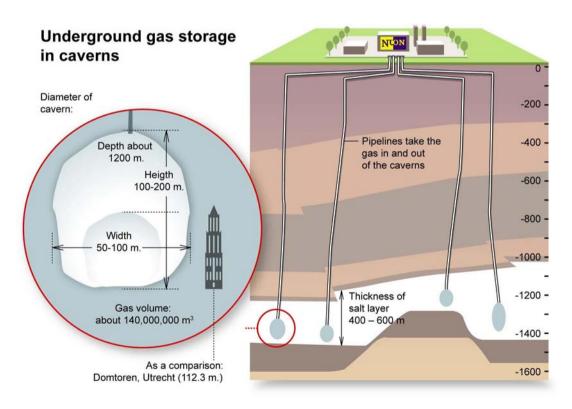
Implications of Spot Price Models on the Valuation of Gas Storages

LEF, Energy & Finance Dr. Sven-Olaf Stoll EnBW Trading GmbH Essen, 4th July 2012

Energie braucht Impulse

Agenda



- Gas storage
- Valuation of gas storages
- > Spot price model
- > Example: Valuation of gas storages
- Conclusions

Gas storage

> Asset to inject or withdraw gas, e.g. depleted gas reservoir, salt cavern...

Source: NUON

Gas storage

- > Asset to inject or withdraw gas, e.g. depleted gas reservoir, salt cavern...
- Natural gas is stored to structure delivery according to variations in demand
 - > seasonal load variations
 - > intraday load profile
- Physical storage capacities and virtual storage contracts are auctioned by several storage companies (e.g. E.On Gas Storage (D), Centrica Storage (UK))
- Daily or hourly execution rights, but on the spot market natural gas is traded only on daily basis

Gas volume:
about 140,000,000 m³

As a comparison:
Domtoren, Utrecht (112.3 m.)

Source: NUON

Gas storage

- > Asset to inject or withdraw gas, e.g. depleted gas reservoir, salt cavern...
- Natural gas is stored to structure delivery according to variations in demand
 - > seasonal load variations
 - > intraday load profile
- > Physical storage capacities and virtual storage contracts are auctioned by several storage companies (e.g. E.On Gas Storage (D), Centrica Storage (UK))
- Daily or hourly execution rights, but on the spot market natural gas is traded only on daily basis
- Valuation is done via Least Squares Monte Carlo
- > References:
 - > A. Boogert, C. de Jong: Gas Storage Valuation Using a Monte Carlo Method; Journal of Derivatives, Spring 2008

Agenda

- > Gas storage
- Valuation of gas storages
- > Spot price model
- > Example: Valuation of gas storages
- **>** Conclusions

Technical Conditions for Gas Storages

>Storage volume V_d^{max} maximum working gas volume on day d minimum working gas volume on day d actual working gas volume content on day d (positive variable) >Injection: maximum injection rate on day d as a function of the working gas volume level actual injection rate (positive variable) $C_d^I(V, Q_d^I)$ injection costs on day d as a function of the working gas volume level >Withdrawal: maximum withdrawal rate on day d as a function of the working gas volume level Q_d^W actual withdrawal rate (positive variable) $C_d^W(V, Q_d^W)$ withdrawal costs on day d as a function of the working gas volume \gt Initial condition: V_0 working gas volume at start of valuation period \gt Final condition: V_{end} working gas volume at the end of the valuation period

