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Abstract 

The energy demand of future electromobility poses new challenges for distribution grids due to critical load peaks. Integrating 
electric vehicles (EVs) into the energy system by controlled charging could offer additional flexibility for the overall system yet 
may increase the peak loading in the distribution grid. We therefore developed and implemented a modular optimization model 
representing the simultaneous controlled charging of multiple EVs in one defined branch of a distribution grid from a combined 
aggregator and grid perspective. The objective consists of minimizing the costs to provide electrical energy to fully recharge all 
EVs connected to that grid branch during a full year, either in perfect foresight or by applying a rolling horizon with a 36h/24h 
scheme. The time intervals of connection to the power grid are explicitly modelled as well as the grid limitations.  
Using Monte Carlo simulations, a multiplicity of different single grid branches is evaluated. The number of households 
connected to these grid branches with a defined probability of EV ownership is applied as predictor for the load burden of the 
future German EV fleet. In the model, a classification of grid branches into fifteen distinct types is used, each defined by specific 
parameter settings, allowing to capture the diversity of grid branch configurations, e.g. regarding the degree of urbanization. 
Randomization is employed to create a representative sample of grid configurations based on the predefined clusters and 
corresponding ranges of grid parameters. This enhances the model's adaptability to reflect the variability of grid configurations. 
Compared to uncontrolled charging, which is considered as a reference in the model, “smart” optimised controlled charging of 
multiple EVs is concentrated during periods of the lowest spot prices, which do not coincide with the existing peak load hours 
in the evening. The impact of grid constraints on the controlled charging patterns is found to depend both on the degree of 
urbanization and the specificities of the considered grid branches. 
 
 

1 Introduction 

The energy demand of future electromobility poses new 
challenges for distribution grids due to critical load peaks. 
Integrating electric vehicles (EVs) into the energy system 
by controlled charging could offer additional flexibility. As 
part of an applied research project in this field in Germany 
[1], a modular optimization model was developed and 
implemented. The novel methodology notably addresses the 
broad variety of distribution grids and the limited empirical 
data available for a system-wide analysis of smart charging 
patterns and impacts.  
 
1.1 Low-voltage distribution grids 

There is a high level of heterogeneity in low-voltage (LV) 
distribution grids. They differ substantially in their 
topological layout, including the number or branches, their 
lengths and the configuration of branches with respect to the 
feeding point of the grid. Urban grids often consist of dense, 
interconnected networks, while rural grids feature long 

connection lines with sparse customer distribution. An 
exemplary illustration is provided in Fig. 1, which depicts a 
stylized low voltage distribution network featuring a LV 
transformer (LVT) and two parallel branches.  

 

Fig. 1 Stylized low-voltage distribution network with two 
parallel branches including households with EV ownership 
and photovoltaic systems (PV)  

The house symbols represent individual households, but 
these might also be part of a multi-family dwelling or a high-
rise building: 
Even the branches of a single municipal distribution grid 
may differ substantially, e.g., regarding the number of 

LVT 
Typical cable: NAYY 4x150 mm2 
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connected households, the branch lengths, or the cumulative 
level of PV generation.  

Notably the actual number of EVs per grid branch is 
relevant for the model and determined in dependence of the 
households per grid branch, as is explained in Section 2.3. 
 
1.2 “Smart” charging versus “dumb” charging 

Two charging strategies are compared: controlled "smart” 
charging versus uncontrolled "dumb" charging. Con-
ventional "dumb" charging serves as a reference. Here, EVs 
plugged to the distribution grid are continuously charged to 
100% state of charge (SoC) from the moment they are 
plugged in, without any external control over the charging 
except for dimming the maximum charging power in case 
of a line overload. This serves as a baseline to evaluate the 
benefits of "smart" charging, where the charging process is 
controlled and optimised to manage energy consumption 
more efficiently. 
 
2 Methodology 

To effectively address the aforementioned challenges, a 
sophisticated yet scalable approach is required. Fig. 2 
provides an overview of the components discussed in the 
following sections of this paper. The method notably 
involves the utilisation of so-called "meta-clusters" to 
represent characteristic distribution networks (cf. 
Section 2.2). Meta-clusters ([2], [3]) in the context of this 
paper are aggregated groups of LV distribution grids with 
similar parameter sets. The sampling of multiple 
representants with cluster-specific random parameters 
allows to scale the results of the model to the national level 
and to identify the optimal charging strategies at the national 
level. Thereby, the modelling of the network constraints 
using the so-called limiting curve analysis ([4], [5]) is 
another key element (cf. Section 2.5), providing a simplified 
description of the capacity limitations in different types of 
networks. With these input data, the EV charging is 
optimized for a full year (cf. Section 2.6). 

