
Eclipse: A New Dynamic
Delay-based Congestion Control Algorithm

for Background Traffic

Hakim Adhari∗, Thomas Dreibholz§, Sebastian Werner∗, Erwin Paul Rathgeb∗

∗University of Duisburg-Essen, Institute for Experimental Mathematics
Ellernstraße 29, 45326 Essen, Germany

{hakim.adhari, sebastian.werner, erwin.rathgeb}@iem.uni-due.de
§Simula Research Laboratory, Centre for Resilient Networks and Applications

Martin Linges vei 17, 1364 Fornebu, Norway
dreibh@simula.no

Abstract—Initially, the Internet transport protocol TCP has
been designed to provide a “best effort” service: it is meant
to share the network resources with other users and applica-
tions. However, there is nowadays also a growing demand for
transmitting big amounts of data in the background, namely
background transport that uses spare capacity, but with minimal
effect on other traffic. For instance, systems can proactively
download content that the user/system would need in the future
(e.g. update packages, video files, etc.). Efforts have therefore
been made in the IETF for the sake of such a service with
Low Extra Delay Background Traffic (LEDBAT) congestion
control. While LEDBAT works in some cases, there are however
known situations where it causes serious performance problems,
particularly in combination with the ubiquitous bufferbloat for
example in current broadband networks.

In this paper, we analyse the issues of LEDBAT and propose a
new approach for background traffic. Inspired by an astronomical
event, we have named this approach Eclipse. Unlike LEDBAT,
Eclipse can dynamically adapt to the network characteristics
not only to minimise the additional network delay but also to
maximise the utilisation of spare network capacity. We will show
the usefulness of Eclipse by simulations.1

I. INTRODUCTION

The origins of the Internet date back to a small research
network with a limited number of applications and users.
During the last few decades, it evolved to a huge global system
of interconnected computer networks. With the popularity of
this network, especially for normal end-users, the applications
and use case diversity have become huge. Nowadays, it is
normal that users run multiple applications simultaneously, e.g.
by making a VoIP call while synchronizing files to a cloud
provider. In many cases, traffic can be considered either as
foreground service (e.g. VoIP) or background service (e.g.
file synchronisation). Clearly, the background traffic should
not only minimise interferences (bandwidth and also delay)
with the foreground traffic, but also maximise the utilisation
of spare network capacity.

There are several approaches that tried to reach these goals,
most notably delay-based congestion control (CC) mecha-
nisms. In contrast to loss-based, where packet loss is the major

1Parts of this work have been funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft – DFG) and the Research Council of
Norway (Forskingsrådet), prosjektnummer 208798/F50.

sign used to detect congestion, delay-based CCs assume that
a delay increase is an early sign of congestion and adapt their
sending rate according to it. TCP-Nice [1] and TCP-LP [2]
are background protocols which make use of the round-trip
time (RTT) or the one-way delays (OWD), in order to be
able to use only the bandwidth that is not used by foreground
flows. Low Extra Delay Background Transport (LEDBAT) [3]
assumes that the increase of the queuing delay is an indicator
of congestion and adapts the transmission rate based on
the delay variation. Welzl et al. considered also background
protocols and defined the term of less-than-best-effort (LBE) as
a service that results in smaller bandwidth and/or delay impact
on standard TCP than standard TCP itself, while sharing a
bottleneck with it [4]. It is a more general term and also
includes background protocols in addition to other protocols
being designed for foreground traffic but would be treated
unfairly by TCP, e.g. protocols that have been designed for
high-speed networks, such as Vegas [5] or variants of it like
Fast TCP [6] or Code TCP [7].

[8] compared the throughput performance of LEDBAT [3],
TCP-Nice [1] and TCP-LP [2] by analysing their impact on
TCP-Reno traffic as well as the mutual impact of the protocols.
Particularly, the level of priority with respect to Reno has
been considered. In most cases, LEDBAT achieves the lowest
possible priority with respect to TCP-Nice and TCP-LP. Fur-
thermore, LEDBAT is the only background-specific protocol
where standardisation efforts have been made in the IETF.
Therefore, we have chosen LEDBAT as a base for developing
a solid background CC mechanism with a reasonable degree
of low-priority.

Multiple papers analysing the behaviour of LEDBAT exist,
such as [9] and [10], describing several issues. We will shortly
summarize them in Subsection II-B. After that, we will present
our new delay-based CC algorithm designed to handle back-
ground traffic. It is based on LEDBAT and proposes solutions
for how to deal with the issues related to it.

II. BASICS: HOW LEDBAT WORKS

The delay-based CC algorithm LEDBAT [3] assumes that
the increase of the queuing delay is a sign of congestion.
The queuing delay is estimated by OWD measurements. It
is admitted as the difference between the base delay and

the current delay measured. LEDBAT responds to a queuing
delay increase by decreasing its sending rate in order to avoid
congestion. In this way, LEDBAT is able to maintain a self-
induced queuing delay of a predetermined value that is called
Target.

