be observed: the handling speed for using a high setting of q significantly drops. The
reason is that each rejection leads to an average penalty of 100ms (in order to avoid over-
loading the network with unsuccessful requests [30]). But for smaller s, the proportion
of the startup delay gains an increasing importance in the overall request handling time
of equation 2. For larger requests, the delay penalty fraction of the request handling
time becomes negligible.

The results for varying the request interval can be derived from the previous results
(see also equation 3) and have therefore been omitted. Note that also the utilization
plots have been omitted, since the larger ϕ, the higher the pool capacity. Consequently,
at ϕ=3, the utilization is already in a non-critical range.

In summary, it has been shown that our idea of using MinCapPerReq for rejecting
inappropriately distributed requests can lead to a significant performance improvement.
But what happens if the server capacity distribution and heterogeneity are changed?

6.2 Varying the Heterogeneity of the Pool

In order to show the effect of varying the heterogeneity of different server capacity
distributions (ϕ; denoted as phi in the plots), simulations have been performed for the
scenarios defined in subsection 4.2. The results are presented for a single fast server
out of 10 (figure 4), 3 fast servers out of 10 (figure 5) and a linear capacity distribu-
tion (figure 6). For each figure, the left-hand side shows the handling speed, while the
right-hand side presents the overhead in form of handle resolutions at the PR. We have
omitted utilization plots, since they are obvious and would not provide any new insights.

In general, the LU policy already provides a good load balancing, leading to no
significant room for improvement by our MinCapPerReq approach. However, a sig-
nificant performance gain can be achieved for RR and RAND for all three capacity
distributions: the higher MinCapPerReq q, the better the handling speed. Interestingly,
the handling speed for RR and RAND at q = 106 calculations/s even slightly exceeds
the speed of LU for ϕ > 2 in the case of the “fast servers” scenarios! The reason for
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this behaviour is that LU selects the least loaded PE rather than the fastest one. That is,
if all faster PEs have a higher load than a slow one, the slow one is always chosen by
definition. In contrast, the linear distribution is much less critical (except for the first
PE, all other PEs are “faster” ones) and LU performs better here. Another interesting
observation is that the performance of RAND becomes better than RR for large q (here:
q = 106 calculations/s): RR deterministically selects the PEs in turn. In the worst case,
if all 9 slow PEs are already loaded up to their limit, there will be 9 rejections until
the fast one gets selected again. Clearly, selecting randomly will provide a better result
here.

Comparing the results of the different capacity distributions, it is clear that the “sin-
gle fast server” scenario (see also subsubsection 4.2) is the most critical one: for higher
settings of ϕ, most of the pool’s capacity is concentrated at a single PE. Therefore, this
dedicated PE has to be selected in order to achieve a better handling speed. If three of
the PEs are fast ones, the situation becomes better, leading to a significantly improved
handling speed compared with the first scenario. Finally, the linear distribution is the
least critical one: even if randomly selecting one of the slower PEs, the next handle
resolution will probably return one of the faster PEs. For RR, this behaviour will even
be deterministic and LU again improves it by PE load state knowledge.

In summary, it has been shown that our request rejection approach is working for
RR and RAND in all three heterogeneous capacity distribution scenarios, while there is
no significant benefit for LU. But what about its overhead? The handle resolutions over-
head is significantly increased for a small setting of ϕ: here, the overall pool capacity
is still small and the PEs are working at almost their target utilization. This means that
the selection of an inappropriate PE becomes more probable and therefore the rejection
probability higher. Obviously, the probability of a rejection is highest for RAND and
lowest for LU.

From the results above, it also can be observed that the overhead is highest for the
“single fast server” setup and lowest for the linear distribution. Clearly, the more critical
the distribution, the higher the chance to get an inappropriate PE. But interestingly, the
overhead for RR and RAND at ϕ > 2 almost keeps constant for the two fast servers
scenarios – while it decreases for the linear distribution as well as for using LU: the
non-adaptive policies may try to use fully occupied PEs due to their lack of load state
knowledge, which leads to rejections and therefore to increased overhead. However,
even for the scenario of a single fast PE, this overhead keeps below 2.75 handle res-
olutions per request for ϕ ≥ 2. But is it possible to reduce this overhead – without a
significant penalty on the handling speed improvement?

6.3 Reducing the Network Overhead by Cache Usage

In order to present the impact of the PU-side cache on performance and overhead, we
have performed simulations using a setting of ϕ=3 (i.e. a not too critical setting) and
varying the stale cache value c (given as ratio between the actual stale cache value
and the request size:PE capacity ratio) from 0.0 to 1.0. This cache value range has been
chosen to allow for cache utilization in case of retries and to also support dynamic pools
(PEs may register or deregister). Figure 7 presents the results for a single fast server (i.e.
the most critical distribution) and figure 8 the plots for a linear distribution. We have
omitted results for multiple fast servers for space reasons, since they would not provide
any new insights.

