
A New Approach of Performance Improvement for
Server Selection in Reliable Server Pooling Systems∗

Xing Zhou
Hainan University, College of Information Science and Technology

Renmin Road 58, 570228 Haikou, Hainan, China
University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstrasse 29, 45326 Essen, Germany
xing.zhou@uni-due.de

Thomas Dreibholz, Erwin P. Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstrasse 29, 45326 Essen, Germany
{thomas.dreibholz,erwin.rathgeb}@uni-due.de

Abstract

Reliable Server Pooling (RSerPool) is a light-weight pro-
tocol framework for server redundancy and session failover,
currently still under standardization by the IETF RSerPool
WG. While the basic ideas of RSerPool are not completely
new, their combination into a single, resource-efficient and
unified architecture is. Server redundancy directly leads to
the issues of load distribution and load balancing, which
are both important for the performance of RSerPool sys-
tems.

While there has already been some research on the
server selection policies of RSerPool, an interesting ques-
tion still remains open: Is it possible to further improve the
load balancing performance of certain policies by simply
letting servers reject inappropriately scheduled requests?
In this case, the failover handling mechanisms of RSerPool
could choose a possibly better server instead.

The purpose of this paper is, after presenting an outline
of the RSerPool framework, to analyse and evaluate the per-
formance of our new approach. In particular, we will also
analyse the impact of RSerPool protocol parameters on the
performance of the server selection functionalities as well
as on the overhead.

Keywords: Reliable Server Pooling, Redundancy, Load
Balancing, Performance Evaluation

∗Parts of this work have been funded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft).

1 Introduction and Scope

The Reliable Server Pooling (RSerPool) architec-
ture [11,18,28] currently under standardization by the IETF
RSerPool WG is an overlay network framework to pro-
vide server replication [7] and session failover capabili-
ties [3, 14] to its applications. Server redundancy leads to
load distribution and load balancing [24], which are also
covered by RSerPool [13, 15, 21]. But in strong contrast to
already available solutions in the area of GRID and high-
performance computing [22, 23], the fundamental property
of RSerPool is to be “light-weight”, i.e. it must be usable
on devices providing only limited memory and CPU re-
sources (e.g. embedded systems like telecommunications
equipment or routers). This property restricts the RSer-
Pool architecture to the management of pools and sessions
only, but on the other hand makes a very efficient realiza-
tion possible [4, 12, 16]. A generic classification of load
distribution algorithms can be found in [24]; the two most
important classes – also supported by RSerPool – are non-
adaptive and adaptive algorithms. Adaptive strategies base
their assignment decisions on the current status of the pro-
cessing elements and therefore require up-to-date informa-
tion. Non-adaptive algorithms – on the other hand – do not
require such status data. More details on such algorithms
can be found in [1, 27].

There has already been some research on the perfor-
mance of RSerPool usage for applications like SCTP-based
endpoint mobility [9, 10], VoIP with SIP [2], web server
pools [29], IP Flow Information Export (IPFIX) [8], real-
time distributed computing [6, 7, 14, 15, 19, 37] and bat-
tlefield networks [34]. A generic application model for
RSerPool systems has been introduced by [7,13], which in-
cludes performance metrics for the provider side (pool uti-



Figure 1. The RSerPool Architecture

lization) and user side (request handling speed). Based on
this model, the load balancing quality of different pool poli-
cies has been evaluated [7, 13, 21]. A question arisen from
these results is whether it is possible to improve the load
balancing by allowing servers to reject requests. In this case
the failover mechanisms of RSerPool could choose a possi-
bly better one instead. The goal of this paper is therefore
to evaluate the performance of this strategy, with respect to
the accruing overhead. We also identify critical configu-
ration parameter ranges in order to provide a guideline for
designing and configuring efficient RSerPool systems.

2 The RSerPool Protocol Framework

Figure 1 illustrates the RSerPool architecture as defined
in [28]. It contains three classes of components: in RSer-
Pool terminology, servers of a pool are called pool ele-
ments (PE), a client is denoted as pool user (PU). The hand-
lespace – which is the set of all pools – is managed by re-
dundant pool registrars (PR). Within the handlespace, each
pool is identified by a unique pool handle (PH). PRs of
an operation scope synchronize their view of the handle-
space using the Endpoint haNdlespace Redundancy Proto-
col (ENRP [36]), transported via SCTP [25, 26, 30, 33]. An
operation scope has a limited range, e.g. a company or or-
ganization. In particular, it is restricted to a single admin-
istrative domain – in contrast to GRID computing [22, 23]
– in order to keep the management complexity [12, 16] at a
minimum. Nevertheless, it is assumed that PEs can be dis-
tributed globally, for their service to survive localized dis-
asters [17].