A. Basic Design

LEDBAT uses timestamps of the segments in order to
calculate OWDs. After the reception of a segment, the receiver
calculates the OWD as the difference between the local and
the remote time stamp and sends the result to the sender. On
the sender side and after the reception of a new OWD, the
following computations are made:

current delay = OWD
base delay = min(base delay, current delay)

queuing delay = current delay − base delay
off target = (Target − queuing delay)/Target

cwnd + =
gain ∗ off target ∗ bytes n ack ∗ MSS

cwnd

Target denotes the maximum queuing delay that the algo-
rithm may cause in the network; off target is a normalised
value that makes the congestion window (cwnd) increase or
decrease proportionally to the difference between the current
queuing delay and the Target. Gain determines the rate at
which the cwnd responds to changes in the delay and is
here set to 1. Bytes n ack (bytes newly acknowledged) is
the amount of data that has just been acknowledged. The
maximum segment size (MSS) describes the size of the largest
segment that can be transmitted. As far as the base delays are
concerned, a base history is maintained with n elements (here
set to 10). In the history, every element represents the minimum
delay measured over a 60 seconds interval.

B. Issues Related to LEDBAT

[9], [10] show several issues of LEDBAT. The first flaw
is the fixed target queuing delay of by default 100 ms [3,
Subsection 3.3]. While this value is a reasonable choice for
fast networks with low base delay, and would keep the overall
delay in a suitable range for delay-sensitive transmissions, its
lack of flexibility does not offer much opportunity to optimise
the delay impact for other scenarios. In case of higher base
delays even 100 ms of additionally-induced queuing delay
could change the environment from suitable for delay-sensitive
transmissions to unsuitable ones.

The second flaw is the calculation of the base delay:
[3] defines base delay as the sum of constant delay components
and assumes that the queuing delay is always additive to the
end-to-end delay. LEDBAT then estimates the base delay as
the minimum delay observed over a certain interval. However,
buffers on a bottleneck link are most likely never completely
empty. As a result, the pre-existing queuing delay is risen by
100 ms instead of being kept at or below the Target. The flawed
base delay estimation thus may also lead to the latecomer
problem [9], causing an intra-protocol fairness issue.

Furthermore, LEDBAT keeps a history of base delay esti-
mations to select from. In order to adapt to routing changes,
LEDBAT forgets old values after 10 min. For long-term trans-
missions, this may result in severe problems: since LEDBAT

causes a constant delay impact, an undisturbed LEDBAT flow
will observe the true base delay only once. If this measurement
point is dropped from the history after 10 min, LEDBAT will
soon adopt its own induced queuing delay of 100 ms as part
of the base delay and add its target queuing delay again. At
this stage LEDBAT will increase its sending rate to reach its
new target delay, which will be approximately 100 ms above
the last stable point. This may in turn cause high delays on
the links, especially in case of bufferbloat as an example while
dealing with mobile broadband networks [11]–[13].

III. THE ECLIPSE CONGESTION CONTROL

Based on the lessons learned from LEDBAT, we have
designed Eclipse, our new CC algorithm for background traffic.
Its goal is to maximise the utilisation of spare network capacity
by minimizing interferences with foreground traffic in terms of
throughput and delay. Eclipse performs OWD measurements,
maintains minimum and maximum values over a time inter-
val µ that is calculated based on delay variation tendencies.
Eclipse adds a minimal delay variation δ, which is calculated
as a small portion from the difference between maximum and
minimum delays. With it, it is ensured that Eclipse, under
normal circumstances, holds the buffer in a safe level and does
not push it to overflow. Therefore, it avoids packet loss.

A. How to Detect Congestion?

Eclipse bases its calculation on OWD measurements sim-
ilar to LEDBAT. However, in order to overcome the issues of
LEDBAT summarized in Subsection II-B, we decided to step
aside from a static target delay as well as from the base delay
confusion and to adopt a dynamical design, where the complete
OWD is calculated on the fly. Eclipse makes measurements
of OWDs and holds maximum (maxµ) and minimum (minµ)
values over the adaptation time interval µ (the µ calculation
will be introduced in Subsubsection III-C2). Based on minµ
and maxµ, smoothed values (s min and s max) are calculated
(as it will be explained in detail in Subsubsection III-C1).
We denote the complete delay that should be reached as
target owd. It is calculated as shown below:

target owd = δ + s min.

δ is a trigger which is used to adapt the cwnd to network
conditions. It is calculated as follows:

δ = (s max− s min) ∗ β.

β is the “early congestion indication threshold”, based on
TCP-LP [2] and TCP-Nice [1]. The threshold β represents
the fraction of the total queue capacity that starts to trigger
congestion. Concerning this parameter, small values are obvi-
ously advantageous in order to reach a lower priority level.
In fact, the lower β, the less aggressive is Eclipse while
sharing a bottleneck with other flows. However, the use of
very small β settings would lead to frequent delay oscillations.
This may be misinterpreted as congestion indication – even
if the network is only lightly loaded – and would cause
an unnecessary decrease of the sending rate. Based on the
experience with both protocols, TCP-LP and TCP-Nice, we
have decided to choose a small value in order to ensure a
degree of lower priority: based on the parameter study for
TCP-LP [2, Subsubsection II-D.2], we use a value of β=15%.

B. How to React on Congestion?

On every new OWD measurement, Eclipse computes:

current delay = OWD
δref = current delay− s min
δoff = (δ − δref)/δ

cwnd + = δoff ∗ bytes n ack ∗MSS/cwnd

In this case, δref is the difference between the current and the
minimum delay. δ is the delay deviation that the algorithm
intends to cause in this step. δoff is a normalised value that
increases or decreases the cwnd relatively to the difference
between the reference and the new δ. Bytes n ack (bytes
newly acknowledged) is the amount of data that has just been
acknowledged. The maximum segment size MSS describes the
largest segment size that can be transmitted. Unlike LEDBAT,
where the goal is to reach a fixed target queuing delay, Eclipse
intends to add a small and dynamically calculated portion of
the maximum queuing delay to the base. In this way, we assure
that Eclipse would only induce the minimum amount of delay
necessary to achieve maximum throughput – with the use of
only a small amount of buffer space and without pushing buffer
levels to a point where packet loss could occur.