Valuation and Optimal Scheduling - Problem Statement

> storage balance

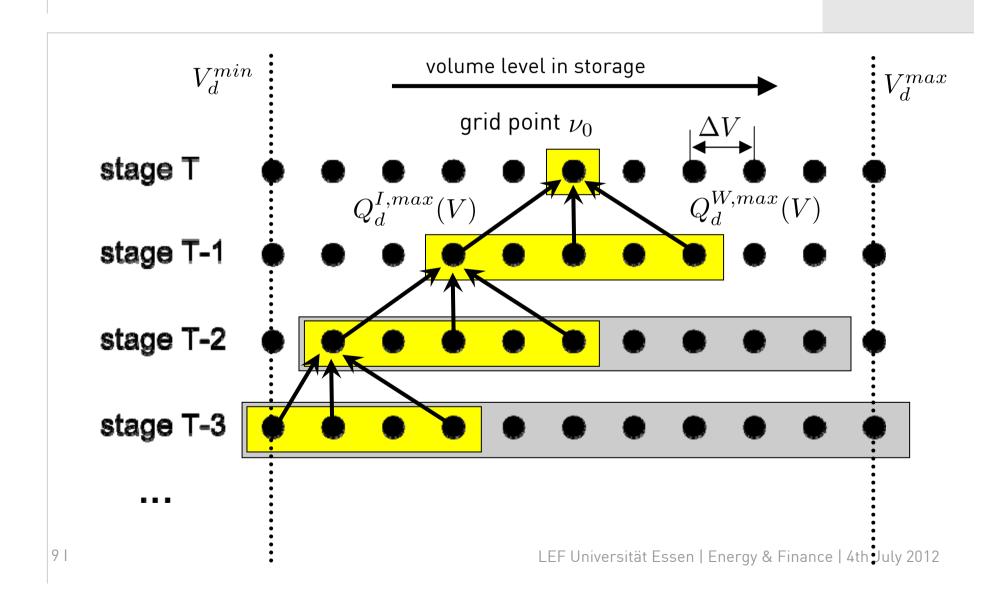
$$V_{d+1} = V_d + \left(Q_d^I - Q_d^W\right) \qquad \forall d$$

Constraints

$$V_d^{min} \leq V_d \leq V_d^{max} \qquad \forall d$$

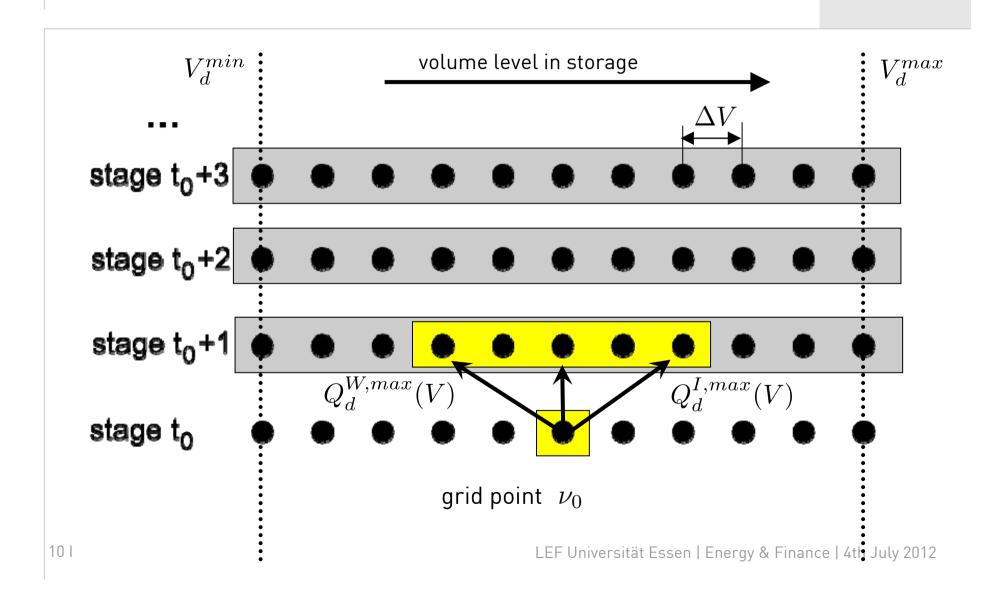
$$0 \leq Q_d^I \leq Q_d^{I,max}, \quad 0 \leq Q_d^W \leq Q_d^{W,max} \quad \forall d$$