Taking a look at the “fast server” results, it is clear that even a small setting of c
results in a significantly reduced overhead while the handling speeds of RR and RAND
are not negatively affected. Even better, the handling speed of RR slightly increases!
The reason for this effect is that each cache constitutes an additional selection instance
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performing round robin choices independently of the PR and other PU-side caches.
That is, while each instance performs its selections in turn, the global view of the selec-
tions in the system differs from the desired round robin strategy. Instead, it gets more
and more random – but the local selection still avoids that a rejected request is mapped
to the same PE again (which may happen for RAND). For LU, the load state informa-
tion gets the more out of date the higher c. This leads to a decreasing handling speed
if MinCapPerReq q is low (here: q=333,333 calculations/s) – using a larger setting,
inappropriate choices are “corrected” by our “reject and retry” approach.

Having multiple fast servers or even a linear capacity distribution, the number of
rejections and retries – and therefore the number of handle resolutions – is significantly
smaller (see also subsection 6.2). Therefore, the impact of the cache gets less significant
in comparison with the scenario of a single fast server. The most interesting observa-
tion here is the behaviour of the RR policy: for a linear distribution, the cache leads
to a slightly reduced handling speed. The reason is the caches which perform round
robin selections independently. But here, the independent selections work counterpro-
ductively: almost all PEs can be considered to be fast ones (at least more powerful than
the first one), so the selection order gets irrelevant – which is confirmed by the RR curve
for MinCapPerReq q = 106 converging to the speed of RAND for increasing c.

In summary, the PU-side cache can achieve a significant overhead reduction for the
RR and RAND policies, while the performance does not suffer. However, care has to
be taken for RR effects. The speed of LU suffers for higher settings of c, at only a small
achievable overhead reduction (LU already has a low rejection rate).

6.4 The Impact of Network Delay

Although the network latency for RSerPool systems is negligible in many cases (e.g.
if all components are situated in the same building), there are some scenarios where
components are distributed globally [27]. It is therefore also necessary to consider the
impact of network delay on the system performance. Clearly, network latency only
becomes significant for small request size:PE capacity ratios s. For that reason, figure 9
presents the performance results for varying the delay in the three capacity distribution
scenarios at ϕ=3 (i.e. not too critical) for s=1.

As it can be expected, the handling speed sinks with rising network delay: in equa-
tion 2, the startup delay gains an increasing importance to the overall handling time due
to the latency caused by querying a PR and contacting PEs.

Comparing the curves for the different settings of MinCapPerReq, the achieved
gain by a higher minimum capacity shrinks with the delay: while the request rejection
rate of the PE keeps almost constant, the costs of a rejection increase: now, there is
not only the penalty of ReqRetryDelay but an additional latency for querying the PR
and contacting another PE. This is particularly important for the LU policy: as adap-
tive policy, it relies on up-to-date load information. However, due to the latency, this
information becomes more obsolete the higher the delay. That is, the latency increases
the selection probability for inappropriate PEs. In this case, using a higher setting of
MinCapPerReq (here: 106 calculations/s) leads to a slightly improved handling speed
for the critical “fast servers” setups – in particular for using a single fast server. How-
ever, for the linear distribution – which is much less critical (see subsection 6.2) – no
significant change can be observed.

As a summary, the simulations have shown that our request rejection approach is
also useful for scenarios having a significant network delay. In particular, it even gets
useful for the adaptive LU policy.
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7 Conclusions

We have indicated by our evaluations that it is possible to improve the request han-
dling performance of the basic RSerPool policies under varying workload parameters
in different server capacity scenarios of varying heterogeneity – without modifying the
policies themselves – by setting a minimum capacity per request to limit the maximum
number of simultaneously handled requests. Our “reject and retry” approach leads to a
significant performance improvement for the RR and RAND policies, while – in general
– it does not provide a benefit for the performance of LU. However, in case of a signifi-
cant network delay in combination with short requests, our approach also gets useful for
LU. Request rejections lead to an increased overhead, in particular to additional handle
resolutions. Usage of the PU-side cache can reduce this overhead while not significantly
affecting the system performance – with care to be taken for the capacity distribution in
case of RR.

As part of our future research, we are currently also validating our simulative per-
formance results in real-life scenarios, using our RSerPool prototype implementation
RSPLIB [6, 27] in the PLANETLAB; first results can be found in [6, 27].
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