PEs choose an arbitrary PR of the operation scope to reg-
ister into a pool by using the Aggregate Server Access Pro-
tocol (ASAP [31]), again transported via SCTP. Upon regis-
tration at a PR, the chosen PR becomes the Home-PR (PR-
H) of the newly registered PE. A PR-H is responsible for
monitoring its PEs’ availability by keep-alive messages (to

Figure 2. The Server Selection by PR and PU

be acknowledged by the PE within a given timeout) and
propagates the information about its PEs to the other PRs
of the operation scope via ENRP updates.

In order to access the service of a pool given by its PH, a
PU requests a PE selection from an arbitrary PR of the op-
eration scope, using the Aggregate Server Access Protocol
(ASAP [31]), transported via SCTP. As illustrated in fig-
ure 2, the PR selects the requested list of PE identities by
applying a pool-specific selection rule, called pool policy.
Adaptive and non-adaptive pool policies are defined in [32],
relevant to this paper are the non-adaptive policies Round
Robin (RR) and Random (RAND) as well as the adaptive
policy Least Used (LU). LU selects the least-used PE, ac-
cording to up-to-date load information; the actual definition
of load is application-specific. Round robin selection is ap-
plied among multiple least-loaded PEs [12]. Detailed dis-
cussions of pool policies can be found in [7, 13, 15, 17, 21].

The PU writes the list of PE identities selected by the
PR into its local cache (denoted as PU-side cache). From
the cache, the PU selects – again using the pool’s policy
– one element to contact for the desired service. The PU-
side cache constitutes a local, temporary and partial copy of
the handlespace. Its contents expire after a certain timeout,
denoted as stale cache value. In many cases, the stale cache
value is simply 0s, i.e. the cache is used for a single handle
resolution only [13].

3 Quantification and Performance Metrics

In order to evaluate the performance of an RSerPool sys-
tem, it is necessary to quantify it. We therefore extend the
model of [13], in which the service provider side of a RSer-
Pool system consists of a pool of PEs. Each PE has a request
handling capacity, which we define in the abstract unit of
calculations per second. Depending on the application, an
arbitrary view of capacity can be mapped to this definition,
e.g. CPU cycles or memory usage. Each request consumes a
certain number of calculations, we call this number request



Figure 3. The Processing of Requests

Figure 4. Request Handling by the Pool User

size. A PE can handle multiple requests simultaneously, in a
processor sharing mode as commonly used in multi-tasking
operating systems. An illustration can be found in figure 3.
The maximum number of simultaneously handled requests
is limited by the parameter MaxRequests. If reached, any
further request is rejected.

On the user side, there is a set of PUs. The number of
PUs can be given by the ratio between PUs and PEs (PU:PE
ratio), which defines the parallelism of the request handling.
Each PU generates a new request in an interval denoted as
request interval. The requests are queued and sequentially
assigned to PEs, as illustrated in figure 4.

The total delay for handling a request dHandling is de-
fined as the sum of queuing delay dQueuing, startup delay
dStartup (dequeuing until reception of acceptance acknowl-
edgement) and processing time dProcessing (acceptance until
finish):

dHandling = dQueuing + dStartup + dProcessing. (1)

That is, dHandling not only incorporates the time required
for processing the request, but also the latencies of queuing,
server selection and protocol message transport.

The handling speed (in calculations/s) is defined as:

handlingSpeed =
requestSize
dhandling

.

For convenience reasons, the handling speed can also be
represented in % of the average PE capacity. Clearly, the
main user-side performance metric is the handling speed
and should of course be as high as possible. A secondary
performance metric is the number of handle resolutions at a
PR per request. This overhead – consuming time and net-
work bandwidth – should be kept small.

Figure 5. The Simulation Setup

Using the definitions above, the system utilization can be
delineated as:

systemUtilization = puToPERatio ∗
requestSize

requestInterval

peCapacity
(2)

Obviously, the provider-side performance metric is the sys-
tem utilization, since only utilized servers gain revenue.
In practise, a well-designed client/server system is dimen-
sioned for a certain target system utilization, e.g. 80%. That
is, by setting any two of the parameters (PU:PE ratio, re-
quest size and request interval), the value of the third one
can be calculated using equation 2. See also [7,13] for more
details on this subject.