C. How to Reach a Stable Behaviour?

The goal of Eclipse is to achieve a stable behaviour
without responding to temporary fluctuations. In order to have
a base for its calculation, Eclipse holds minimum (minµ) and
maximum (maxµ) OWD values for the last time interval µ.
The current minµ and maxµ are integrated in the smoothed
values s min and s max. We denote the way s min and s max
are computed as one-way smoothing. This will be further
explained in Subsubsection III-C1. The adaptation of the
smoothed values occurs at the end of the adaptation interval µ,
which is dynamically calculated. It is enlarged when competing
traffic is causing periodical variation of the delay (e.g., filling
and emptying of router buffers caused by a loss-based flow
on the bottleneck) in order to decrease the impact of these
interferences. In contradiction to this, µ is decreased when the
delay is stable, in order to be able to react to future changes
and to adopt them quickly as it will be explained in detail in
Subsubsection III-C2).

1) One-Way Smoothed Values: The one-way smoothing of
the values is different for minimum and maximum values.
For minimum delays, the calculation is performed as follows:
smaller OWDs overwrite s min, while higher values are partly
added to the history. Let us consider an example where a
new OWD τ has been received. Depending on the difference
between τ and the current s min, the calculation should be
performed in a different way. The case of τ > s min could
be understood as a new permanent change in the route, which
caused a higher constant delay. But τ does not have a large
impact on s min. However, a permanent topology modification
means that the next measurements would also be higher
and this would make s min converge to the characteristics
of the new topology after a certain amount of new OWD
measurements. If the higher value τ is an outlier, it would
just have a minor impact on the smoothed value and s min
would re-converge after a short time to the original value. In
contrast to this, the case of τ < s min is different, since a
smaller value is definitely a more realistic value, whether it
is caused by a topology modification or by buffer deflation.

Delay

Time

Figure 1. Adaptation Interval µ and Tendency Recognition

τ could, in this case, be directly adopted and overwrites the
minima history (s min). In summary:

• For t ∈ [t0, t0 + µ]:
◦ If τ > minµ ⇒ minµ = minµ
◦ If τ < minµ ⇒ minµ = τ
◦ If τ < s min⇒ s min = τ

• For t = t0 + µ:
If minµ > s min⇒ s min = (1−α)∗s min+α∗minµ

α ∈ [0, 1] is a smoothing factor. In this case, higher α
values can cause a better smoothing and more steady values.
Thus, it would be possible to filter out short-term outliers. On
the other hand, lower values make the smoothed value respond
faster to permanent changes. For the parameterisation of α
and in order to get a good balance between ignoring outliers
and reacting to changes, we decided to base on experiences
with RTT measurements and adopted the value of α = 1/8,
which is typically used for computing the smoothed RTT for
TCP [14]. We decided also to only use segments that have been
transmitted once, in order to get more accurate values and to
avoid the ambiguity created by retransmitted segments [14].

For the calculation of s max, higher values overwrite the
smoothed value, while lower values are added to the history:

• For t ∈ [t0, t0 + µ]:
◦ If τ < maxµ ⇒ maxµ = maxµ
◦ If τ > maxµ ⇒ maxµ = τ
◦ If τ > s max⇒ s max = τ

• For t = t0 + µ:
If maxµ < s max⇒ s max = (1− α) ∗ s max + α ∗
maxµ

2) Dynamic Calculation of the Adaptation Interval µ:
Clearly, it is important how long the algorithm should re-
member old OWDs. LEDBAT bases on a sliding window
mechanism (in most of the cases of length 10), where min-
imum values over one minute intervals are held. As explained
in Subsection II-B, this leads to base delay growth, while
dealing with long-lived flows or with late reactions to topology
changes. For Eclipse, we move away from these static values
as well as from the sliding window mechanism and adopt a
simpler way, based on a single time interval. Its length µ is
calculated on the basis of the network behaviour. The idea
behind this is to recognise the delay variation tendency and
to hide the variations between the minimum and maximum
values, measured within the old interval.

Learning phase Tendency recognized

Figure 2. Tendency Recognition for Reno and Eclipse Flow sharing a Bottleneck

S1

R1

D1

DnSn

R2

Figure 3. Simulation Topologies

Let us for instance consider the abstract example shown in
Figure 1. It represents the variation of the OWD values mea-
sured by Eclipse while sharing a bottleneck with a competing
Reno flow. The algorithm holds the minimum value during
an interval µ. At the end of µ, minµ is integrated into s min.
Choosing a non-convenient interval, such as [t0, t1], would lead
to minµ = τa which is higher than the real minimum (here: τb).
In the example shown, the interval [t2, t3], would lead to more
suitable minµ = τb and with it filter the variation caused by
the competing flow. The same would apply for the maximum
delay.

The adaptation interval µ is now calculated as follows:

µ = t maxµ − t minµ,

where t minµ is the time when the minimum delay (minµ)
has been observed. Similarly, t maxµ is the time when the
maximum delay (maxµ) has been measured. The difference
between the time when the maximum and the minimum has
been registered builds the base for the new interval.