 

Fig. 2 Components of the simulation model 

2.1 Modelling approach 

The core idea of our model setup is to represent the entire 
German low voltage distribution grid by evaluating multiple 
single branches (“grid configurations”) out of a variety of 
grid clusters. Each meta-cluster comes along with a 
parametrization with specific value ranges for the following 
key parameters: 

 Number of house connections to the grid,  
 residences per house connection,  
 LV transformer power per house connection,  
 installed PV power per house connection,  
 number of electric vehicles,  
 (Effective) length of the distribution network branch, 
 Number of branches. 

The parameter values are adapted to the settlement 
characteristics of the area where the corresponding grid 
configurations are typically found. For the LV grid a radial 
structure is assumed with several branches connected in 
parallel to one transformer (cf. Fig. 1).   

For every single grid configuration first the grid meta cluster 
is randomly drawn, with probabilities adjusted to the 
distribution of different settlement types in Germany (cf. 
Sections 2.2 and 2.3). The number of households as well as 
all other grid parameters are then randomly determined 
based on grid-specific value ranges (cf. Section 2.4). This 
notably allows to place consistently a random number of 
EVs in each grid branch, depending on the settlement type, 
the number of households and other characteristics 
associated with the grid configuration. The grid parameters 
are determined based on a simplified approach (cf. Section 
2.5) and normalized to one branch. They are then a key 
element for determining the optimal EV charging schedules 
in each grid branch in the optimization runs (cf. Section 2.6). 

When faced with grid constraints, the “dumb charging” 
strategy involves a simultaneous “dimming” mechanism for 
all EVs scheduled for charging within each time step. This 
means that during periods of high demand or when the 
network is at risk of overloading, the charging rates of all 
EVs are reduced uniformly. With smart charging, such a 
rescheduling is performed in an optimal way taking into 
account the EV mobility patterns. In this way, a grid-
compatible smart charging is ensured.  

2.2 Clustering of low-voltage grids  

The first main step to cope with the heterogeneity of LV 
grid configurations consists of a suitable clustering. In [2], 
the meta-clusters shown in Table 1 and a qualitative 
categorization of settlement type and a categorization 
according to the “degree of urbanization” (DoU) are given, 
e.g. “low-density mixed-use area” is labelled as “rural to 
suburban”. In the absence of more detailed knowledge, we 
apply the Laplace principle [6] and assume that each 
category is equally likely, therefore allocating 50% to both 
categories.  
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Table 1 Clustering of LV grids by settlement type with 
categorization of these areas according to their degree of 
urbanisation: rural ( ), sub-urban ( ) and urban ( ) [2]. 

Cluster DoU 

Scattered settlement mixed-use area  
Low-density residential area A  
Low-density residential area B  
Low-density mixed-use area  
Medium-density residential area A  
Medium-density residential area B  
Medium-density mixed-use area  
High-density residential area  
High-density mixed-use area  
Low-density multifamily r. a.  
Medium-density multifamily r. a. A  
Medium-density multifamily r. a. B  
High-density multifamily r. a.  
Urban multifamily residential r. a.  
High rise area  
(r. a. = residential area)  

Three typical commercial settlement types also proposed by 
[2] were not considered in our data setup, as they are not 
directly corresponding to specific DoUs and the charging-
relevant mobility patterns in these areas would be quite 
different.  

 
2.3 Degree of urbanisation and number of households  

A data set from the German Federal Institute for Research 
on Building, Urban Affairs and Spatial Development [7] 
categorizes 10,990 German municipalities according to 
their DoU. Out of the total German population of 
84.36 million in 2022, 19.01 million reside in rural areas, 
34.86 million in suburban areas, and 30.50 million in urban 
areas.  
As the population size of each municipality is also given, it 
is possible to subdivide them into a data matrix in 
dependence of the size classes and the DoU. For instance, 
1337 municipalities with a population between 5,000 and 
20,000 are part of a sub-urban area. 
Another official data set [8] provides information on the 
number of households for all municipality size classes in 
dependence on the number of persons living in the 
household (HH), ranging from 1 to 5 or more persons per 
household. The combination of both data sets allows for 
calculating the mean number of persons per household for 
every DoU area (Table 2) and to link settlement types, DoUs 
and number of households. The total number of German 
households in 2022 amounts to 41.5 million. 

