
Evaluation and Optimization of the
Registrar Redundancy Handling

in Reliable Server Pooling Systems
Xing Zhou∗, Thomas Dreibholz†, Fu Fa∗, Wencai Du∗ and Erwin P. Rathgeb†

∗Hainan University, College of Information Science and Technology
Renmin Avenue. 58, 570228 Haikou, Hainan, China

{zhouxing,fufa,wencai}@hainu.edu.cn
†University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstrasse 29, 45326 Essen, Germany
{dreibh,rathgeb}@iem.uni-due.de

Abstract—The Reliable Server Pooling (RSerPool) ar-
chitecture is the IETF’s new standard for a lightweight
server redundancy and session failover framework to sup-
port availability-critical applications. RSerPool combines
the ideas from different research areas into a single,
resource-efficient and unified architecture. Server pools are
maintained by redundant management components, which
are called registrars. Registrars monitor the availability of
servers in the pool and remove them in case of failure.
Furthermore, they synchronize their view of the pool with
other registrars to provide information redundancy.

In this paper, we first analyse the implications of registrar
redundancy on the server pool performance. Furthermore,
we present an optimization approach for the server pool
management, which improves the system performance in
case of registrar problems by hardware failures or Denial
of Service attacks.1 2
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I. INTRODUCTION AND SCOPE

Reliable Server Pooling (RSerPool, see [1]) denotes
the IETF’s new standard for a generic, application-
independent server pool [2] and session management [3]
framework. While there have already been a number of
publications on the performance of RSerPool for appli-
cation load balancing [3], [4], server failure handling [5]
and the pool management data structures in general [2],
[6], there has been very little research on the behaviour of
the pool management in case of failures of the redundant
management components which are denoted as registrars.
Such failures may occur due to hardware problems (e.g.
network or power failures) but also due to Denial of
Service (DoS) attacks on the RSerPool setup [7]–[9].

The goal of this paper is to first analyse the implications
of registrar redundancy on the server pool performance.
Knowledge of these implications is important to provide
RSerPool systems for achieving good system performance
at small overhead costs. Furthermore, we present an
optimization approach for the server pool management,

1Funded by the State Administration of Foreign Experts Affairs,
P. R. China (funding number 20084600036) and the German Research
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Figure 1. The RSerPool Architecture

which improves the system performance in case of reg-
istrar problems due to hardware failures or DoS attacks.
This approach is evaluated using our RSerPool simulation
model RSPSIM [4], [10].

II. THE RSERPOOL ARCHITECTURE

Figure 1 illustrates the RSerPool architecture [1], [3],
[11] which consists of three types of components: servers
of a pool are called pool elements (PE), a client is denoted
as pool user (PU). The handlespace – which is the set of
all pools – is managed by redundant pool registrars (PR).
Within the handlespace, each pool is identified by a
unique pool handle (PH).

A. Components and Protocols

PRs of an operation scope synchronize their view of the
handlespace by using the Endpoint haNdlespace Redun-
dancy Protocol (ENRP) [12], transported via SCTP [13].



Figure 2. Pool Element Registration

Unlike Grid Computing [14], an operation scope is re-
stricted to a single administrative domain. That is, all of
its components are under the control of the same authority
(e.g. a company or an organization). This property results
in a small management overhead [2], which also allows
for RSerPool usage on devices providing only limited
memory and CPU resources (e.g. embedded systems like
routers). Nevertheless, PEs may be distributed globally
to continue their service even in case of localized disas-
ters [15].

PEs choose an arbitrary PR of the operation scope
to register into a pool by using the Aggregate Server
Access Protocol (ASAP) [16], [17], again transported
via SCTP and using TLS or IPSEC. Within its pool, a
PE is characterized by its PE ID, which is a randomly
chosen 32-bit number. Upon registration at a PR using an
ASAP Registration message, the chosen PR becomes the
Home-PR (PR-H) of the newly registered PE. A PR-H is
responsible for monitoring its PEs’ availability by ASAP
Endpoint Keep-Alive messages (to be acknowledged by
the PE within a given timeout) and propagates the infor-
mation about its PEs to the other PRs of the operation
scope via ENRP Handle Update messages [12]. PEs
re-register regularly (again using an ASAP Registration
message) in an interval denoted as registration lifetime
as well as for information updates. Figure 2 illustrates
the context of a PE’s registration at its PR-H and the
synchronization with another PR.