Since at the end of the adaptation interval µ the s min
and s max values are calculated, the length of this interval
has a high impact on the behaviour of the algorithm. Figure 2
provides an example: here, two flows are sharing a bottleneck.
First a Reno flow is started, a few seconds later an Eclipse
flow is also scheduled. The figure shows the different delays
measured and calculated by Eclipse. This experiment shows
how far Eclipse is able to recognise the tendency. After a
short learning phase, µ is adapted to the network behaviour
and s min as well as s max almost stop reacting to undesired
delay changes caused by the Reno flow.

IV. SIMULATION SETUP

For the evaluation, we considered the topologies illustrated
in Figure 3. Here, two communication partners (S1 and D1)
are transferring data via a shared link. The complete capacity
of the core link is denoted as ρcore. The flow between S1

and D1 is denoted as F1. The bandwidth occupied by F1 is
denoted as B1. For concurrency evaluation experiments, this
topology can be extended with n-1 additional flows.

For our evaluation, we have utilised the OMNET++-
based INET framework. The CC mechanisms considered
in this paper have been implemented in the SCTP simu-
lation model [15], [16] with the real-time transport proto-
col (RTP) [17] model form [18]. Unless otherwise speci-
fied, the following parameters have been configured: the core
link capacity is ρcore=5 Mbit/s. The access link capacity is
ρn=100 Mbit/s. No additional delay has been added on the
links. FIFO queues with a maximum size of 100 packets have
been configured on the routers. The sender has been saturated
(i.e. it has tried to transmit as much data as possible); the
message size has been set to 1,452 bytes at an MTU of
1,500 bytes.

In the first part of the evaluation, the results are described
based on single runs in order to show the basic behaviour over
time. For parameter studies, 50 runs are performed in order to
ensure a sufficient statistical accuracy. The results plots show
the average values and their corresponding 95% confidence
intervals.

V. EVALUATION

In the following, we are going to evaluate our new CC by
showing to which extent it is able to efficiently utilise the spare
capacities with a minimum of self-induced delay and how it
deals with LEDBAT-specific issues, such as base delay growth,
the latecomer issue and inter-protocol fairness in general.

A. Use Only Spare Capacity

The first results of the evaluation are presented in Figure 4
and show the benefits of the Eclipse CC. The behaviour of
a flow using a background CC is different, depending on the
kind of the competing flow considered. In a first step, we have
concentrated on the competition with foreground flows. For
this purpose, a Reno flow is started first at t=0s. As long as
it stays alone on the link, the Reno flow is able to saturate
it. After 10 s, a second flow using the Eclipse CC is started.
Reno is quickly eclipsing the background flow. The Eclipse
flow is still sending a little amount of data (about 7% of the
throughput reached by the Reno flow). At t=25s, the Reno flow
was stopped, the Eclipse flow is continuing to send alone and
reaches almost the same rate as the Reno flow. At t=60s, a third
loss-based flow F3 is started. However, unlike the first two

Figure 4. Competition with Multiple Kinds of Foreground Flows

flows (F1 and F2), which have a high-capacity connection to
the router R1, the link between S3 and R1 has a lower capacity
(ρ3=1 Mbit/s). Here, the Eclipse flow behaves as expected.
Eclipse decreases its sending rate and is able to use the spare
capacity without influencing F3. At t=80s, the Eclipse flow
was stopped in order to show how much F2 was disturbing
F3. Here, the throughput reached by F3 remains the same with
or without the competing background flow F2 and shows the
background characteristics of the Eclipse flow.

B. Delay Benefits with Eclipse

In the next part of the evaluation, we highlight the delay
benefits related to Eclipse. In a first step, we describe its
cwnd behaviour, compare it to other CCs, namely Reno and
LEDBAT, and explain its influence on the delay characteristics.
For this purpose, each one of them has been started separately
and was sending without any competition. The cwnd results
are shown in Figure 5 for t ∈[0s,60s].

Even if all three CC were able use the link with the
same efficiency (i.e. about 600 KiB/s payload throughput), the
variation on the cwnd is different. Reno takes packet loss as the
only indication for congestion, assuming that the loss occurs
due to packets dropped in full router queues. Operation of loss-
based CC results in a periodical filling and emptying of router
buffers, which in turn leads to an analogous rise and fall of
the queuing delays. Contrarily to the loss-based mechanisms,
delay-based algorithms like LEDBAT and Eclipse consider
an increasing delay as an additional congestion indicator and
therefore regulate their sending rate early in response to filling
buffers. This results in a lower congestion window without re-
ducing the throughput with respect to the Reno flow. LEDBAT
is increasing its cwnd as long as the estimated queuing delay
is staying below the target (here: 100 ms, as recommended
by [3, Subsection 3.3]). Once the target is reached, the rate will
stabilise and the delay gets stabilised. Compared to Reno, the
lower delay induced by LEDBAT is already an improvement.
However, LEDBAT still adds, from the design point of view,
additional delay on the links, which is not always necessary.
Eclipse on the other hand is designed to cause as little delay
on the links as possible without having throughput penalties.