Table 2 Computed population parameters in dependence on 
the degree of urbanisation (DoU). 

DoU: rural sub-urban urban 

Inhabitants GER*) 19.01% 34.86% 30.50% 
% population 22.53% 41.32% 36.15% 

Persons per HH 2.16% 2.12% 1.88% 
HH total*) 8.81% 16.48% 16.20% 

% total HH 21.23% 39.72% 39.05% 
*) values are to be expressed in millions, HH=household(s). 

2.4 Stochastic parameterization  

With an EV stock of 15 million EVs as projected by the 
German government [9], the average probability for a 
household to own an EV in 2030 is roughly 15/41. 
Compared to recent official projections estimating between 
41.7 million and 42.3 million households in 2030 [10], this 
probability is slightly upward biased resulting in somewhat 
more congestion issues in the analysed grid branches.  

For determining the number of EVs in each simulated 
branch, it is assumed that each building connected to the 
grid is either a single-family dwelling or a multi-family 
dwelling, where each dwelling is occupied by one 
household owning a maximum of one electric vehicle (EV). 
Correspondingly, the parameter "Number of house 
connections" represents the total count of such buildings on 
the grid and together with the average number of households 
per building the number of households is determined. For 
the households, then a binomial distribution is then applied 
to determine the number of EVs per grid branch.   

For the aforementioned parameters as well as the others 
listed in Section 2.1, parameter values for each grid meta-
cluster are provided in [3]. For each of the parameters, a 
deterministic scalar value v is given. To reflect the 
heterogeneity of grid branches within a cluster, a different 
random value for every single run of the Monte Carlo 
simulation is determined. Unless other information is 
available, we assume that the lower bound xlb for the random 
values corresponds to half of the given value v. Conversely, 
the upper bound xub is set to twice the value of v. The 
resulting interval then defines the range of a triangular 
probability density function [11] where probabilities are 
bigger than zero (cf. Fig. 3).  

The triangular distribution enables a parsimonious 
modelling of uncertainty. Minimum, modal and maximum 
value fully describe the distribution function. This enhances 
its applicability compared to other distributions such as the 
normal distribution, especially when a skewed distribution 
is likely, upper and lower bounds exist and the true 
distribution is unknown. [12] 

The modal value m of the asymmetric triangle is set equal 
to the given grid parameter v, which is then positioned a 
third of the way between xlb and xub, as shown in Fig. 3.  

 

Fig. 3 Parameters of an asymmetric triangular probability 
density function. 
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2.5 Limitation of power flows 

Real power cables used in LV distribution grids like the 
NAYY 4x150 (mm2) [13] show resistive impedance and 
frequency-dependent self-inductance. The code “NAYY” 
represents a standardized cable type (“N”) with aluminium 
conductors (“A”) and insulation made of PVC (“YY”). The 
NAYY 4x150 power cable with four conductors has a 
maximum current-carrying capacity of 246 A when installed 
in free air and 275 A when buried underground [14].  

Both resistance and self-inductance of the cables contribute 
to voltage drops which are proportional to the length of the 
cable. Therefore, the absolute voltage drop becomes more 
pronounced over longer branch lengths, potentially 
reducing the maximum power that can be transmitted 
without exceeding the permissible voltage drop limits. 
Equivalent circuit representations of real power cables 
([15], [16]) allow to calculate these voltage drops. The 
resulting limit power curves as function of the line length 
are explained in detail in [4] and [5]. To apply the limiting 
curve analysis properly, we assume that all households 
connected to the grid branch are accumulated at the terminal 
point of an equivalent branch. This branch shows an 
effective length of 70% of the physical length. 

2.6 Optimization model formulation 

The aggregators focus on minimizing energy system costs 
through charging scheduling, all while meeting the demands 
of EV users. For this purpose, an optimization model was 
implemented, following largely the structure proposed by 
[17]. It consists of three groups of constraints: 

 Battery SoC equations: For every EV, the SoC in 
time step t equals the SoC of timestep t-1 plus any 
difference of the SoC in t caused by energy 
consumption or battery charging. 

 The total charging power per time step t must not 
exceed the transmittable power as discussed in 
Section 2.5. 