4 Setup Simulation Model

For the performance analysis, the RSerPool simulation
model RSPSIM [7, 13] has been used. This model is based
on the OMNET++ [35] simulation environment and con-
tains the protocols ASAP [31] and ENRP [36], a PR module
and PE as well as PU modules for the request handling sce-
nario defined in section 3. Network latency is introduced
by link delays only. Therefore, only the network delay is
significant. The latency of the pool management by PRs is
negligible [12, 16].

Unless otherwise specified, the basic simulation setup –
which is also presented in figure 5 – uses the following pa-
rameter settings:

• The target system utilization is 80%.

• Request size and request interval are randomized using
a negative exponential distribution (in order to provide
a generic and application-independent analysis).

• There are 10 PEs; each providing a capacity of 106 cal-
culations/s (i.e. we use a homogeneous capacity distri-
bution).

• No network latency is used (we will examine the im-
pact of delay in subsection 5.4).



• We use a single PR only, since we do not examine fail-
ure scenarios here (see [13] for the impact of multiple
PRs).

• The simulated real-time is more than 60 minutes; each
simulation run is repeated at least 24 times with a dif-
ferent seed in order to achieve statistical accuracy.

GNU R has been used for the statistical post-processing
of our results – including the computation of 95% confi-
dence intervals – and plotting. Each resulting plot shows
the average values and their corresponding confidence in-
tervals.

5 Performance Analysis

In [13], we have already evaluated the load balancing
capabilities of the LU, RR and RAND policies in situations
where a PE accepts as many requests as offered. The in-
teresting question arisen from the previous research results
has been whether it is possible to improve the system per-
formance by limiting the number of requests a PE is able to
accept. The goal of the following simulations is to find out
in which situation such a limit can be beneficial.

5.1 A Proof of Concept

In order to provide a first proof of concept for the use-
fulness of a requests limit, we have varied MaxRequests x
for the PU:PE ratios r=1 to r=10 and the request size:PE
capacity ratio s=5. The performance results are presented
in figure 6; the left-hand part shows the system utilization,
the middle one the handling speed and the right-hand one
the number of handle resolutions per request (we will also
use this three-plots structure for the following figures).

For the system utilization, there is a clear impact of the
MaxRequests setting for the PU:PE ratio of r=1. As al-
ready shown in [13, 15], a small ratio r is critical: at r=1,
each PU expects to get a PE exclusively. Therefore, the per-
formance of RR and RAND is lower than for LU – since
there is no knowledge about PE load states. This leads
to a low performance if MaxRequests is too high: some
PEs may remain idle while others have to perform mul-
tiple requests in parallel. That is, using a low setting of
MaxRequests leads to a better distribution of the requests,
which in turn also results in a significantly improved han-
dling speed.

Note, that even the handling speed of LU is improved
for MaxRequests x=1 and r > 1: x=1 enforces requests
to be handled exclusively – even if there are more PUs in
startup state than PEs available. However, while the sys-
tem performance is clearly improved by a low setting of
MaxRequests, the number of handle resolutions per re-
quest also increases: for each rejected request, a new trial is
necessary. But before we will address this handle resolution
overhead later in subsection 5.3, it is necessary to observe

and explain the impact of the workload parameters in more
detail.

5.2 Changing Workloads

5.2.1 PU:PE Ratio

The PU:PE ratio r is the most critical workload parameter;
figure 7 shows the performance results for its variation (the
request size:PE capacity ratio s has been 5 again). Clearly,
the higher r, the better utilization and handling speed – as
expected from the results in [13]. Furthermore, a smaller
setting of MaxRequests x leads to an improved perfor-
mance: inappropriate choices of PEs are avoided, even for
the LU policy. However, x=1 and r>1 also leads to a sig-
nificantly increased request rejection rate – and therefore
much more overhead for querying the PR. The reason for
the overhead increasing with r is that there are frequently
more requests in processing/startup phase than the number
of PEs. That is: for r>1, a setting of x>1 is recommended
to keep the overhead small – which results in configuring a
trade-off between overhead reduction and performance im-
provement.