In the second step of this evaluation, the impact of Eclipse
on real-time traffic is considered and compared to other CCs.
In fact, the compatibility with real-time traffic is an important
goal of a background protocol, since real-time audio and video
streams have strict delay requirements and specific bandwidth
constraints. In this experiment, a constant bit rate RTP flow is

started at (t=0 s), having a frame rate of 25 Hz and frame
size of 20000 B (i.e. a payload bit rate of 4 Mbit/s). An
additional delay of 70 ms has been set on the bottleneck
link. In a first phase of the experiment, the RTP flow does
not stress the access link and is delivered at around the base
delay of 70 ms. At t=30 s, a second flow is started with a
bulk transfer (i.e. a saturated sender). In order to show the
impact of the different CCs, the CC of the second flow is
varied between Reno, LEDBAT and Eclipse. We observe the
end-to-end delay of the RTP messages to see if they remain
in an acceptable range for the media flow (see Figure 6(a)).
Since the end-to-end delay of the media data is coupled to
the delay of the concurrent flows, a delay increase is noticed
in all the cases: RTP-Reno, RTP-LEDBAT and RTP-Eclipse.
Particularly for the loss-based case (RTP-Reno), the delay is
pushed to a very high value that could make the RTP flow
unusable. In fact, when a flow using this CC is transmitting
along the same path as a real-time transmission, all flows
sharing the bottleneck suffer from the same queuing delay
curve. This may result in an intolerable delay for interactive
media communications [19]. The LEDBAT curve in this case
shows another issue related with this CC mechanism: from the
design point of view, LEDBAT adopts the Target = 100 ms as
a value that is supposed to be suitable for media flows [3],
[20]. While being reasonable in fast networks with a low base
delay, it lacks of flexibility in other scenarios, e.g. in case
of bufferbloat [21]. In this experiment, the RTP end-to-end
delay, originally around 70 ms, suffers an increase of about
100 ms after the LEDBAT flow is started and is pushed over
the suitable limit. LEDBAT in fact causes the pre-existing
delay to rise by 100 ms instead of keeping it at or below that
Target. This fact shows that LEDBAT’s choice to implement a
constant delay impact is more of a downside in delay-sensitive
environments. In contradiction to it, Eclipse considers the
complete end-to-end delay instead of only the queuing delay.
The target owd Eclipse intends to reach includes both, base
and queuing delay, and is a dynamical value that is adapted on
the fly to the network conditions. This makes Eclipse reach a
marginal self-induced delay and with it minimally influences
the RTP flow as shown in Figure 6(a).

The benefit related with Eclipse is also highlighted in the
next part of the evaluation. The figure shows the Inter-Frame
Arrival Time (IFAT), which is the time interval between two
successive frames. Since the source Video has a sample rate
of 25 Hz, each frame has a playback duration of around
40 ms (1 s

25 frames/s) and is sent at this interval to the receiver.
If the IFAT is unsteady, the video codec has to compensate

0 5 10 15 20 25 30 35 40 45 50 55 60

0
5

0
1

0
0

1
5

0

Time t [s]

C
W

N
D

 [
K

iB
]

Congestion Control ψ

ψ=Eclipse
ψ=LEDBAT
ψ=Reno

Figure 5. The Congestion Window of Different CCs while Alone on a Link

20 25 30 35 40 45 50 55 60

0
5

0
1

5
0

2
5

0
3

5
0

Time t [s]

O
W

D
 [

m
s
]

Congestion Control ψ

ψ=RTP−Eclipse
ψ=RTP−LEDBAT
ψ=RTP−Reno

(a) RTP End-to-End Delay

20 25 30 35 40 45 50 55 60

0
5

0
1

0
0

1
5

0
2

0
0

Time t [s]

IF
A
T

 [
m

s
]

Congestion Control ψ

ψ=RTP−Eclipse
ψ=RTP−LEDBAT
ψ=RTP−Reno

(b) RTP Inter-Frame Arrival Time (IFAT)

Figure 6. Impact of Different CCs on Real-Time Traffic

this delay by calculating a jitter and effects may range from
extra playback delay, which will eventually hurt real-time
communication, to dropped frames, which will cause stuttering
and image loss. Figure 6(b) shows that for the RTP flow the
IFAT is stable at around 40 ms while it is alone on the link
(t=0 s to t=30 s). After the second flow is started, beside the
very high values during the slow start phase of the Reno flow
(up to half a second), a periodical increasing of the IFAT values
can be observed, caused by the typical periodical filling and
emptying of router buffers that pushes the IFAT to intolerable
values. In contradiction to it, the values for both, LEDBAT
and Eclipse, are still around the expected value of 40 ms.

To sum up, LEDBAT and Eclipse have an IFAT value at
around 40 ms, which makes a playback without stuttering or
image loss possible. However, the high delay produced by
LEDBAT causes a high playback delay, which could result
in a serious disadvantage to real-time communication.

C. The Long-Term Behaviour

LEDBAT has difficulties handling flows running for a long
period of time, as explained in Subsection II-B. Depending on
the base history window length, minimum values are dropped
after a certain time span and the algorithm starts using newer
values. This makes LEDBAT adapt its base delay and adds
additional 100 ms for the end-to-end delay every 10 minutes.

In this subsection, we show how Eclipse handles this
issue. For this purpose, one LEDBAT and one Eclipse flow
have been started consecutively on a single path without
competition. To explicitly show the long-term behaviour of
both CC algorithms, the transmission time has been set to
2600 s. The results are shown in Figure 7, where we can
observe the variation of the end-to-end delay. In this scenario,
no additional delay has been configured on the links.