In order to access the service of a pool given by its PH,
a PU requests a PE selection from an arbitrary PR of the
operation scope, again using ASAP. The PR selects the
requested list of PE identities by applying a pool-specific
selection rule, called pool policy. RSerPool supports two
classes of load distribution policies: non-adaptive and
adaptive algorithms [4]. While adaptive strategies base
their assignment decisions on the current status of the
processing elements (which of course requires up-to-date
states), non-adaptive algorithms do not need such data. A
basic set of adaptive and non-adaptive pool policies is de-
fined in [18]. Relevant for this paper are the non-adaptive
policies Round Robin (RR) and Random (RAND) as well
as the adaptive policy Least Used (LU).

B. Registrar Redundancy

Since a single PR would be a single point of failure
– which RSerPool should avoid – there must be multiple
PRs. Each PR in the operation scope is identified by a
PR ID, which is – similar to the PE ID – a randomly
chosen 32-bit number. PRs monitor the availability of
each other PR using ENRP Presence messages, which
are sent in an interval denoted as PeerHeartbeatCycle

(default is 30s [12]). If there is no ENRP Presence within
a timeout MaxTimeLastHeard (default is 61s [12]), the
peer is assumed to be dead and a so called takeover
procedure [12] initiated for the PEs managed by the dead
PR: from all PRs having started this takeover procedure,
the PR with the highest PR ID takes over the ownership
of these PEs. The PEs are informed about their takeover
by their new PR-H using an ASAP Endpoint Keep-Alive
with Home-flag set.

As soon as PEs and PUs detect the failure of their PR
(i.e. their request is not answered within a given timeout),
they simply try another PR of the operation scope for
their registration or handle resolution requests. Note, that
the takeover procedure for PEs is intended as a double
safeguarding: for the case the PE does not immediately
detect its PR-H failure (in particular when using a long
re-registration interval in case of non-adaptive policies).

III. QUANTIFYING AN RSERPOOL SYSTEM

For our quantitative performance analysis, we use the
application model from [3]: the service provider side of
an RSerPool system consists of a pool of PEs. Each PE
has a request handling capacity, which we define in the
abstract unit of calculations per second3. Each request
consumes a certain number of calculations; we call this
number request size. A PE can handle multiple requests
simultaneously – in a processor sharing mode as provided
by multitasking operating systems.

On the service user side, there is a set of PUs. The
number of PUs can be given by the ratio between PUs
and PEs (PU:PE ratio), which defines the parallelism of
the request handling. Each PU generates a new request in
an interval denoted as request interval. The requests are
queued and sequentially assigned to PEs.

The total delay for handling a request dHandling is
defined as the sum of queuing delay dQueuing, startup
delay dStartup (dequeuing until reception of acceptance
acknowledgement) and processing time dProcessing (ac-
ceptance until finish):

dHandling = dQueuing + dStartup + dProcessing. (1)

That is, dHandling not only incorporates the time required
for processing the request, but also the latencies of
queuing, server selection and message transport. The user-
side performance metric is the handling speed, which is
defined as:

HandlingSpeed =
RequestSize
dHandling

.

For convenience, the handling speed (in calculations/s) is
represented in % of the average PE capacity.

Using the definitions above, it is possible to delineate
the average system utilization (for a pool of NumPEs
servers and a total pool capacity of PoolCapacity) as:

SystemUtil = NumPEs ∗ puToPERatio ∗
RequestSize

RequestInterval

PoolCapacity
. (2)

3An application-specific view of capacity may be mapped to this
definition, e.g. CPU cycles, harddisk space, bandwidth share or memory
usage.



Figure 3. The Simulation Setup

Obviously, a provider-side performance metric is the
system utilization, since only utilized servers gain rev-
enue. Furthermore, the overhead of the pool management
is important for the provider.