5.2.2 Request Size

The results of varying the request size:PE capacity ratio s
(for r=1, since this is the most critical setting) are presented
in figure 8. As expected from [13], the utilization for all
policies slightly decreases with s, while the handling speed
slightly increases (due to reduced queuing of longer re-
quests). Comparing with MaxRequests x=3, it can clearly
be observed that the performance is significantly improved
by x=1 – as already expected from the previous results. The
rejection rate (and therefore the handle resolution overhead)
keeps quite constant for different settings of s: for load dis-
tribution, it does not matter how long the request is. In gen-
eral, only the degree of parallelism – i.e. the number of PUs
– is relevant, as shown in subsubsection 5.2.1.

The most interesting part of the request size variation
analysis is the handling speed result for a small setting of s.
Here (i.e. from s=1 to s=5), a significant difference among
the three policies can be found: while LU still achieves
a high speed, the performance of RR and especially for
RAND significantly decays at x=3. The reason for this be-
haviour is the load distribution quality of the policies: at
x=1, RAND has the highest chance to get its request re-
jected, while RR is somewhat better and the best result is
achieved by LU (due to knowledge of the current PE load
states, see also [13]). For each rejection, there is the average
delay of 100ms before retrying. In combination with a small
request size (and therefore a short processing time), the pro-
portion of the startup delay gains an increasing importance
in the overall request handling time (see equation 1). How-
ever, for larger requests (which do not influence the rejec-
tion rate) the delay penalty fraction of the request handling
time becomes negligible.



Figure 6. Limiting the Number of Requests

Figure 7. Changing the PU:PE Ratio

Figure 8. Changing the Request Size



Figure 9. Utilizing the PU-Side Cache

5.3 Overhead Reduction by Caching

In order to reduce the handle resolution overhead, it is
possible to utilize the PU-side cache. A new PE may di-
rectly be selected from the cache instead of querying a PR
first, according to the setting of the stale cache value c.
The results of varying c (given as ratio between the actual
stale cache value and the request size:PE capacity ratio) for
s=5 (i.e. not to critical for RR and RAND; see subsubsec-
tion 5.2.2) and MaxRequests x=1 is presented in figure 9.
Since the utilization is always at 80% for all policies and
settings of r, we have omitted a corresponding plot and in-
stead show the request acceptance rate on the left-hand side.

As already expected from the results in subsubsec-
tion 5.2.1, the handling speed for a PU:PE ratio r=3
is clearly better than for r=1. However, due to
MaxRequests x=1, the acceptance rate of requests is sig-
nificantly lower, leading to a much higher number of handle
resolutions per request if the cache is turned off (i.e. c=0).

Obviously, using the PU-side cache (i.e. c > 0) leads
to a significant reduction of the number of handle resolu-
tions. However, the cache utilization slightly affects the sys-
tem performance: For LU, the acceptance rate decreases:
the higher c, the older the load state information in the
cache. That is, the selection decision may be based on al-
ready out-of-date PE information. In this case, an additional
trial may become necessary, leading to the 100ms rejection
penalty and therefore implying a decreased handling speed
(although small, since the penalty compared with the re-
quest size is small for s=5; see also subsubsection 5.2.2).

While RR achieves a better performance than RAND for
c=0 (i.e. without cache), the situation changes when the
cache is utilized. Without cache, only the PR performs RR
selections and the overall view of the selections is Round
Robin. However, each PU-side cache constitutes an own
selection instance which independently performs its own
Round Robin selections. In this case, the global selection
view will not be “in turn” any more. Even worse, it will
not just degrade to random selection, but perform a system-

atic selection of possibly already loaded PEs. For exam-
ple at r=1, there will be 11 selection instances: the PR and
10 PEs. This leads to a systematic selection of loaded PEs
and therefore to a reduced handling speed: if the PR selects
{PE #1, PE #2, PE #3} for PU ϕ, a subsequent selection for
PU ψ will contain {PE #2, PE #3, PE #4} (the step size for
RR should always be 1, for the reasons described in [19]).
That is, after the request for PU ϕ has been completed on
PE #1, it will use PE #2 (selected from its cache) – which
may still be in use by PU ϕ!

As an upshot of this section, the cache is beneficial for
reducing the handle resolution in case of request rejections;
in particular when using the RAND policy. But while it
only has a small impact on LU, the performance of RR de-
grades below the level of RAND. Therefore, the cache acts
counterproductively to RR.