LEDBAT assumes that the queue is empty when it starts
sending. After a transient phase, it is able to stabilise the

Figure 7. Base Delay Growth for LEDBAT and the Improvement with Eclipse

delay at the sum of the base delay and the pre-defined Target
(here: 100 ms, as recommended by [3, Subsection 3.3]). Since
LEDBAT is only able to remember the minimum values that
have been measured in the last 10 minutes (60 s × 10 the
window length), it forgets the original minimum delay at
t=600 s and adopts the previously induced delay as its new
base delay. Therefore, the LEDBAT flow increases the induced
queuing delay by additional 100 ms. At t=1200s, LEDBAT
again measures the minimum of the last interval and tries to
add 100 ms to the overall delay. This time it exceeds the max-
imum rate supported by the buffer. Due to the now occurring
packet loss, LEDBAT falls back to the Reno behaviour and
halves its cwnd. As this back off does not completely empty
the buffer, no accurate base delay measurement can be obtained
and LEDBAT again exceeds the maximum router capacity by
adding its target delay, which again produces packet loss.

Contrarily to LEDBAT, Eclipse bases its calculation on the
last view of the network and does not need to hold older values.
In addition, the own induced delay is always a small portion
from the difference between the minimum and the maximum.
This means that the target owd is, under normal circumstances,
always below the maximum delay. This makes it unlikely that
an Eclipse flow fills up a router buffer completely and forces
it to start dropping packets. As can be seen in Figure 7, the
Eclipse flow reaches an average OWD of about 9.7 ms over
the complete measurement time.

D. Fairness between Eclipse Flows and the Latecomer Issue

One of the most known issues related to LEDBAT is the
latecomer advantage. In this subsection, we therefore analyse
the intra-protocol fairness. The way LEDBAT performs the
estimation of the base delay heavily depends on the start time
of the flow. In fact, while the first flow arriving at an empty
bottleneck correctly measures the base delay, a subsequent flow
accounts the queuing delay of the first one in its base delay
measurement, thus setting a higher target delay. Therefore, the
second flow will aggressively take over the target share of
the first one, eventually entering a possibly persistent unfair
state [9].

The unfairness effect can be easily observed in Subfig-
ure 8(a): here, we have started multiple flows and varied the
number of running flows every 30 s. While the first flow
(LEDBAT 1) is able to reach a reasonable throughput when
being alone on the link, the behaviour becomes unfair after
30 s as soon as LEDBAT 2 is started. After a short period of
time, LEDBAT 2 is claiming the biggest part of the bandwidth.

With LEDBAT 3 beginning to send, LEDBAT 2 is pushed over
its target and is forced to decrease its sending rate. After a
while, the maximum buffer size is reached and packet loss
occurs. Here, a smaller base delay is measured. However, it
is still including queuing delay and no fair distribution of the
bandwidth is reached.

In order to deal with this issue, Eclipse has been designed
with a focus on the intra-protocol fairness. It is designed to
cause an additional delay δ to the minimum delay measured
in the past short time period. The calculation of δ is based
on the difference between the maximum and minimum delay
measured in this time period µ. The value of µ is kept as small
as possible, in order to give an opportunity for new-coming
flows to converge to the same minimum and maximum seen
by older flows. This makes it possible for new flows to get
the same view on the network state and to measure the same
minimum and maximum values and with it to converge – after
a short transient phase – to the same throughput.

In order to demonstrate this effect, we repeated the same si-
mulation with the Eclipse CC. The results of this simulation are
shown in Subfigure 8(b). Obviously, the first flow (Eclipse 1) is
able to use the full capacity. At t=30s, Eclipse 2 is started. After
a short transient phase, the capacity is fairly shared between
both flows. The same is the case for 3 flows at t ∈[60s,90s].
At t=90s, Eclipse 1 is stopped, and the available capacity is
apportioned between Eclipse 2 and Eclipse 3. The same applies
for t ∈[120s,150s], where Eclipse 2 – now alone on the link
– is able to get all the capacity and at t ∈[150s,190s], where
both – Eclipse 2 and Eclipse 4 – each get half of the capacity.

E. Behaviour in a Large Aggregation Regime

In this last part of the evaluation, the behaviour of both
background CCs – LEDBAT and Eclipse – is compared in a
large aggregation regime in order to determine to which extent
they are able to fulfil the background goals when there are a
large number of foreground flows. In this setup, the topology
shown in Figure 3 is used again. The total number of flows
sharing the bottleneck consisted of nB background flows with
nB ∈ {1, 3} and nF foreground flows with nF ∈ [1..10]. All
flows are scheduled at different start times that are randomly
chosen between t=0.9 s and t=40 s. The simulation run time
has been 300 s. The data gathered during the first 60 s
is ignored in order to assure that all the flows are already
started and the system has converged to a stable state. The
results plots show the average values over 50 runs with their
corresponding 95% confidence intervals.

0 20 40 60 80 100 120 140 160 180

0
2

0
0

4
0

0
6

0
0

Time t [s]

T
h

ro
u

g
h

p
u

t
[K

iB
/s

]

Flow ψ

ψ=LEDBAT 1
ψ=LEDBAT 2
ψ=LEDBAT 3
ψ=LEDBAT 4

(a) LEDBAT

0 20 40 60 80 100 120 140 160 180

0
2

0
0

4
0

0
6

0
0

Time t [s]

T
h

ro
u

g
h

p
u

t
[K

iB
/s

]

Flow ψ

ψ=Eclipse 1
ψ=Eclipse 2
ψ=Eclipse 3
ψ=Eclipse 4

(b) Eclipse

Figure 8. Throughput of Multiple Simultaneous Eclipse/LEDBAT Flows

The results of the simulation are shown in Figure 9. This
simulation confirmed the fairness capabilities of the Reno
congestion control, since all Reno flows sharing the bottleneck
link were able to reach the same throughput values even for
higher nF values. For this reason, the graph was simplified
and only a representative curve (the red line) describing the
average throughput reached by all Reno flows for different
values of nF is shown in both subfigures.