In practise, a well-designed client/server system is
dimensioned for a certain target system utilization of
e.g. 50%. That is, by setting any two of the parameters
(PU:PE ratio, request interval and request size), the value
of the third one can be calculated using equation 2 (see [3]
for detailed examples).

IV. SETUP SIMULATION MODEL

For our performance analysis, the RSerPool simulation
model RSPSIM [3], [4], [10] has been used. This model
is based on the OMNET++ [19] simulation environ-
ment and contains the protocols ASAP [16], [17] and
ENRP [12], a PR module and PE as well as PU modules
for the request handling scenario defined in section III.
Network latency is introduced by link delays only. There-
fore, only the network delay is significant. The latency of
the pool management by PRs is negligible [2].

Unless otherwise specified, the basic simulation setup
– which is also presented in figure 3 – uses the following
parameter settings:
• The average inter-component network delay is 10ms

(which is realistic for components distributed within
a region like Europe or North America, see [15]).

• The target system utilization is 80%. Request size
and request interval are randomized using a negative
exponential distribution (in order to provide a generic
and application-independent analysis [3], [4]). There
are 100 PEs; each one provides a capacity of 106 cal-
culations/s.

• A PU:PE ratio of 10 is used (i.e. a non-critical setting
as explained in [4]).

• We use request size:PE capacity setting of 10; i.e.
being processed exclusively, the average processing
takes 10s – see also [4].

• PEs re-register every 300s (registration lifetime) as
well as on every load change of the adaptive LU
policy.

• There are 5 PRs (we will examine the impact varying
the number of PRs in section V).

• ASAP requests are transmitted once. If there is no
reply within 5s, the PR is assumed to be dead and
another PR is contacted (selected by random).

• ENRP uses the default parameters
of PeerHeartbeatCycle=30s and
MaxTimeLastHeard=61s (as in RFC [12]).

• The simulated real-time is 120min; each simulation
run is repeated at least 24 times with a different seed
in order to achieve statistical accuracy.

GNU R is used for the statistical post-processing of the
results. Each resulting plot shows the average values and
their 95% confidence intervals.

V. THE IMPACT OF REGISTRAR REDUNDANCY

Clearly, since a single PR constitutes a single point of
failure, there have to be multiple PRs in an RSerPool
setup. In order to provide such a system, it is necessary
to know the performance implications of PR redundancy.
To show the essential effects, figure 4 provides the results
of a simulation varying the number of PRs NumPRs for
a varying number of PEs NumPEs and inter-component
network delay d. The left-hand plot presents the results
for the LU policy. Here, it can be observed that in-
creasing NumPRs leads to a smaller handling speed,
particularly for a high delay d – since the load state
information becomes somewhat inaccurate due to the
latency between its actual change and the time it is
used for a PE selection at a PR. Furthermore, having
a larger pool (here: NumPEs=100), the impact of a
higher number of PRs is stronger: simply, the higher the
corresponding number of PUs (here: a PU:PE ratio of 10,
i.e. 1,000 PUs for 100 PEs), the higher the probability of
nearly-simultaneous requests – which lead to the usage of
inaccurate load information: PEs just having accepted new
requests are selected for further PUs, since their updated
load states have not yet reached the selecting remote (i.e.
non-PR-H) PRs.

However, since RSerPool setups in most cases are not
distributed globally4, the delay d is usually quite small
(e.g. 5ms to 15ms [15] within Europe or North America)
so that the performance impact on LU is usually small.

The right-hand plot of figure 4 shows the curves for RR
and RAND at d=150ms: while RAND keeps unaffected
by the delay, there is a small performance decrease
for RR: since different PRs perform their round robin
selection independently [4], [18], the global view of RR
selection differs from a selection in turn. The selection
order is therefore less optimal. Since both policies are
non-adaptive, there is – unlike for LU – no impact on the
number of PEs NumPEs. Note, that the request handling
speed of the LU policy, which is presented with a different
y-axis scale in the left-hand plot, still has a significantly
higher performance than RR and RAND – despite the
delay effects.

For realistic RSerPool setups – e.g. for deploying
simulation processing pools using SIMPROCTC [10] – the
number of PRs is assumed to be in the range of about 2
to 5.