Value function

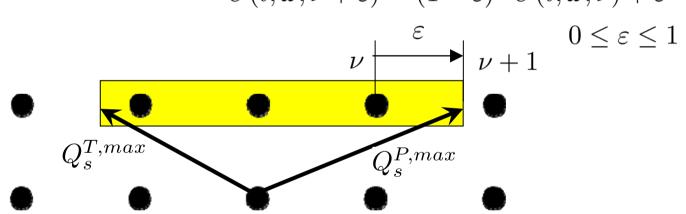

$$M = \sum_{d} D_{d,d_0} \cdot \left[S_d \cdot \left(Q_d^W - Q_d^W \right) - C_d^I(V, Q_d^I) - C_d^W(V, Q_d^W) \right]$$

ightarrow Fair option value (risk neutral measure $\it Q$) at time $d_0:$

$$V = \max_{Q_d^I, Q_d^W} \mathbb{E}_{d_0}^Q \left[M \right]$$


Dynamic Programming: Discretization (1)

Dynamic Programming: Discretization (2)



Dynamic Programming: Interpolation

- If injection and withdrawal rates are **not integer multiples** of the grid distance:
- Interpolate between continuation values for adjoint grid points

$$U(t, \omega, \nu + \varepsilon) = (1 - \varepsilon) \cdot U(t, \omega, \nu) + \varepsilon \cdot U(t, \omega, \nu + 1)$$

Dynamic Program for Gas Storages

- Dynamic program:
- start with allowed grid points at time step T initialize continuation values with zeros (grid point ν , price scenario ω) $U(T,\omega,\nu)=0$
- recursively step back in time
 - 1. discount continuation value to actual time for allowed grid points $C(d_k,\omega,\nu)=D_{d_{k+1},d_k}\cdot U(d_{k+1},\omega,\nu)$
 - 2. calculate reachable grid points u and all allowed actions $\Delta
 u$
 - 3. maximise sum of immediate payoffs and future cashflows

$$U(d_k, \omega, \nu) = \max_{\Delta \nu} [h(S_{d_k}, \Delta \nu) + C(d_k, \omega, \nu + \Delta \nu)]$$

here \emph{h} is the immediate payoff from injection ($\Delta \nu > 0$) or withdrawal ($\Delta \nu < 0$)

$$h(S_d, \Delta \nu) = -\Delta \nu \cdot \Delta V \cdot S_d$$

Calculate option value as mean (starting volume ν_0):

What is the fair value?

Least Squares Monte Carlo

- Stochastic dynamic program (cf. Boogert and de Jong (2008)):
- start with allowed grid points at time step ${\cal T}$ initialize continuation values with zeros (grid point u, price scenario ω) $U(T,\omega,\nu)=0$
- recursively step back in time
 - 1. discount continuation value to actual time for allowed grid points

$$C(d_k, \omega, \nu) = D_{d_{k+1}, d_k} \cdot U(d_{k+1}, \omega, \nu)$$

- 2. calculate reachable grid points u and all allowed actions $\Delta
 u$
- 3. Approximate continuation value using a set of basis functions by regression

$$\hat{C}(d_{m{k}},\omega,
u) = \sum_{l=0}^{M} a_{l}^{
u} B_{l}(S_{d_{m{k}}}^{\omega})$$

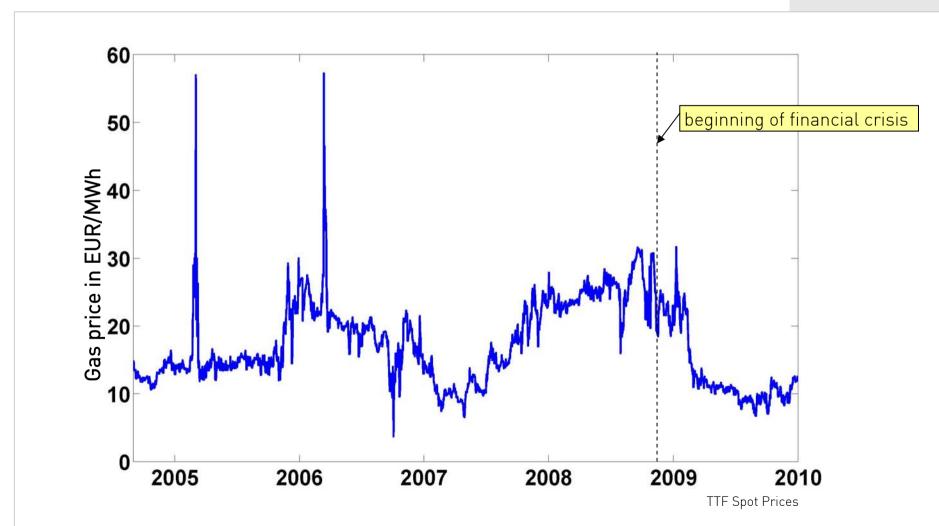
4. maximise sum of immediate payoffs and future cashflows