 As default setting, each EV battery is recharged to 
100% within each charging cycle. 

To make sure that the optimization problem is a linear 
program (LP), no Boolean variables were used. Instead, a 
binary parameter matrix was introduced indicating the 
connection status to the distribution grid for each of the EVs 
for every timestep of the test period, as shown in Fig. 4. For 
every “idle” timestep, where an EV is not connected, the 
upper bound of the corresponding optimization variable was 
dynamically set equal to zero, which is also the value of the 
lower bound. 

Fig. 4 contains a stylized scenario of seven EVs which are 
connected to the same grid branch for substantially parallel 
charging over a given period with fifteen discrete time steps. 

 
 

 

 

 

 

 

 

 EV not plugged to LV grid, 

 EV plugged to LV grid but not loaded, 

 EV plugged to LV grid and loaded. 

 
 
 
 
 
As the charging is controlled and optimized by the 
aggregator, the timesteps with solid grey filling represent 
timesteps where the EV is plugged to the grid branch but not 
charged due to the level of the electrical spot price. 

2.7 Modular model setup and real-world time series 

To ensure maximum flexibility, the simulation model is 
composed of multiple files written in Python. Fig. 5 shows 
the modular functional components of the simulation 
framework. The Monte Carlo simulation is applied by a 
single loop file where either the model file with smart 
charging and perfect foresight optimization or the model file 
with smart charging and optimization based on a rolling 
horizon can be used. Both model files can also be applied as 
“stand-alone” files to run a full-year optimization for a 
single branch with deterministic parameters.  

Central parameter of the optimization is the spot price for 
electrical energy. The hourly EPEX day-ahead price for 
Germany and Luxemburg of 2021 [18] has been chosen as 
baseline timeseries to model future scenarios of up to 8760 h 
in hourly or quarter-hourly resolution. 
The simulation model framework can be executed using 
either synthetic time series to investigate e.g. future 
scenarios and highlight specific effects within the model or 
real-world data. The latter include the following datasets: 

 Household consumption [19], 
 PV generation [20], 
 EV driving profiles and consumption [21]. 

 

Fig. 4 Representation of parallel controlled charging of seven 
EV connected to the same LV grid branch over a given period 
with fifteen discrete time steps, status after optimization. 

t 

EV 1 

EV 2 

EV 3 

EV 4 

EV 5 

EV 6 

EV 7 

EV 7 not plugged 

EV 1 plugged      EV 1 plugged & charged 
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Fig. 5 Simulation model framework. 

3 Results and discussion 

A full Monte Carlo simulation with hourly resolution and 
103 loops over a full year based on real world data timeseries 
as listed in Section 2.7 takes less than 45 min on a PC with 
the following system specifications: 

 Processor: Intel® Core™ i7-1165G7 at 2.80 GHz,  
 Installed RAM: 32.0 GB,   
 Operating system: Windows 11 Pro 64-bit (23H2).  

Therefore, an average single simulation takes 2.4 seconds. 
This value is yet dependent on the actual number of EVs. 

One main finding is illustrated across all subsequent figures: 
When the charging for all EVs in a grid branch is optimised, 
the charging of multiple EVs is concentrated during periods 
of the lowest spot prices. This behaviour is consistently 
visible in all figures. It highlights the key role of spot prices 
in cost-effective charging strategies for the aggregators and 
how this is taken up by the model. 

3.1 Total charging in the grid branch 

Fig. 6 shows the total power consumption to charge ten EVs 
in controlled and uncontrolled mode per timestep (a) for a 

week in winter and (b) for a week in summer. To emphasise 
visually the effect of congestion, the power flow limit in the 
grid branch was set to a low value to 50 kW. These results 
were obtained using the stand-alone simulation model.   

In addition, synthetic time series were applied both for the 
EV driving profiles and the consumption. To create a stress 
scenario with respect to the already existing evening peak, 
all EVs arrive between 4:45 p.m. and 6:45 p.m. with a 
remaining SOC of 65% (26 kWh) and leave fully charged 
between 5:00 a.m. and 8:45 a.m. on each day of the test 
period.  

 
Fig. 6 Total controlled and uncontrolled charging of all EVs 
per timestep (a) for a week in winter and (b) for a week in 
summer. 