4See [15] and [20] for mechanisms to handle high-latency scenarios.



Figure 4. The Impact of Registrar Redundancy

VI. HANDLING REGISTRAR FAILURES

Figure 5. Handling Registrar Failures

In order to show the effectiveness of the RSerPool PR
failure handling procedures described in subsection II-B,
figure 5 presents the handling speed results for varying
the average Mean Time Between Failures (MTBF) M
of the 5 PRs from 200s to 1000s – with an average
downtime of 100s (both parameters have negative expo-
nential distribution). Obviously, the RSerPool system is
able to cope with the PR failures: as long as there is
at least one usable PR, the service performance is only
slightly degraded. PUs and PEs use another PR when
a request to their original PR fails. Also, the remaining
PRs themselves perform takeovers for the PEs of failed
PRs. Only in the case of having no PR usable for a

longer duration (here: for M <500s) does the service
performance suffer significantly. However, such small
uptimes are very unrealistic for real setups, where an
average PR MTBF can be assumed in the range of weeks
or months.

As a result, having at least one working PR available
at any time, the performance from the user’s perspective
will not suffer. But what about the provider’s perspective?

VII. AVOIDING UNBALANCED REGISTRAR
WORKLOADS

A. Problem Identification

To present the problem of the pool management over-
head, we also use 5 PRs. PR #1 stays available all the
time, only PR #2 to PR #5 have problems (e.g. a network
problem or a DoS attack) and their MTBF is varied.
Over the time, PR #2 to PR #5 will fail and their PEs
and PUs have to use one of the remaining PRs. This
is the intended behaviour and works (as illustrated in
section VI), but eventually results in all components using
PR #1 – which is always available. In particular, PR #1
will become PR-H of all PEs and be responsible for their
monitoring (using ASAP Endpoint Keep-Alives) as well
as propagating their PE entries to the other PRs (using
ENRP Handle Updates). That is, all management tasks
– which also have a certain computational overhead, as
shown by [2] – are concentrated on a single PR. Even
when the PR problems are solved and all PRs become
online again, the situation is not changed quickly: PEs
using PR #1 have no reason to rechange their PR-H,
so they keep using PR #1. Only when the connection
between PE and PR is broken, a PE decides to choose
another PR.

B. A Simple and Efficient Solution

A method to distribute PEs among PRs is presented
by [21]: the usage of the P2P algorithm Chord [22].



However, as explained in section V, the number of PRs
is usually rather small in comparison to P2P nodes.
Therefore, using a complex P2P algorithm like Chord
seems to be an extreme overkill for the lightweight [2]
RSerPool architecture. Instead, we propose a significantly
simpler – but quite effective – approach: on registration
of a PE i, a PR-H π1 decides whether it is the most
“appropriate” PR for this PE:

• If it is the most “appropriate” PR, there is nothing
else to do.

• Otherwise, if there is a PR π2 which is “better”, this
PR π2 will be suggested to take over PE i.

This takeover suggestion is signalled within the ENRP
Handle Update message by setting a bit which we call
Takeover Suggestion Flag. We denote our approach there-
fore as Takeover Suggestion.

To find the most “appropriate” PR π∗i for PE i, we
simply apply an XOR metric: PR π∗i is the PR of the
operation scope where π∗i XOR i is maximal. This
approach only requires the identification of the PR π∗i
upon registration of PE i (from a PR list containing
only very few entries). For the Takeover Suggestion
Flag, a currently unused bit in the ENRP Handle Update
message [3], [12] can be used, i.e. no new message types
or additional bandwidth overhead are required.

C. Evaluation

To show the effectiveness of our approach, figure 6
presents the results of a simulation varying the MTBF M
of PR #2 to PR #5, while PR #1 always stays available.
The solid lines represent the results without using the
Takeover Suggestion (τ=false, i.e. the current standard
behaviour), while the dotted lines show the results for
applying our Takeover Suggestion approach (τ=true).