$$U(d_k, \omega, \nu) = \max_{\Delta \nu} [h(S_{d_k}, \Delta \nu) + \hat{C}(d_k, \omega, \nu + \Delta \nu)]$$

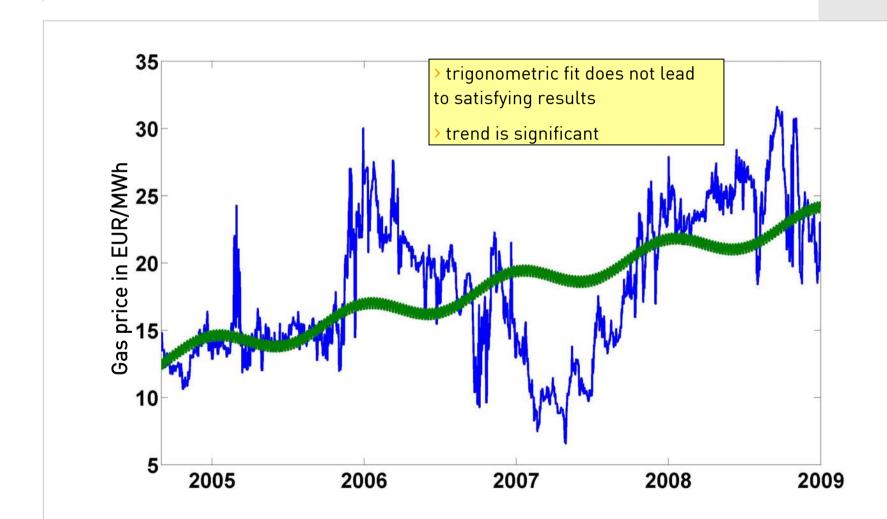
here h is the immediate payoff from injection of withdrawal

 \succ Calculate option value as scenario mean (starting volume u_0):

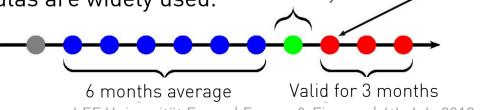
$$U = \frac{1}{N} \sum_{\omega=1}^{N} U(d_0, \omega, \nu_0)$$


Agenda

- > Gas storage
- > Valuation of gas storages
- > Spot price model
- > Example: Valuation of gas storages
- **>** Conclusions


Natural Gas Prices Properties of Spot Price Time Series

Natural Gas Prices Is there a naive seasonality?



Natural Gas Prices Are there any further influencing variables?

date of calculation

- Idea 1: In winter gas price is influenced by available storage volume.
 - Storage volume data is not sufficient.
 - Storage demand strongly depends on temperature.
 - Longer periods of cold weather lead to low storage volume and increasing spot market prices.
- Idea 2: Gas is imported by long term contracts which are indexed on oil price by formulas.
 - > Typical formulas are 6-1-3, 6-3-3, 3-1-1 or 3-1-3.
 - > Gas oil and fuel oil price formulas are widely used. 1 month delay

LEF Universität Essen | Energy & Finance | 4th July 2012

Influencing Variables Heating Degree Days

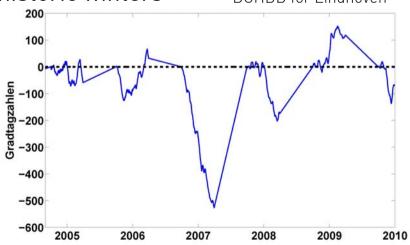
Heating Degree Days

$$HDD = max(15-temperature;0)$$

Cumulated Heating Degree Days (Winter)