5.4 The Impact of Network Delay

Although the network latency for RSerPool systems is
negligible in many cases (e.g. if all components are situ-
ated on the same premises), there are some scenarios where
components are distributed globally [17]. It is therefore
also necessary to consider the impact of network delay on
the system performance. Clearly, network latency only
becomes significant for small request size:PE capacity ra-
tios s. Therefore, figure 10 presents the performance results
of varying the delay for s=1 and a PU:PE ratio r=3 (since a
combination of r=1, s=1 is already too critical for RR and
RAND; see subsubsection 5.2.2 and also [13]).

While there is no impact on the utilization as long as the
delay is not too high, the latency clearly reduces the han-
dling speed. Furthermore, the higher the network latency d,
the more costly are request rejections and distribution re-
tries: the time for querying the PR and contacting the cho-
sen PE is increased. This time is added to the already exist-
ing average retry delay of 100ms. As a result, the handling
speed for MaxRequests x=1 falls short of x ≥ 3 at a certain
point – already at d ≥ 37.5 for LU, at d ≥ 50 for RAND



Figure 10. The Impact of Network Delay

and at d ≥ 100 for RR. From these points, the penalty on
rejected requests exceeds the performance benefit of the im-
proved load balancing.

Since the load balancing quality of LU is superior in
comparison with RR and RAND, the handling speed ben-
efit of a requests limitation is only small: e.g. 59% at x=1
vs. 53% at x=3 for d=10ms. On the other hand, the speed
for RR and RAND is significantly improved (due to their
less optimal load balancing) – for a broad range of network
delays.

As a result, using a small setting of MaxRequests x for
RR and RAND is also useful if there is a significant network
delay. But further improving the performance of LU is only
possible if the latency is small. Otherwise, the request limi-
tation may act counterproductively.

6 Conclusions

In summary, this paper has indicated that it is possible
to improve the request handling performance of RSerPool
systems by setting the per-PE limit MaxRequests for the
maximum number of simultaneously handled requests – in
particular for a low (i.e. critical) setting of the PU:PE ratio.
The configuration of MaxRequests is a trade-off between
performance improvement and handle resolution overhead.
In order to reduce the overhead, the PU-side cache can be
utilized. However, the usage of the cache also decreases the
request acceptance rate for LU and leads to a performance
worse than RAND for the RR policy. That is, the cache
is mainly useful for the RAND policy only. We have also
shown that our approach is useful if there is a significant
network delay – in particular for RR and RAND.

As part of our ongoing research, we have also realized
and evaluated our approach in scenarios of heterogeneous
server capacities [38]. Furthermore, we are currently also
validating our simulative performance results in real-life
scenarios by using our RSerPool prototype implementation
RSPLIB [5,7,17,20] in the PLANETLAB; first results can be
found in [7, 17].

References

[1] M. Colajanni and P. S. Yu. A Performance Study of Robust
Load Sharing Strategies for Distributed Heterogeneous Web
Server Systems. IEEE Transactions on Knowledge and Data
Engineering, 14(2):398–414, 2002.

[2] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen.
Reliable IP Telephony Applications with SIP using RSer-
Pool. In Proceedings of the State Coverage Initiatives,
Mobile/Wireless Computing and Communication Systems II,
volume X, Orlando, Florida/U.S.A., July 2002. ISBN 980-
07-8150-1.

[3] T. Dreibholz. An Efficient Approach for State Sharing in
Server Pools. In Proceedings of the 27th IEEE Local Com-
puter Networks Conference (LCN), pages 348–352, Tampa,
Florida/U.S.A., Oct. 2002. ISBN 0-7695-1591-6.

[4] T. Dreibholz. Policy Management in the Reliable Server
Pooling Architecture. In Proceedings of the Multi-Service
Networks Conference (MSN, Cosener’s), Abingdon, Ox-
fordshire/United Kingdom, July 2004.

[5] T. Dreibholz. Das rsplib–Projekt – Hochverfügbarkeit mit
Reliable Server Pooling. In Proceedings of the LinuxTag,
Karlsruhe/Germany, June 2005.

[6] T. Dreibholz. Applicability of Reliable Server Pool-
ing for Real-Time Distributed Computing. Internet-Draft
Version 03, IETF, Individual Submission, June 2007.
draft-dreibholz-rserpool-applic-distcomp-03.txt, work in
progress.