In this analysis we decided to consider only the case of 1
and 3 background flows representing for example one host or
one host and two smart phones connected to a DSL router.
Obviously much more background flows could be started,
however it is very unlikely that all users are downloading
multiple videos and updates in the same time. The throughput
reached by one background flow or the average of all 3 flows
is described by the blue lines.

Subfigure 9(a) shows severe issues related with LEDBAT.
For nB = 1, LEDBAT is able to keep its cwnd in a stage where
the queues are still not fully occupied and only experience a
small number of losses. Here, only a small room for variation
remains for the Reno flows which are pushed to experience
too many losses, their windows is penalized and with it the
throughput decreased. For the number of foreground flows
growing on the bottleneck link, LEDBAT is not only unable to
stay in the background, but also shows severe fairness issues
by claiming more resources than the foreground flows. With
nB = 3, since every later coming LEDBAT flow tries to
add new self-induced delay on the link, all LEDBAT flows
are pushed out of the comfortable zone, run in a loss case
and fall back to standard loss-based TCP-compatible behavior.
For lower values of nF , we see that the foreground are still
getting the bigger part of the resources but they are are highly
influenced by background flows. For higher values of nF ,

all fore and background flows behave TCP-compatible and
converge to the same throughput.

In contradiction to it, as shown in Subfigure 9(b), Eclipse
shows in all combinations a stable behavor. Due to the dy-
namical adaptation of Eclipse to the network characteristics,
it is able to stay around a buffer level where it is unlikely to
experience losses. Even for the case of nB = 3, the Eclipse
curve shows small confidence intervals, which confirms the
intra-protocol fairness of Eclipse. In fact, all Eclipse flows ex-
perience similar maximum and minimum values and together
with the mechanisms explained in Section III-C, all Eclipse
flows are able to converge to the same values. The transparency
to foreground flows is here confirmed and beside of minimal
throughput values caused by the probing traffic of this protocol,
the Eclipse flow is able to stay in the background even for
higher values of nF .

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced Eclipse as a new con-
gestion control mechanism for background traffic. We do not
claim to have a perfect CC and certainly, there is room for
improvement. However, we are convinced that Eclipse could
bring a significant benefit for both, the end-users and the
network. That is; a “normal” end-user can easily make use
of it (e.g. for downloading system updates during a video
phone call). We are convinced that this mechanism can provide
a significant advantage for services such as cloud-based file
synchronisation or system updates.

In this work, we have presented a basic evaluation with
simulations. We are currently working on a more practical
evaluation, especially with measurements in real-world Internet
setups. Therefore, we are also going to analyse them in reality
in the NORNET testbed [22]–[24], a large-scale distributed

1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

Number of Foreground Flows nF

A
ve

ra
g

e
 T

h
ro

u
g

h
p

u
t

p
e

r
F

lo
w

 [
M

b
it
/s

]
Congestion Control ψ / Number of Background Flows nB

1: ψ=LEDBAT, nB=1
2: ψ=LEDBAT, nB=3
3: ψ=Reno, nB=1
4: ψ=Reno, nB=3

(a) LEDBAT

1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

Number of Foreground Flows nF

A
ve

ra
g

e
 T

h
ro

u
g

h
p

u
t

p
e

r
F

lo
w

 [
M

b
it
/s

]

Congestion Control ψ / Number of Background Flows nB

1: ψ=Eclipse, nB=1
2: ψ=Eclipse, nB=3
3: ψ=Reno, nB=1
4: ψ=Reno, nB=3

(b) Eclipse

Figure 9. Throughput of an Eclipse/LEDBAT Flow in the Existence of
multiple Simultaneous Foreground Flows

research platform in the Internet. Such a practical analysis is
finally also necessary in order to contribute our research results
into the IETF, in order to transfer our research to application.
Particularly, for our testbed analysis, we will also examine
multi-path transport aspects [25].

REFERENCES

[1] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: A Mechanism
for Background Transfers,” ACM SIGOPS Operating Systems Review,
vol. 36, pp. 329–343, Dec. 2002.

[2] A. Kuzmanović and E. W. Knightly, “TCP-LP: Low-Priority Service
via End-Point Congestion Control,” IEEE/ACM Transactions on Net-
working, vol. 14, no. 4, pp. 739–752, Aug. 2006.

[3] S. Shalunov, G. Hazel, J. R. Iyengar, and M. Kühlewind, “Low Extra
Delay Background Transport (LEDBAT),” IETF, RFC 6817, Dec. 2012.

[4] M. Welzl and D. Ros, “A Survey of Lower-than-Best-Effort Transport
Protocols,” IETF, Informational RFC 6297, Jun. 2011.

[5] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
Techniques for Congestion Detection and Avoidance,” in Proceedings
of the ACM SIGCOMM Conference, London/United Kingdom, Aug.
1994, pp. 24–35.

[6] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation, Architec-
ture, Algorithms, and Performance,” in Proceedings of the 23rd IEEE
INFOCOM, St. Maarten/Netherlands Antilles, Mar. 2004, pp. 2490–
2501.

[7] Y.-C. Chan, C.-L. Lin, C.-T. Chan, and C.-Y. Ho, “CODE TCP: A
Competitive Delay-Based TCP,” Computer Communications, vol. 33,
no. 9, pp. 1013–1029, Jun. 2010.