CHDD(t) = Sum of all HDDs in winter up to day t

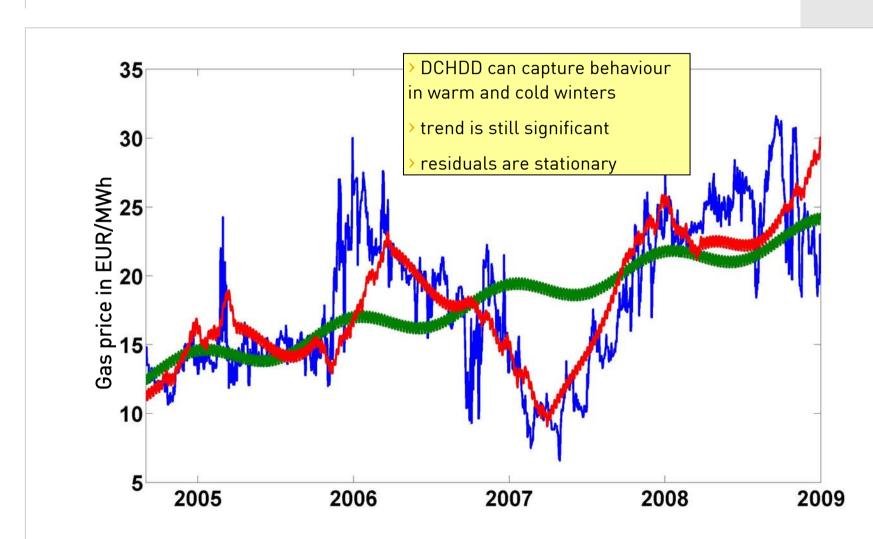
Cumulated Heating Degree Days for norm winter


MCHDD(t) = Mean of CHDD(t) for all historic winters

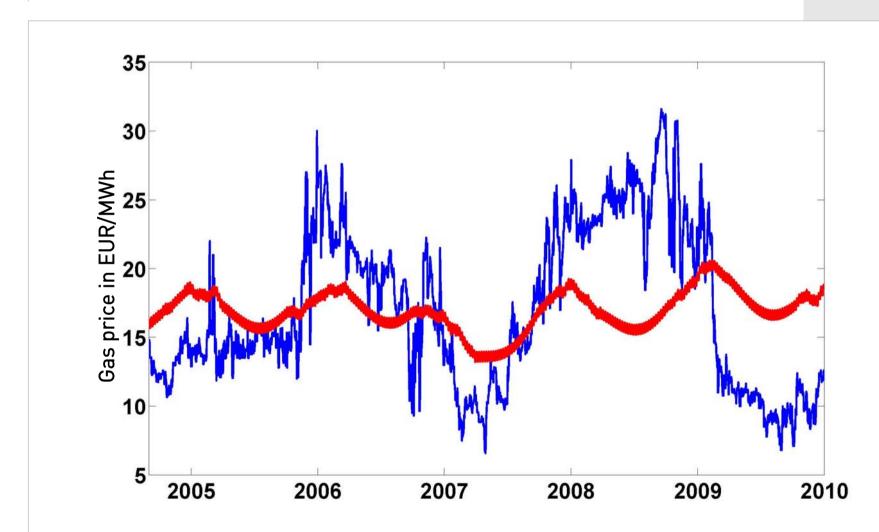
DCHDD for Eindhoven

Deviation of CHDD from norm winter:

$$DCHDD(t) = CHDD(t) - MCHDD(t)$$

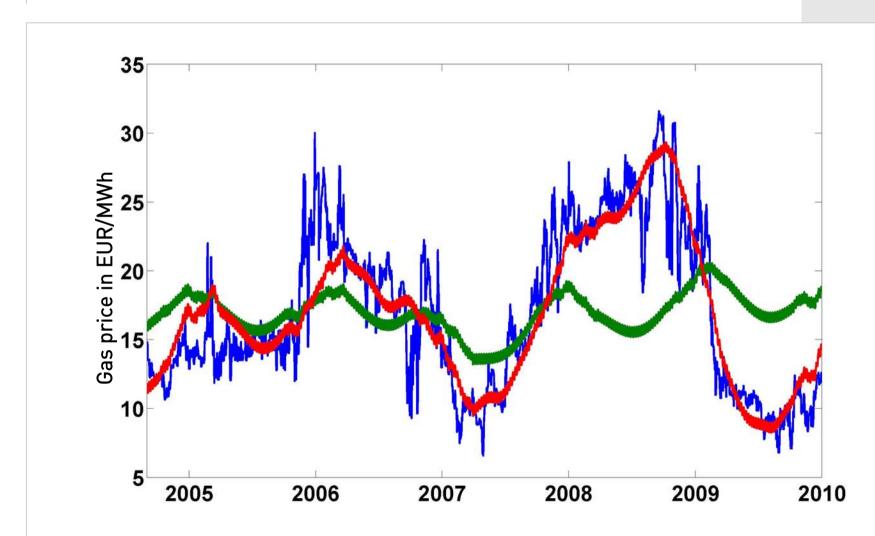

In summer linear interpolation down to 0

LEF Universität Essen | Energy & Finance | 4th July 2012


Seasonality with DCHDD

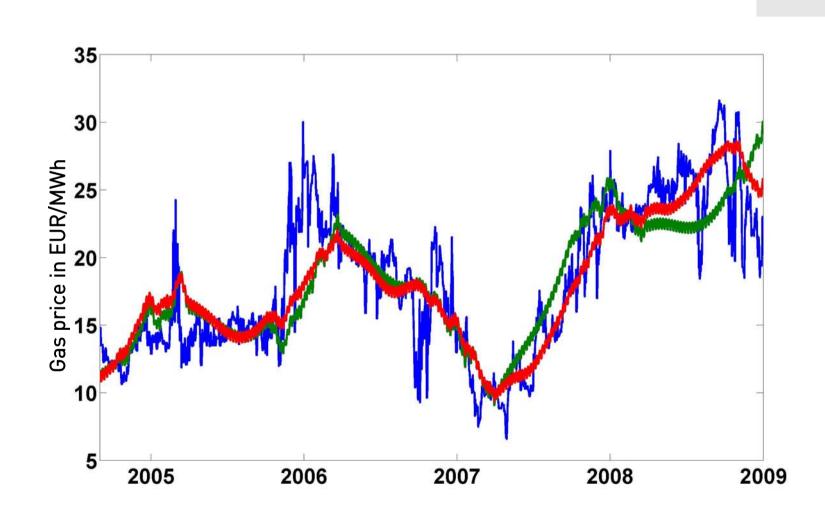
Seasonality with DCHDD What happened during the financial crisis?

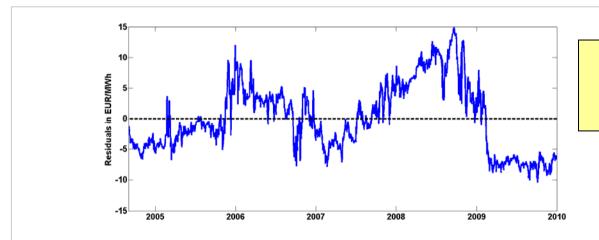
Influencing Variables Oil price component

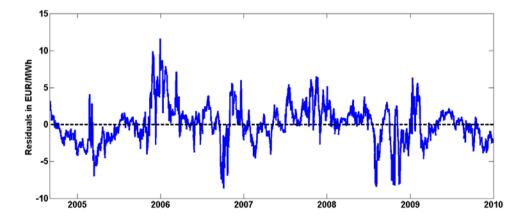


- > Correlation between gas oil, fuel oil and Brent crude oil is 97% 99%. Thus, choose Brent because of longer history and better quality of data.
- > Use formulas to include smoothing and time lag.