The week in summer was specifically chosen because the 
spot price for electrical energy was close to zero, or even 
negative, during the central hours of the day, indicating a 
period with high solar energy generation. This situation 
highlights the model's ability to take advantage of 
favourable price conditions when an EV is connected to the 
grid branch, thereby maximising charging during these low-
cost periods. Yet at the same time these effects are limited 
by the connection of the EVs to the grid – correspondingly 
no charging occurs during the hours around noon and 
charging only starts when the EVs come back at home in the 
afternoon. 
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During the winter week, the power flow limit for charging 
the EVs is slightly lower than in summer. This is likely due 
to the generally higher demand for heating and lighting 
during winter, which reduces the surplus power available for 
EV charging. At the same time, no negative prices arise, and 
intraday price spreads are rather low during the first days. 
Consequently, the model still effectively optimises charging 
times to align with the lowest available spot prices, although 
the opportunities are less abundant compared to the summer 
scenario. 

3.2 Monte Carlo simulation 

Monte Carlo simulations are used to evaluate different 
configurations of LV grid branches to represent the entire 
German distribution grid. Each of the runs can be seen as a 
computational experiment based on a specific set of random 
parameter values [22] to evaluate the electricity 
consumption induced by EVs in a future scenario. Fig. 7 
depicts the total charging consumption per timestep for all 
103 runs during the first week of the test period. Despite the 
differing parameter setups, the optimising process behind 
controlled charging causes the time steps with the lowest 
spot price to be preferably selected – leading to a higher 
simultaneity of charging under controlled charging 
compared to the uncontrolled case.  

 
Fig. 7 Heat map of total charging per time step and grid 
branch for the case of smart charging with perfect foresight 
(log scale). 

Fig. 8 illustrates the variation in charging behaviour 
throughout the day on Thursdays as example of a working 
day with mean values and 10th and 90th percentiles shown. 
The controlled charging plot (Fig. 8a) depicts how the 
optimisation model shifts charging to periods with lower 
spot prices in the early morning, inducing a rather high peak 
load and aligning with the most cost-effective times as far 
as possible under the grid constraints. The uncontrolled 

charging plot (Fig. 8b) reflects typical, unoptimised 
charging patterns, with peaks corresponding to times when 
EVs are plugged in with the highest likelihood.  

Note that the mean can be higher than the 90th percentile in 
time steps with little charging activity. Notably this occurs 
if there is no charging at all in more than 90 % of all 
observations (days), yet there are strictly positive values in 
the other 10 % which drive up the mean value. Also, other 
constellations may occur with some very high but rare 
values – e.g. on Thursdays at 11 p.m. in Fig. 8a. 

 

 
Fig. 8 Daily patterns of total charging power in the grid 
branch over all Thursdays of the scenario year 2030 (a) for 
smart charging and (b) for dumb charging. 

 

 
Fig. 9 Daily patterns of total charging power in the grid 
branch over all Saturdays of the scenario year 2030 (a) for 
smart charging and (b) for dumb charging. 
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Another pair of figures (Fig. 9) shows the charging patterns 
for Saturdays in the scenario year. Fig. 9a depicts controlled 
charging over all Saturdays, whereas Fig. 9b shows 
uncontrolled charging is averaged over all Saturdays, with 
corresponding mean and percentile ranges. 

These figures reveal that, while the qualitative behaviour of 
charging on Saturdays is similar to that on Thursdays, the 
peak levels are generally slightly lower. The controlled 
charging plot (Fig 9b) demonstrates how the optimisation 
model adjusts to these lower peaks, concentrating charging 
during times of lower spot prices and smoothing out demand 
even more effectively than on weekdays. 
 

4 Conclusion 

The proposed model setup offers a flexible and efficient 
approach to analyse the role of the German low voltage 
distribution grid for EV charging by leveraging Monte Carlo 
simulations. By modelling the grid branches through fifteen 
distinct clusters, each characterized by a specific parameter 
set, the model can capture diverse configurations of the grid 
branches. The randomization process, which selects clusters 
and grid parameters based on predefined value ranges, 
enhances the model's adaptability to different grid scenarios. 
Making use of the concepts of limiting curve analysis and 
"meta-clusters" enables the rapid computation of multiple 
cases of grid utilization. Notably, the computational 
efficiency of the setup allows for completing the entire 
Monte Carlo simulation with 103 branches in hourly 
resolution over a full year in less than 45 minutes. This 
demonstrates its practical applicability for large-scale grid 
analysis and indicates significant potential for evaluating the 
value of flexibility by controlled charging of EVs.  
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