[8] G. Carofiglio, L. Muscariello, D. Rossi, and C. Testa, “A Hands-
On Assessment of Transport Protocols with Lower Than Best Effort
Priority,” in Proceedings of 35th Annual IEEE Conference on Local
Computer Networks (LCN), Denver, Colorado/U.S.A., Oct. 2010, pp.
8–15.

[9] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti, “The Quest for
LEDBAT Fairness,” in Proceedings of the IEEE Global Communica-
tions Conference (GLOBECOM), Miami, Florida/USA, Dec. 2010, pp.
1–6.

[10] D. Ros and M. Welzl, “Assessing LEDBAT’s Delay Impact,” IEEE
Communications Letters, vol. 17, no. 5, pp. 1044–1047, May 2013.

[11] S. Ferlin, T. Dreibholz, and Özgü Alay, “Multi-Path Transport over
Heterogeneous Wireless Networks: Does it really pay off?” in Proceed-
ings of the IEEE Global Communications Conference (GLOBECOM),
Austin, Texas/U.S.A., Dec. 2014, pp. 5005–5011.

[12] ——, “Tackling the Challenge of Bufferbloat in Multi-Path Trans-
port over Heterogeneous Wireless Networks,” in Proceedings of the
IEEE/ACM International Symposium on Quality of Service (IWQoS),
Hong Kong/People’s Republic of China, May 2014, pp. 123–128.

[13] S. Ferlin, T. Dreibholz, Özgü Alay, and A. Kvalbein, “Measuring the
QoS Characteristics of Operational 3G Mobile Broadband Networks,”
in Proceedings of the 4th International Workshop on Protocols and
Applications with Multi-Homing Support (PAMS), Victoria, British
Columbia/Canada, May 2014, pp. 753–758.

[14] P. Karn and C. Partridge, “Improving Round-Trip Time Estimates
in Reliable Transport Protocols,” ACM Transactions on Computer
Systems (TOCS), vol. 9, pp. 364–373, Nov. 1991.

[15] I. Rüngeler, M. Tüxen, and E. P. Rathgeb, “Integration of SCTP in
the OMNeT++ Simulation Environment,” in Proceedings of the 1st
ACM/ICST International Workshop on OMNeT++, Marseille, Bouches-
du-Rhône/France, Mar. 2008.

[16] T. Dreibholz, M. Becke, H. Adhari, and E. P. Rathgeb, “On the Impact
of Congestion Control for Concurrent Multipath Transfer on the Trans-
port Layer,” in Proceedings of the 11th IEEE International Conference
on Telecommunications (ConTEL), Graz, Steiermark/Austria, Jun. 2011,
pp. 397–404.

[17] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” IETF, Standards Track
RFC 3550, Jul. 2003.

[18] M. Becke, E. P. Rathgeb, S. Werner, I. Rüngeler, M. Tüxen, and
R. R. Stewart, “Data Channel Considerations for RTCWeb,” IEEE
Communications Magazine, vol. 51, no. 4, pp. 34–41, Apr. 2013.

[19] T. Szigeti and C. Hattingh, End-to-End QoS Network Design: Quality of
Service in LANs, WANs, and VPNs Quality of Service Design Overview.
Cisco Press, Nov. 2004.

[20] Telecommunication Standardization Sector of the ITU, ITU-T Recom-
mendation G.114: Transmission Systems and Media : General Recom-
mendations on the Transmission Quality for an Entire International
Telephone Connection : One-Way Transmission Time. International
Telecommunication Union, 2003.

[21] V. Cerf, V. Jacobson, N. Weaver, and J. Gettys, “BufferBloat: What’s
Wrong with the Internet?” ACM Queue, vol. 9, no. 12, pp. 10–20, Dec.
2011.

[22] T. Dreibholz, “NorNet at NICTA – An Open, Large-Scale Testbed for
Multi-Homed Systems,” Invited Talk at National Information Communi-
cations Technology Australia (NICTA), Sydney, New South Wales/Aus-
tralia, Jan. 2015.

[23] E. G. Gran, T. Dreibholz, and A. Kvalbein, “NorNet Core – A Multi-
Homed Research Testbed,” Computer Networks, Special Issue on Future
Internet Testbeds, vol. 61, pp. 75–87, Mar. 2014.

[24] T. Dreibholz and E. G. Gran, “Design and Implementation of the NorNet
Core Research Testbed for Multi-Homed Systems,” in Proceedings of
the 3nd International Workshop on Protocols and Applications with
Multi-Homing Support (PAMS), Barcelona, Catalonia/Spain, Mar. 2013,
pp. 1094–1100.

[25] T. Dreibholz, X. Zhou, and F. Fa, “Multi-Path TCP in Real-World
Setups – An Evaluation in the NorNet Core Testbed,” in 5th Inter-
national Workshop on Protocols and Applications with Multi-Homing
Support (PAMS), Gwangju/South Korea, Mar. 2015, pp. 617–622.

	Introduction
	Basics: How LEDBAT works
	Basic Design
	Issues Related to LEDBAT

	The Eclipse Congestion Control
	How to Detect Congestion?
	How to React on Congestion?
	How to Reach a Stable Behaviour?
	One-Way Smoothed Values
	Dynamic Calculation of the Adaptation Interval

	Simulation Setup
	Evaluation
	Use Only Spare Capacity
	Delay Benefits with Eclipse
	The Long-Term Behaviour
	Fairness between Eclipse Flows and the Latecomer Issue
	Behaviour in a Large Aggregation Regime

	Conclusions and Future Work
	References