Formula	R ² of regression	
5-0-1	0.7946	
3-1-1	0.7812	
3-1-3	0.7105	
6-1-1	0.6995	
6-1-3	0.5756	
6-3-3	0.3047	


Seasonality with DCHDD and oil formula Fit until end of 2009


Seasonality with DCHDD and oil formula Fit until end of 2008


Residuals Stationary or not?

modelled dependence on heating degree days

modelled dependence on heating degree days and oil price component

Stochastic Model

$$X_{t} = m_{t} + s_{t} + S_{t} + a_{1} f(\Theta_{t}) + a_{2} g(\Psi_{t}) + Y_{t}$$

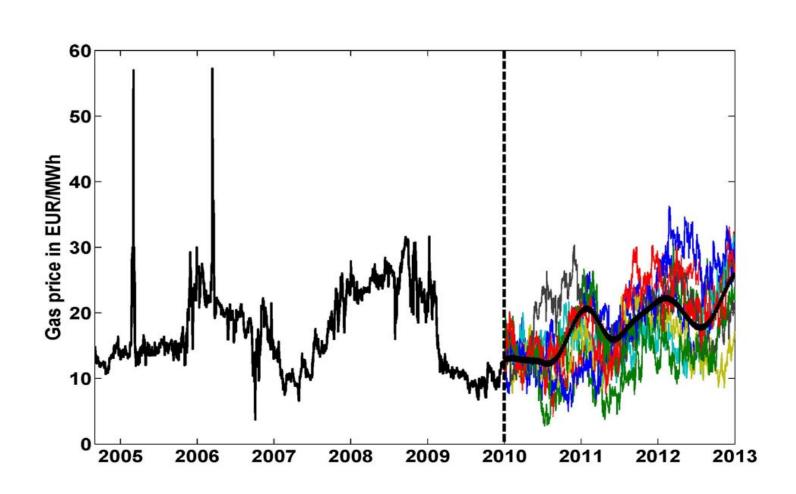
 m_t linear trend

 \boldsymbol{S}_t weekly seasonality

 S_{t} yearly seasonality

 $f(\Theta_t)$ Normalised cumulative heating degree days with linear return to 0 during summer

during summer


 $g\left(\Psi_{t}\right)$ 5-0-1 oil formula for Brent crude oil

 Y_t stochastic component: ARMA(2,1) process with variance gamma

innovations

Simulation paths

Agenda

- > Gas storage
- > Valuation of gas storages
- > Spot price model
- > Example: Valuation of gas storages
- **>** Conclusions

Examples: Gas storage valuation

	Storage 1	Storage 2	
Start date	05.01.2010	01.04.2010	
End date	31.03.2010	31.03.2012	
Max. volume (MWh)	216.000	324.000	
Initial volume (MWh)	200.164	0	
Injection rate (MW)	150	150	
Withdrawal rate (MW)	150	300	
Injections costs (€/MWh)	0	0,30	
Withdrawal costs (€/MWh)	0	0	10% difference
Valuation without oil component (€)	2.694.690	6.829.537	in valuation!
Valuation with oil component (€)	2.756.116	6.112.047	

Agenda

- > Gas storage
- > Valuation of gas storages
- > Spot price model
- > Example: Valuation of gas storages
- Conclusions

Conclusion

- > Significant parts of gas spot prices behaviour can be explained by using exogenous variables as regressors.
- Using NCHDD as fundamental component reduces volatility often overestimated by other models.
- The second fundamental component is oil which can explain behaviour during financial crisis 2009.
- Good models including fundamental components are important for valuation and trading decisions.
- > References:
 - A. Boogert, C. de Jong: Gas Storage Valuation Using a Monte Carlo Method;
 Journal of Derivatives, Spring 2008
 - S.O. Stoll, K. Wiebauer: A Spot Price Model for Natural Gas Considering Temperature as Exogenous Factor and Applications; Journal of Energy Markets, 2010.
 - J. Müller: Ein gekoppeltes Spotmarktmodell für Öl- und Gaspreise; Master Thesis, University of Siegen, 2010.

 LEF Universität Essen | Energy & Finance | 4th July 2012

Thank you for your attention!

EnBW Trading GmbH Sven-Olaf Stoll Durlacher Allee 93 D-76131 Karlsruhe

tel. +49 721 63 15373 email s.stoll@enbw.com

Energie braucht Impulse