First, the upper left-hand side plot of figure 6 presents
the user’s performance perspective: the handling speed.
As shown, using the Takeover Suggestion has no impact
on the user’s performance – in particular, it does not
decrease the handling speed for any of the three policies.
For instance, it also does not affect the system utilization
(which is not shown here, due to space limitations).

The impact on the number of sent ASAP Endpoint
Keep-Alives for each PR ρ is presented in the upper
right-hand plot of figure 6. Their number is indepen-
dent of the pool policy. Clearly, for τ=false (i.e. no
Takeover Suggestion), PR #1 (ρ=1) becomes responsible
for the monitoring of almost all PEs. Therefore, within
the 120min of simulation time, it has to send about
23,000 messages – while the other PRs almost have none
to send (represented here by ρ=5 for PR #5; PRs #2
to #4 behave similarly; their curves have been omitted for
enhancing readability). Note, that the number of Endpoint
Keep-Alives depends on pool size and keep-alive interval.
For large pools with high intervals – which is useful
for certain applications [5] – their number would be
significantly higher. Using Takeover Suggestion (τ=true),
the desired behaviour is achieved: the other PRs – when
online – take over some monitoring workload. In the

example simulation at M=1000s, the workload of PR #1
already sinks from about 15,000 messages to about 5,000.

The number of ASAP Registration and ENRP Handle
Update messages depends on the policy: using an adaptive
policy, there is the need for a PE to re-register at its PR-H
– as well as handlespace synchronization to other PRs –
upon each policy information update (e.g. changed load
state in case of LU). Therefore, the plots for the number
of processed ASAP Registrations (lower left-hand side
of figure 6) and the number of handled ENRP Handle
Updates (lower right-hand side) present the results for LU
– i.e. the most difficult case – only. Since PR #1 takes
ownership of almost all PEs without using Takeover Sug-
gestion (i.e. τ=false), there will be a significant registra-
tion workload on PE #1 (i.e. ρ=1): more than 115,000 reg-
istrations within 120min of simulation time for M=200s
– and still about 80,000 registrations for M=1000s. At
the same time, the registration workload of the other PRs
(represented by PR #5, i.e. ρ=5; PRs #2 to #4 behave
similarly) is quite small. As shown by [2], the registration
operation is relatively expensive: it not only consists
of the handlespace management itself, but also requires
maintaining an SCTP association to each owned PE.
Using Takeover Suggestion (i.e. τ=true), the registration
workload keeps reasonably balanced: at M >700, there
remains only a small difference between PR #1 and the
other PRs.

The results for the number of ENRP Handle Updates
processed by each PR (lower right-hand side of figure 6)
corresponds to the observations for the ASAP Registra-
tions: using Takeover Suggestion (i.e. τ=true), the effort is
reasonably balanced – while for τ=false PR #5 (as well
as PR #2 to PR #4, which are not shown here) mostly
synchronizes with PR #1 (i.e. many Handle Updates) and
PR #1 mostly handles ASAP Registrations (i.e. it sends
out ENRP Handle Updates, but does not have to handle
incoming Handle Updates from other PRs).

In summary, our Takeover Suggestion approach leads
to a significantly improved PR workload (i.e. monitoring
by keep-alives, ASAP registrations and ENRP update)
balancing, while not influencing the performance of the
RSerPool applications. Furthermore, it is – unlike the P2P
approach of [21] – very efficiently realizable.

VIII. CONCLUSIONS

In this paper, we have examined the PR redundancy
of RSerPool systems and identified the problem of unbal-
anced PR workload as a result of the PR failure handling.
Our Takeover Suggestion approach solves this problem,
without affecting the RSerPool application performance.
Furthermore, it is very simple and efficiently attained.

As a next step, we are going to realize our approach in
our RSerPool implementation RSPLIB, which is also the
IETF’s reference implementation [1, chapter 5]. Using this
implementation, we intend to perform real-world experi-
ments [23] on the PLANETLAB. The results of our RSer-
Pool research are contributed as an Internet Draft [24]
into the IETF’s standardization process, which has just
reached an important milestone in bringing RSerPool
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research to application by publication of its basic protocol
documents as RFCs. Our goal is to provide configuration
and optimization guidelines for application developers
and users of the IETF’s new RSerPool standard.
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