[7] T. Dreibholz. Reliable Server Pooling – Evaluation, Opti-
mization and Extension of a Novel IETF Architecture. PhD
thesis, University of Duisburg-Essen, Faculty of Economics,
Institute for Computer Science and Business Information
Systems, Mar. 2007.

[8] T. Dreibholz, L. Coene, and P. Conrad. Reliable Server
Pooling Applicability for IP Flow Information Exchange.
Internet-Draft Version 04, IETF, Individual Submission,
June 2007. draft-coene-rserpool-applic-ipfix-04.txt, work in
progress.

[9] T. Dreibholz, A. Jungmaier, and M. Tüxen. A new Scheme
for IP-based Internet Mobility. In Proceedings of the 28th
IEEE Local Computer Networks Conference (LCN), pages
99–108, Königswinter/Germany, Nov. 2003. ISBN 0-7695-
2037-5.



[10] T. Dreibholz and J. Pulinthanath. Applicability of Reli-
able Server Pooling for SCTP-Based Endpoint Mobility.
Internet-Draft Version 02, IETF, Individual Submission,
June 2007. draft-dreibholz-rserpool-applic-mobility-02.txt,
work in progress.

[11] T. Dreibholz and E. P. Rathgeb. An Application Demonstra-
tion of the Reliable Server Pooling Framework. In Proceed-
ings of the 24th IEEE INFOCOM, Miami, Florida/U.S.A.,
Mar. 2005. Demonstration and poster presentation.

[12] T. Dreibholz and E. P. Rathgeb. Implementing the Re-
liable Server Pooling Framework. In Proceedings of the
8th IEEE International Conference on Telecommunications
(ConTEL), volume 1, pages 21–28, Zagreb/Croatia, June
2005. ISBN 953-184-081-4.

[13] T. Dreibholz and E. P. Rathgeb. On the Performance of
Reliable Server Pooling Systems. In Proceedings of the
IEEE Conference on Local Computer Networks (LCN) 30th
Anniversary, pages 200–208, Sydney/Australia, Nov. 2005.
ISBN 0-7695-2421-4.

[14] T. Dreibholz and E. P. Rathgeb. RSerPool – Providing
Highly Available Services using Unreliable Servers. In Pro-
ceedings of the 31st IEEE EuroMirco Conference on Soft-
ware Engineering and Advanced Applications, pages 396–
403, Porto/Portugal, Aug. 2005. ISBN 0-7695-2431-1.

[15] T. Dreibholz and E. P. Rathgeb. The Performance of Re-
liable Server Pooling Systems in Different Server Capacity
Scenarios. In Proceedings of the IEEE TENCON ’05, Mel-
bourne/Australia, Nov. 2005. ISBN 0-7803-9312-0.

[16] T. Dreibholz and E. P. Rathgeb. An Evalulation of the Pool
Maintenance Overhead in Reliable Server Pooling Systems.
In Proceedings of the IEEE International Conference on Fu-
ture Generation Communication and Networking (FGCN),
Jeju Island/South Korea, Dec. 2007.

[17] T. Dreibholz and E. P. Rathgeb. On Improving the Per-
formance of Reliable Server Pooling Systems for Distance-
Sensitive Distributed Applications. In Proceedings of the 15.
ITG/GI Fachtagung Kommunikation in Verteilten Systemen
(KiVS), Bern/Switzerland, Feb. 2007.

[18] T. Dreibholz and E. P. Rathgeb. Towards the Future Inter-
net – A Survey of Challenges and Solutions in Research and
Standardization. In Proceedings of the Joint EuroFGI and
ITG Workshop on Visions of Future Network Generations
(EuroView), Würzburg/Germany, July 2007. Poster presen-
tation.

[19] T. Dreibholz, E. P. Rathgeb, and M. Tüxen. Load Distribu-
tion Performance of the Reliable Server Pooling Framework.
In Proceedings of the 4th IEEE International Conference on
Networking (ICN), volume 2, pages 564–574, Saint Gilles
Les Bains/Reunion Island, Apr. 2005. ISBN 3-540-25338-
6.

[20] T. Dreibholz and M. Tüxen. High Availability using Reli-
able Server Pooling. In Proceedings of the Linux Conference
Australia (LCA), Perth/Australia, Jan. 2003.

[21] T. Dreibholz, X. Zhou, and E. P. Rathgeb. A Perfor-
mance Evaluation of RSerPool Server Selection Policies in
Varying Heterogeneous Capacity Scenarios. In Proceed-
ings of the 33rd IEEE EuroMirco Conference on Software
Engineering and Advanced Applications, pages 157–164,
Lübeck/Germany, Aug. 2007. ISBN 0-7695-2977-1.

[22] I. Foster. What is the Grid? A Three Point Checklist. GRID
Today, July 2002.

[23] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Phys-
iology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration. Grid Service Infrastructure
WG, Global Grid Forum, June 2002.

[24] D. Gupta and P. Bepari. Load Sharing in Distributed Sys-
tems. In Proceedings of the National Workshop on Dis-
tributed Computing, Jan. 1999.

[25] A. Jungmaier. Das Transportprotokoll SCTP. PhD the-
sis, Universität Duisburg-Essen, Institut für Experimentelle
Mathematik, Aug. 2005.

[26] A. Jungmaier, E. P. Rathgeb, and M. Tüxen. On the Use
of SCTP in Failover-Scenarios. In Proceedings of the State
Coverage Initiatives, Mobile/Wireless Computing and Com-
munication Systems II, volume X, Orlando, Florida/U.S.A.,
July 2002. ISBN 980-07-8150-1.

[27] O. Kremien and J. Kramer. Methodical Analysis of Adaptive
Load Sharing Algorithms. IEEE Transactions on Parallel
and Distributed Systems, 3(6), 1992.

[28] P. Lei, L. Ong, M. Tüxen, and T. Dreibholz. An Overview
of Reliable Server Pooling Protocols. Internet-Draft Version
02, IETF, RSerPool Working Group, July 2007. draft-ietf-
rserpool-overview-02.txt, work in progress.

[29] S. A. Siddiqui. Development, Implementation and Eval-
uation of Web-Server and Web-Proxy for RSerPool based
Web-Server-Pool. Master’s thesis, University of Duisburg-
Essen, Institute for Experimental Mathematics, Nov. 2006.

[30] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol.
Standards Track RFC 2960, IETF, Oct. 2000.

[31] R. Stewart, Q. Xie, M. Stillman, and M. Tüxen. Aggre-
gate Server Access Protcol (ASAP). Internet-Draft Version
16, IETF, RSerPool Working Group, July 2007. draft-ietf-
rserpool-asap-16.txt, work in progress.

[32] M. Tüxen and T. Dreibholz. Reliable Server Pooling Poli-
cies. Internet-Draft Version 05, IETF, RSerPool Working
Group, July 2007. draft-ietf-rserpool-policies-05.txt, work
in progress.

[33] E. Unurkhaan. Secure End-to-End Transport - A new secu-
rity extension for SCTP. PhD thesis, University of Duisburg-
Essen, Institute for Experimental Mathematics, July 2005.

[34] Ü. Uyar, J. Zheng, M. A. Fecko, S. Samtani, and P. Con-
rad. Evaluation of Architectures for Reliable Server Pool-
ing in Wired and Wireless Environments. IEEE JSAC Spe-
cial Issue on Recent Advances in Service Overlay Networks,
22(1):164–175, 2004.

[35] A. Varga. OMNeT++ Discrete Event Simulation System
User Manual - Version 3.2. Technical University of Bu-
dapest/Hungary, Mar. 2005.

[36] Q. Xie, R. Stewart, M. Stillman, M. Tüxen, and A. Silver-
ton. Endpoint Handlespace Redundancy Protocol (ENRP).
Internet-Draft Version 16, IETF, RSerPool Working Group,
July 2007. draft-ietf-rserpool-enrp-16.txt, work in progress.

[37] Y. Zhang. Distributed Computing mit Reliable Server Pool-
ing. Master’s thesis, Universität Essen, Institut für Experi-
mentelle Mathematik, Apr. 2004.

[38] X. Zhou, T. Dreibholz, and E. P. Rathgeb. Evaluation of
a Simple Load Balancing Improvement for Reliable Server
Pooling with Heterogeneous Server Pool. In Proceedings
of the IEEE International Conference on Future Generation
Communication and Networking (FGCN), Jeju Island/South
Korea, Dec. 2007.


	Introduction and Scope
	The RSerPool Protocol Framework
	Quantification and Performance Metrics
	Setup Simulation Model
	Performance Analysis
	A Proof of Concept
	Changing Workloads
	PU:PE Ratio
	Request Size

	Overhead Reduction by Caching
	The Impact of Network Delay

	Conclusions

